## LOCAL SOLVABILITY FOR $\Box_b$ ON DEGENERATE CR MANIFOLDS AND RELATED SYSTEMS

## FABIO NICOLA

ABSTRACT. We show that the Kohn Laplacian is locally solvable in Sobolev spaces  $H^k$ ,  $k \geq 0$ , on any degenerate CR manifold whose Levi form has a kernel of constant dimension. A similar result is indeed proved for a more general class of systems of linear partial differential operators.

1. Introduction and discussion of the results. Let M be an abstract CR manifold of CR-dimension n and real codimension h (so that dim M=2n+h), and denote by  $N^*(M)$  its characteristic bundle (of rank h). Consider the tangential Cauchy-Riemann complex  $\overline{\partial}_b$  on M and the corresponding Kohn Laplacian  $\Box_b^{(q)} = \overline{\partial}_b \overline{\partial}_b^* + \overline{\partial}_b^* \overline{\partial}_b$  acting on (0,q)-forms on M, see e.g., Shaw and Wang [21] or Section 3 below for terminology). In this paper we carry on the investigation in [15] of the following  $L^2$  estimate:

For every  $x_0 \in M$  and every  $\delta > 0$ , there exists an open neighborhood

(1.1) 
$$\Omega_{\delta} \subset M \text{ of } x_0 \text{ such that } ||u||_0 \leq \delta(\Box_b^{(q)} u, u),$$
 for all  $u \in \mathcal{D}_{(0,q)}(\Omega_{\delta}),$ 

where  $(\cdot, \cdot)$  denotes the  $L^2$  inner product,  $\|\cdot\|_0$  the  $L^2$ -norm, and  $\mathcal{D}_{(0,q)}(\Omega_{\delta})$  is the space of smooth (0,q)-forms with compact support in  $\Omega_{\delta}$ . Such an estimate is weaker than both the subelliptic ones and the semi-maximal estimates of Derridj and Tartakoff  $[\mathbf{3}, \mathbf{4}]$ . It is however strong enough to guarantee local solvability of  $\square_b$  in the Sobolev spaces  $H^k_{(0,q)}, k \geq 0$ , of (0,q)-forms.

In [15] we proved that, if (1.1) holds, then the Levi form  $\mathcal{L}(\rho)$  of M at any characteristic point  $\rho \in N^*(M) \setminus 0$  cannot have q positive and n-q negative eigenvalues. Of course, this necessary condition is clearly

<sup>2000</sup> AMS Mathematics subject classification. Primary 32W10, Secondary 35A07.

<sup>35</sup>A07.

Received by the editors on June 19, 2006, and in revised form on August 28, 2006.

 $DOI:10.1216/RMJ-2009-39-2-605 \quad Copyright © 2009 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics \ Mat$ 

satisfied at those points where the Levi form is degenerate. This paper is devoted to prove that, in fact, when the Levi form  $\mathcal{L}(\rho)$  is degenerate and has locally constant dimension (when  $\rho$  varies in  $N^*(M) \setminus 0$ ), there are no further obstructions for (1.1) to hold.

**Theorem 1.1.** Let M be an abstract CR manifold of CR-dimension n and real codimension h; let  $\Box_b^{(q)}$  be the Kohn Laplacian with respect to a fixed Riemannian metric on M, acting on (0,q)-forms. Let us suppose that the Levi form  $\mathcal{L}(\rho)$  is degenerate and has a kernel of locally constant dimension when  $\rho$  varies in the characteristic bundle  $N^*(M)$  with the 0-section removed. Then

- (a) (1.1) holds true;
- (b) for every point  $x_0 \in M$  and any integer  $k \geq 0$  there exists a neighborhood  $\Omega_k$  of  $x_0$  such that the system  $\Box_b^{(q)} u = f$  has a solution  $u \in H^k_{(0,q)}(\Omega_k)$  for every  $f \in H^k_{(0,q)}(\Omega_k)$ ,  $q = 0, \ldots, n$ .

Notice that under the hypotheses of Theorem 1.1 condition Y(q) may of course be violated. For example, condition Y(n) does not hold on any pseudoconvex manifold of CR-dimension n, see e.g., [2]. The condition given is therefore sufficient for local solvability in the absence of hypoellipticity (in general).

It is interesting to observe that Theorem 1.1 highlights the different behavior of the  $\overline{\partial}_b$ -complex and the Kohn Laplacian  $\Box_b$  as regards local solvability in degenerate CR manifolds. In fact, a recent result by Hill and Nacinovich [9] shows that, under the assumptions of Theorem 1.1 (and M embeddable), if the Levi form  $\mathcal{L}(\rho)$ ,  $\rho = (x_0, \xi_0)$ ,  $\xi_0 \neq 0$ , has q positive eigenvalues, with the other being  $\leq 0$ , the Poincaré lemma does not hold in degree q at  $x_0$ , i.e., there is a smooth (0, q)-cocycle f in an open neighborhood V of  $x_0$  such that, for every open neighborhood  $U \subset V$  of  $x_0$  there are no distributions  $u \in \mathcal{D}'_{(0,q-1)}(U)$  which solve  $\overline{\partial}_b u = f$  in U. Instead, Theorem 1.1 shows that  $\Box_b^{(q)}$  is always locally solvable.

In the special case when M is a quadratic CR manifold, i.e.,  $M = \{(z, t + iu) \in \mathbf{C}^n \times \mathbf{C}^m : u = \Phi(z, z)\}$  for some Hermitian map  $\Phi : \mathbf{C}^n \times \mathbf{C}^n \to \mathbf{C}^m$ , Theorem 1.1 was already proved without the constant rank assumption by Peloso and Ricci [18, 19], see also Nagel,

Ricci and Stein [14], Treves [23], by taking advantage of the natural group structure carried by such a CR manifold where techniques from harmonic analysis then apply. In particular, they make use of explicit representations.

Theorem 1.1 will be shown to follow from a more general result we are going to establish, concerning a class of systems with double characteristics whose principal symbol is a scalar multiple of the identity matrix.

More precisely, let X be an open subset of  $\mathbb{R}^n$ , and consider an  $N \times N$  system P of linear partial differential operators in X of order m. We will assume the following:

 $(H_1)$  The principal symbol of P has the form  $p_m \mathrm{Id}_{N \times N}$ , where  $p_m(x,\xi)$  is homogeneous of degree m with respect to  $\xi$  and vanishes exactly to second order on a manifold  $\Sigma \subset T^*X \setminus 0$  (transversal ellipticity), namely  $\mathrm{Ker}\, F_{p_m}(\rho) = T_\rho \Sigma$ , for all  $\rho \in \Sigma$ .

Here we used standard notation for the fundamental matrix (or symplectic Hessian)  $F_{p_m}(\rho)$  associated with  $p_m$ , defined by

(1.2) 
$$\sigma(v, F_{p_m}(\rho)w) = \frac{1}{2} \langle \operatorname{Hess} p_m(\rho) v, w \rangle,$$
 for all  $v, w \in T_{\rho}T^*X$ ,

where  $\sigma = \sum_{j=1}^n d\xi_j \wedge dx_j$  is the canonical symplectic 2-form on  $T^*X$ . The definition (1.2) has an invariant meaning at points of  $\Sigma$ , because  $p_m$  vanishes to second order there, see [10, subsection 21.5]. Moreover, since  $p_m$  is nonnegative, the spectrum of  $F_{p_m}$  consists of the eigenvalue 0 and of eigenvalues  $\pm i\mu_j$ , with  $\mu_j > 0$ . One then sets  $\mathrm{Tr}^+F_{p_m} = \sum_j \mu_j$ .

We moreover suppose that

- $(H_2)$   $\Sigma$  is a manifold with locally constant symplectic rank, namely  $\dim (T_{\rho}\Sigma \cap T_{\rho}\Sigma^{\sigma}) = \text{const}$ , when  $\rho$  varies in the connected components of  $\Sigma$  where  $T_{\rho}\Sigma^{\sigma}$  is the symplectic orthogonal of  $T_{\rho}\Sigma$ ;
  - $(H_3)$   $\sigma|_{\Sigma}$  is degenerate, namely dim  $(T_{\rho}\Sigma \cap T_{\rho}\Sigma^{\sigma}) \geq 1$ , for all  $\rho \in \Sigma$ ;
- $(H_4)$  for every  $\rho \in \Sigma$ ,  $T_{\rho}\Sigma \cap T_{\rho}\Sigma^{\sigma} \not\subset \operatorname{Ker} d\pi(\rho)$ , where  $\pi : T^*X \to X$  is the projection.

Before stating the result, we recall that the subprincipal symbol  $p_{m-1}^s$  of P is defined by  $p_{m-1}^s = p_{m-1} + (i/2)\langle \partial_x, \partial_\xi \rangle p_m$  Id,  $(p_{m-1}$  denotes the matrix of the homogeneous terms of degree m-1), and is invariantly defined at points of  $\Sigma$  as well. Moreover, for any given complex matrix Q we set  $\operatorname{Re} Q := (Q + Q^*)/2$ .

**Theorem 1.2.** Let P be an  $N \times N$  system of linear partial differential operators in X of order m, satisfying  $(H_1)$ – $(H_4)$ . Let us suppose, in addition, that

(1.3) 
$$\operatorname{Re} p_{m-1}^{s}(\rho) + \operatorname{Tr}^{+} F_{p_{m}}(\rho) \operatorname{Id} \geq 0, \quad \text{for all } \rho \in \Sigma,$$

as a Hermitian matrix. Then

(a) for every  $x_0 \in X$  and every  $\delta > 0$ , there exists a neighborhood  $\Omega_{\delta}$  of  $x_0$  such that

(1.4) 
$$||u||_0^2 \le \delta \operatorname{Re}(Pu, u), \quad \text{for all } u \in C_0^{\infty}(\Omega_{\delta}; \mathcal{C}^N);$$

(b) for every  $x_0 \in X$  and any integer  $k \geq 0$ , there exists a neighborhood  $\Omega_k$  of  $x_0$  such that the system Pu = f has a solution  $u \in H^{k+m-2}(\Omega_k; \mathcal{C}^N)$  for every  $f \in H^k(\Omega_k; \mathcal{C}^N)$ .

As a model in the scalar case (N = 1), the reader may think of the Baouendi-Goulaouic type operator

$$P = D_1^2 + x_1^2 D_2^2 + D_3^2 - D_2$$

in  $\mathbf{R}^3$  (as usual  $D_j = -i\partial/\partial x_j$ ). We can write  $P = MM^* + D_3^2$ , where  $M = D_1 + ix_1D_2$  is the Mizohata operator, and therefore solvability in  $L^2(B(0,\delta))$ ,  $\delta > 0$ , immediately follows from the estimate

$$(Pu, u) \ge ||D_3 u||_0^2 \ge \frac{1}{2\delta^2} ||u||_0^2,$$

for a smooth u with supp  $u \subset B(0, \delta)$ .

When N=1, k=0, and  $T_{\rho}\Sigma^{\sigma}\subset T_{\rho}\Sigma$  for every  $\rho\in\Sigma$ , namely,  $\Sigma$  is involutive, Theorem 1.2 reduces to Theorem 3 (2D) by Popivanov [20]. Notice that  $\operatorname{Tr}^+F_{p_m}\equiv 0$  in that case.

Let us now discuss the hypotheses of Theorem 1.2 in more detail.

For a formally self-adjoint second order system satisfying  $(H_1)$  and  $(H_2)$ , condition (1.3) is actually equivalent to saying that P is bounded from below in  $L^2$ , see Theorem 3.1 below, i.e.,  $(Pu, u) \ge -C_K ||u||_0^2$ , for any compact subset  $K \subset X$  and every  $u \in C_0^{\infty}(K; \mathbb{C}^N)$ , which is of course true for  $\square_b$ .

As regards Hypothesis  $(H_4)$ , it is easy to see that it is really essential; for example, the operator  $P=(x_2D_1-x_1D_2)^2$  satisfies all the remaining hypotheses (with N=1), but it is not locally solvable at the origin, because  $P^*u=0$  for every  $u\in C_0^\infty(\mathbf{R}^2)$  which is rotation invariant.

Also, if the symplectic form is nondegenerate, then P may not be locally solvable, as  $\Box_b^{(0)}$  on the Heisenberg group  $\mathbf{H}_n$ , see Lewy [11], Folland and Stein [5], or the operator  $P = D_1^1 + x_1^2 D_2^2 - D_2$  in  $\mathbf{R}^2$ , see Grushin [8], Gilioli and Treves [6], cf. also Müller [13]. However, if we replace (1.3) by a strict inequality, then the system is known to be hypoelliptic and locally solvable with the loss of one derivative (without assuming  $(H_2)-(H_4)$ , and the fact that the principal symbol is diagonal), as shown by Boutet de Monvel, et al. [1]. For the Kohn Laplacian on a CR manifold, this corresponds to the case in which the condition Y(q) is satisfied, as shown by Grigis [7] and Nicola [15], see also Parmeggiani [17]. Instead, under the hypotheses of Theorem 1.2, system P is not hypoelliptic in general; one may think, for example, of the operator  $P = D_1^2$  in  $\mathbf{R}^n$ ,  $n \geq 2$ .

Finally, we observe that in Theorem 1.2 the radial vector field is allowed to be symplectically orthogonal to the tangent space to  $\Sigma$  at some characteristic point.

Theorem 1.2 is proved in Section 2. Then, in Section 3 we will prove Theorem 1.1 by verifying that, under the assumptions in that theorem,  $\Box_b$  satisfies the hypotheses of Theorem 1.2.

## 2. Proof of Theorem 1.2.

Proof of Theorem 1.2 (a). We will use the following result, due to Hörmander that the reader can extract from the proof of Theorem 22.3.2 of [10].

**Lemma 2.1.** Consider a smooth nonnegative function  $p_2(x,\xi)$  which is positively homogeneous of degree 2, with respect to  $\xi$ , and vanishes exactly to second order on a manifold  $\Sigma \subset T^*X \setminus 0$  satisfying  $(H_2)$ . Fix any  $\rho_0 \in \Sigma$ , and let  $l = \dim(T_\rho \Sigma \cap T_\rho \Sigma^\sigma)$  and  $2\nu = \dim T_\rho \Sigma^\sigma/(T_\rho \Sigma \cap T_\rho \Sigma^\sigma)$  for  $\rho$  near  $\rho_0$ . Then there exist independent real functions  $f_j$ ,  $j = 1, \ldots, 2\nu + l$ , defined in a conic neighborhood V of  $\rho_0$ , and homogeneous of degree 1, such that

$$p_2(x,\xi) = \sum_{j=1}^{2\nu+l} f_j(x,\xi)^2,$$

and, upon defining

(2.1) 
$$\begin{cases} g_j = f_{2j-1} + if_{2j} & j = 1, \dots, \nu, \\ g_{\nu+j} = f_{2\nu+j} & j = 1, \dots, l, \end{cases}$$

satisfying  $\sum_{j=1}^{\nu} \{\overline{g}_j, g_j\} = -2i \mathrm{Tr}^+ F_{p_2}$  at  $\Sigma \cap V$  and

(2.2) 
$$\{g_j, g_k\} = 0 \quad \text{at} \quad \Sigma \cap V,$$

$$for \ all \quad j = \nu + 1, \dots, \nu + l,$$

$$for \ all \quad k = 1, \dots, \nu + l.$$

Consider then a point  $x_0 \in X$ , and apply Lemma 2.1 to any characteristic point  $\rho_0 = (x_0, \xi)$  in the fibre over  $x_0$ . Let  $X_j \in \text{OPS}^1(X; \mathbb{C}^N)$  be pseudodifferential systems whose principal symbols coincide with  $g_j \text{ Id}$  in V. Microlocally near  $\rho_0$  we have

$$Q := P - \sum_{j=1}^{\nu+l} X_j^* X_j \in \text{OP } S^1.$$

Moreover, the principal symbol of Q is given, at  $\Sigma \cap V$ , by

$$q_1 = p_1^s + \frac{i}{2} \sum_{j=1}^{\nu} \{\overline{g}_j, g_j\} \text{Id} = p_1^s + \text{Tr}^+ F_{p_2} \text{Id},$$

so that  $\operatorname{Re} sq_1 \geq 0$  on  $\Sigma \cap V$  by (1.3). Now we take any Hermitian matrix  $\tilde{q}(x,\xi)$ , defined in V, nonnegative and positively homogeneous of degree 1, such that  $\tilde{q} = \operatorname{Re} q_1$  on  $\Sigma \cap V$ . Then

$$\operatorname{Re} q_1 = \tilde{q} + \sum_{j=1}^{\nu+l} r_j^* g_j + \overline{g}_j r_j \quad \text{in } V,$$

for convenient  $N \times N$  matrices  $r_j(x, \xi)$  homogeneous of degree 0. Let  $\widetilde{Q} \in \operatorname{OP} S^1(X; \mathbf{C}^N)$  and  $R_j \in \operatorname{OP} S^0(X; \mathbf{C}^N)$  be pseudodifferential systems whose principal symbols coincide with  $\widetilde{q}$  and  $r_j$  in V, respectively, and let  $\psi \in S^0(X \times \mathbf{R}^n)$  be any real symbol supported in V. Upon setting  $\Psi = \psi(x, D) \otimes \operatorname{Id}$ , by the Sharp Gårding inequality for systems applied to  $\widetilde{Q}$ , see, e.g., [10, Theorem 18.6.14], we have (2.3)

$$\operatorname{Re}(P\Psi u, \Psi u) \ge \sum_{j=1}^{\nu+l} \|(X_j + R_j)\Psi u\|_0^2 - C\|u\|_0^2$$

$$\ge \sum_{j=\nu+1}^{\nu+l} \|(X_j + R_j)\Psi u\|_0^2 - C\|u\|_0^2$$

$$\ge \sum_{j=\nu+1}^{\nu+l} \|X_j\Psi u\|_0^2 - C'\|u\|_0^2, \quad \forall u \in C_0^{\infty}(X; \mathbf{C}^N).$$

Now we are going to prove the following estimate:

For some  $j_0 \in \{\nu+1,\ldots,\nu+l\}$  and every  $\delta>0$  there exists a neighborhood  $\Omega_\delta$  of  $x_0$  such that

(2.4) 
$$||X_{j_0}\Psi u||_0 \ge \frac{1}{\delta} ||\Psi u||_0^2 - C_\delta ||u||_{-1}^2,$$
 for all  $u \in C_0^\infty(\Omega_\delta; \mathcal{C}^N)$ .

To this end, we observe that, by (2.2), the vector bundle  $T\Sigma \cap T\Sigma^{\sigma}$  on  $\Sigma$  of rank l is generated by the Hamiltonian vector fields  $H_{g_{\nu+1}}, \ldots, H_{g_{\nu+l}},$  on  $\Sigma \cap V$ . By Hypothesis  $(H_4)$  it follows that for some  $j_0 \in \{\nu + 1, \ldots, \nu + l\}$  one has  $d_{\xi}g_{j_0} \neq 0$  at  $\rho_0$ . Possibly after shrinking V, by the implicit function theorem and Taylor's formula, we can then write, say,  $g_{j_0}(x,\xi) = e(x,\xi)(\xi_1 - \lambda(x,\xi'))$  in V, with  $\xi' = (\xi_2, \ldots, \xi_n)$ , for suitable real functions  $\lambda$  and e homogeneous of degree 1, and  $e \neq 0$ .

The elliptic factor e is of course irrelevant, so that we can assume that  $g_{j_0}(x,\xi) = \xi_1 - \lambda(x,\xi')$  in V. Now, there exists a canonical transformation  $(y,\eta) = \chi(x,\xi)$  from V into a conic neighborhood of  $(x_0,\varepsilon_n)$ ,  $\varepsilon_n = (0,\ldots,0,1) \in \mathbf{R}^n$ , with  $y_1 = x_1$  and  $\eta_1 = g_{j_0}$ . Let F be any properly supported unitary Fourier integral operator associated with  $\chi$ . By Egorov's theorem, see e.g. [22, Theorem 6.2], we have

$$(2.5) ||X_{i_0}\Psi u||_0 = ||D_{u_1}F\Psi u||_0 + O(||\Psi u||_0).$$

Now, for any given  $\delta$ , we take  $\phi_1 \in C_0^{\infty}(B(x_0, \delta))$ ,  $\phi_2 \in C_0^{\infty}(B(x_0, \delta/3))$ , with  $\phi_2 = 1$  on  $B(x_0, \delta/4)$ , and  $\phi_1 = 1$  in  $B(x_0, \delta/2)$ , so that  $\phi_2 u = u$  if supp  $u \subset B(x_0, \delta/4)$ . Then the operator  $(1 - \phi_1)F\Psi\phi_2$  is regularizing, i.e., it maps  $\mathcal{D}'(X) \to C^{\infty}(X)$ , because of the choice of  $\chi$ , see for example [12, subsection 4.1]. It follows from the Poincaré inequality that

(2.6) 
$$||D_{y_1}F\Psi u||_0 \ge \frac{1}{\sqrt{2}\delta} ||\phi_1 F\Psi \phi_2 u||_0 - C_\delta ||u||_{-1} \\ \ge \frac{1}{\sqrt{2}\delta} ||\Psi u||_0 - C_\delta' ||u||_{-1},$$

for all  $u \in C_0^{\infty}(B(x_0, \delta/4))$ . From (2.5) and (2.6) we obtain (2.4). In view of (2.3) we therefore deduce the following estimate:

Any given point  $\rho_0 = (x_0, \xi)$  has a conic neighborhood V such that, for every real symbol  $\psi \in S^0(X \times \mathbf{R}^n)$  supported in V and any  $\delta > 0$  there exists a neighborhood  $\Omega_{\delta}$  of  $x_0$  for which

(2.7) Re 
$$(P\Psi u, \Psi u) \ge \frac{1}{\delta} \|\Psi u\|_0^2 - C_\delta \|u\|_{-1}^2$$
, for all  $u \in C_0^\infty(\Omega_\delta; \mathbf{C}^N)$ .

Indeed, when  $\rho_0 \notin \Sigma$ , this estimate is of course satisfied.

Now we are going to patch together the microlocal estimates (2.7). We take real symbols  $\psi_j \in S^0(X \times \mathbf{R}^n)$ ,  $j=1,\ldots,J$ , with so small support such that (2.7) holds for each of them, and  $\sum_{j=1}^J \psi_j(x,\xi)^2 = 1$  for x in a neighborhood  $\Omega$  of  $x_0$ . Then we observe that, with  $\Psi_j = \psi_j(x,D) \otimes \operatorname{Id}$ , we have  $\operatorname{Re}(Pu,u) = \sum_{j=1}^J \operatorname{Re}(P\Psi_j u, \Psi_j u) + O(\|u\|_0^2)$  and  $\|u\|_0^2 = \sum_{j=1}^J \|\Psi_j u\|^2 + O(\|u\|_{-2}^2)$  for  $u \in C_0^\infty(\Omega; \mathbf{C}^N)$ . Hence, for any  $\delta' > 0$  we can find an open neighborhood  $\Omega'_{\delta'}$  such that

$$\operatorname{Re}(Pu, u) \ge \frac{1}{\delta'} \|u\|_0^2 - C\|u\|_0^2 - C_{\delta'} \|u\|_{-1}^2, \quad \text{for all } u \in C_0^{\infty}(\Omega'_{\delta'}; \mathbf{C}^N),$$

where the constant C>0 is independent of  $\delta'$ . Given  $\delta>0$ , we therefore choose  $\delta'\leq \min\{C/2,\delta/4\}$ , and we take any neighborhood  $\Omega_{\delta}\subset \Omega'_{\delta'}$  such that  $C'_{\delta'}\|u\|_{-1}^2\leq (1/4\delta)\|u\|_0^2$  for every  $u\in C_0^{\infty}(\Omega_{\delta}; \mathbf{C}^N)$ . Then (1.4) is verified.

*Proof of Theorem* 1.2 (b). We first prove the following estimate:

For every  $\delta > 0$ ,  $s \in \mathbf{R}$ , and any point  $x_0 \in X$ , there exists an open neighborhood  $\Omega_{\delta,s}$  of  $x_0$  such that

$$(2.8) \|u\|_{s} \le \delta \|Pu\|_{s+2-m} + C_{\delta,s} \|u\|_{s-1}, \text{ for all } u \in C_0^{\infty}(\Omega_{\delta,s}; \mathbf{C}^N).$$

After that, we will show that (2.8) implies statement (b) of Theorem 1.2. This second step indeed follows by classical arguments from functional analysis as in the proofs of Theorems 1 and 5 of [16]. In any case we will give a detailed proof for the convenience of the reader.

It suffices to prove (2.8), with m=2, for any second order classical and properly supported pseudodifferential system  $P \in \operatorname{OP} S^2(X; \mathbb{C}^N)$  satisfying the hypotheses of Theorem 1.2. Hence, by Cauchy-Schwarz's inequality, it is enough to prove that

$$(2.9) \|u\|_{s}^{2} \leq \delta \operatorname{Re}(Pu, u)_{s} + C'_{\delta, s} \|u\|_{s-1}^{2}, \text{ for all } u \in C_{0}^{\infty}(\Omega_{\delta, s}; \mathbf{C}^{N}),$$

where  $(\cdot,\cdot)_s$  denotes the scalar product in  $H^s(\mathbf{R}^n;\mathbf{C}^n)$ .

Let 
$$\Lambda(\xi) = (1+|\xi|^2)^{1/2}$$
 and  $\Lambda^s = \Lambda(D)^s \otimes \mathrm{Id}, s \in \mathbf{R}$ . We have

$$(Pu, u)_s = (\Lambda^s Pu, \Lambda^s u) = ((P + [\Lambda^s, P]\Lambda^{-s})\Lambda^s u, \Lambda^s u).$$

Now the operator  $[\Lambda^s, P]\Lambda^{-s} \in \operatorname{OP} S^1(X; \mathbf{C}^N)$  has the principal symbol

$$-\frac{i}{2}\{|\xi|^s, p_2(x,\xi)\}|\xi|^{-s}\mathrm{Id},$$

which is conjugate-Hermitian. It follows that

$$\operatorname{Re}(Pu, u)_s = \operatorname{Re}(P\Lambda^s u, \Lambda^s u) + O(\|u\|_s^2),$$

for smooth u supported in a fixed compact subset of X. Then (2.9) easily follows from (1.4), and (2.8) is proved.

We now observe that (2.8) implies the following a priori estimate:

For every  $s \in \mathbf{R}$  and any point  $x_0 \in X$ , there exist an open neighborhood  $\Omega_s$  of  $x_0$  and a constant C>0 such that

(2.10) 
$$||u||_s \le C||Pu||_{s+2-m}$$
, for all  $u \in C_0^{\infty}(\Omega_s; \mathbf{C}^N)$ .

In fact, suppose that for some  $x_0 \in X$  there is no such open neighborhood, namely, there is a sequence  $u_j \in C_0^{\infty}(X; \mathbf{C}^N)$  such that  $\|u_j\|_s = 1$ ,  $\|Pu_j\|_{s+2-m} \to 0$  and  $\sup u_j \subset B(x_0, 1/j)$ . Then a subsequence converges in  $H^{s-1}$  to  $u \in H^{s-1}(\mathbf{R}^n; \mathbf{C}^N)$ , with Pu = 0 and  $\sup u \subset \{x_0\}$ . Moreover, by (2.8) we have  $\|u\|_{s-1} \geq C_{\delta,s}^{-1}$ . Hence, we have found a nontrivial solution to Pu = 0 whose support is reduced to  $\{x_0\}$ . By Lemma 1 of [16, page 469], this is only possible if  $p_m(x,\xi)$  vanishes identically at  $x = x_0$ , but this is not the case by our assumptions (precisely, see the second sentence after (2.4)). This proves (2.10).

Finally we observe that also the formal adjoint  $P^*$  satisfies (2.10); namely, one has

(2.11) 
$$||u||_s \le C||P^*u||_{s+2-m}$$
, for all  $u \in C_0^{\infty}(\Omega_s; \mathbf{C}^N)$ .

Indeed,  $P^*$  satisfies the same hypotheses as P, having the same principal symbol and subprincipal symbol given by the adjoint  $p_{m-1}^s(x,\xi)^*$  (as matrix) of that of P.

We can now prove statement (b) of Theorem 1.2. Precisely, given any integer  $k \geq 0$ , consider the open neighborhood  $\Omega_{-k}$  for which (2.11) holds with s = -k. Possibly after shrinking this open set, we can suppose that it has a smooth boundary, so that every  $f \in H^k(\Omega_{-k}; \mathbf{C}^N)$  extends to a function  $\tilde{f} \in H^k(\mathbf{R}^n; \mathbf{C}^N)$  (see [2, page 339, Theorem A.6]). Then, for such an f we consider the linear functional

$$H^{-k-m+2}(\mathbf{R}^n;\mathbf{C}^N)\supset P^*(C_0^\infty(\Omega_{-k};\mathbf{C}^N))\longrightarrow \mathbf{C}$$

given by  $P^*v \mapsto (v, f)$ . It is well defined in view of (2.11), and also continuous since, by (2.11), with s = -k,

$$|(v,f)| = |(v,\tilde{f})| \le ||v||_{-k} ||\tilde{f}||_k \le C ||P^*v||_{-k-m+2} ||\tilde{f}||_k,$$
 for all  $v \in C_0^{\infty}(\Omega_{-k}; \mathbf{C}^N)$ .

It follows by the Hahn-Banach theorem that a  $u \in H^{k+m-2}(\mathbf{R}^n; \mathbf{C}^N)$  exists such that

$$(v, f) = (P^*v, u), \text{ for all } v \in C_0^{\infty}(\Omega_{-k}; \mathbf{C}^N),$$

namely, Pu = f in  $\Omega_{-k}$ . This concludes the proof.

**3. Proof of Theorem 1.1.** We have to verify that the hypotheses of Theorem 1.2 are satisfied. To this end, we briefly recall the definition of the Kohn Laplacian  $\Box_b^{(q)}$  on a CR manifold of codimension  $h \geq 1$ ; see [21] for details.

Let  $T^{0,1}M$  be the CR structure of M and  $\mathcal{E}^q(M):=\Gamma(M,\Lambda^qM)$ , and let  $\mathcal{E}^{0,q}(M):=\Gamma(M,\Lambda^{0,q}M)$  be the spaces of q-forms and (0,q)-forms respectively, on M. Let  $\pi_q:\mathcal{E}^q(M)\to\mathcal{E}^{0,q}(M)$  be the projection and define  $\overline{\partial}_b^{(q)}:=\pi_{q+1}\circ d:\mathcal{E}^{0,q}(M)\to\mathcal{E}^{0,q+1}(M)$ . Fix a Hermitian metric on  $\mathbf{C}TM$  such that  $T^{0,1}M\bot T^{1,0}M$ , and define

$$\Box_b^{(q)} = \overline{\partial}_b^{(q-1)} \overline{\partial}_b^{(q-1)^*} + \overline{\partial}_b^{(q)^*} \overline{\partial}_b^{(q)} : \mathcal{E}^{0,q}(M) \to \mathcal{E}^{0,q}(M),$$

(for q=0,  $\Box_b^{(0)}=\overline{\partial}_b^{(0)}^*\overline{\partial}_b^{(0)}$ ) where the adjoint is taken with respect to the induced inner product. Consider a local basis  $\overline{L}_1,\ldots,\overline{L}_n$  of sections of  $T^{0,1}M$  and real vector fields  $T_1,\ldots,T_h$  such that  $L_1,\ldots,L_n,\overline{L}_1,\ldots,\overline{L}_n,T_1,\ldots,T_h$  is a local orthonormal basis of  $\mathbf{C}TM$ . We recall that the characteristic bundle  $N^*(M)\subset T^*M$  consists of the covectors which are conormal to  $T^{1,0}M\oplus T^{0,1}M$ .

Let  $\omega^1, \ldots, \omega^n, \overline{\omega}^1, \ldots, \overline{\omega}^n, \tau_1, \ldots, \tau_h$ , be the dual basis to  $L_1, \ldots, L_n, \overline{L}_1, \ldots, \overline{L}_n, T_1, \ldots, T_h$ , and let  $\phi = \sum_I \phi_I \overline{\omega}^I$  be a (0, q)-form, with  $I = (i_1, \ldots, i_q), 1 \leq i_1 < \cdots < i_q \leq n$ , and  $\overline{\omega}^I = \overline{\omega}^{i_1} \wedge \cdots \wedge \overline{\omega}^{i_q}$ . An easy computation shows that the Kohn Laplacian  $\Box_h^{(q)}$  reads as

$$\Box_b^{(q)} \phi = -\frac{1}{2} \sum_I \sum_{j=1}^n (L_j \overline{L}_j + \overline{L}_j L_j) \phi_I \overline{\omega}^I + \text{lower order terms.}$$

We therefore have

$$\Sigma = \{ \rho \in T^*M \setminus 0 : v_j := \sigma_1(L_j)(\rho) = 0, \ j = 1, \dots, n \},$$

which is exactly  $N^*(M)$  with the 0-section removed.

Since the vector fields  $L_j$ ,  $\overline{L}_j$ ,  $j=1,\ldots,n$ , are linearly independent, it follows that Hypothesis  $(H_1)$  is satisfied.

For  $\rho \in N^*(M)$  the Levi form  $\mathcal{L}(\rho)$  is then defined as the Hermitian matrix whose entries are

$$\mathcal{L}(\rho)_{jk} := i \langle \rho, [L_j, \overline{L}_k] \rangle = \sigma_1([L_j, \overline{L}_k])(\rho) = i \{v_j, \overline{v}_k\}(\rho),$$
  
$$j, k = 1, \dots, n.$$

Let  $\rho \in \Sigma = N^*(M) \setminus 0$ ; the map

(3.1) 
$$\operatorname{Ker} \mathcal{L}(\rho) \ni \alpha \longmapsto u = \sum_{j=1}^{n} \overline{\alpha}_{j} H_{v_{j}} + \alpha_{j} H_{\overline{v}_{j}} \in T_{\rho} \Sigma \cap T_{\rho} \Sigma^{\sigma}$$

is easily seen to be an isomorphism of real vector spaces, see e.g., the proof of Proposition 3.6 of [15]. It follows that

(3.2) 
$$\dim (T_{\rho}\Sigma \cap T_{\rho}\Sigma^{\sigma}) = 2\dim_{\mathbf{C}} \operatorname{Ker} \mathcal{L}(\rho),$$

and therefore Hypotheses  $(H_2)$  and  $(H_3)$  are fulfilled as well.

Moreover, we observe that, if  $\alpha \neq 0$ , the vector u in (3.1) satisfies

$$d\pi(u) = i \sum_{j=1}^{n} (\overline{\alpha}_{j} L_{j} - \alpha_{j} \overline{L}_{j}) \neq 0,$$

so that  $(H_4)$  is verified.

We now come to (1.3). Since  $\Box_b^{(q)}$  is formally self-adjoint, its sub-principal symbol  $p_1^s$  is indeed a Hermitian matrix. We are going to use the necessity part of the following lower bound.

**Theorem 3.1.** Let X be an open subset of  $\mathbb{R}^n$ , and let  $P = P^* \in \operatorname{OP} S^m(X; \mathbb{C}^N)$  be an  $N \times N$  matrix of classical pseudodifferential operators satisfying  $(H_1)$  and  $(H_2)$ . Then the following properties are equivalent:

(3.3) 
$$p_{m-1}^{s}(\rho) + \operatorname{Tr}^{+} F_{p_{m}}(\rho) \operatorname{Id} \geq 0, \quad \text{for all } \rho \in \Sigma;$$

for every compact subset  $K \subset X$ , there exists a constant  $C_K > 0$  such that

(3.4) 
$$(Pu, u) \ge -C_K ||u||_{(m-2)/2}^2$$
, for all  $u \in C_0^{\infty}(K; \mathbf{C}^n)$ .

This theorem is a slight generalization of Theorem 22.3.2 and Proposition 22.4.1 of [10], to systems with a principal symbol which is a scalar multiple of the identity matrix. We do not repeat the proof here, which goes exactly as the one given in [10].

Instead, we observe that the Kohn Laplacian certainly satisfies (3.4) (m=2), because  $(\Box_b^{(q)}\phi,\phi)\geq 0$  for every smooth (0,q)-form  $\phi$  with compact support. It follows from Theorem 3.1 that (3.2) is verified by  $\Box_b^{(q)}$ , and this concludes the proof.  $\Box$ 

**Acknowledgments.** I wish to thank Professors P. Cordaro, M. Nacinovich, M. Peloso, P. Popivanov and L. Rodino for helpful discussions.

## REFERENCES

- 1. L. Boutet de Monvel, A. Grigis and B. Helffer, Paramétrixes d'opérateurs pseudo-différentiels à caractéristiques multiples, Astérisque, 34-35 (1976), 93-121.
- 2. S.-C. Chen and M.-C. Shaw, Partial differential equations in several complex variables, Stud. Adv. Math. 19, American Mathematical Society, International Press, Providence, RI, 2001.
- **3.** M. Derridj, Microlocalisation et estimations pour  $\overline{\partial}_b$  dans quelques hypersurfaces pseudoconvexes, Invent. Math. **104** (1991), 631-642.
- **4.** M. Derridj and D.S. Tartakoff, Maximal and semi-maximal estimates for  $\overline{\partial}_b$  on pseudoconvex manifolds, in Complex analysis, Aspects Math. **17**, Vieweg, Braunschweig, 1991.
- **5.** G.B. Folland and E.M. Stein, Estimates for the  $\bar{\partial}_b$  complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. **27** (1974), 429–522.
- 6. A. Gilioli and F. Treves, An example in the local solvability theory of linear PDE's, American J. Math. 24 (1974), 366–384.
- **7.** A. Grigis, Propagation des singularités au bord d'ouverts de  ${\bf C}^n$ , Comm. Partial Differential Equations  ${\bf 6}$  (1981), 689–717.
- 8. V.V. Grushin, On a class of elliptic pseudodifferential operators degenerate on a submanifold, Mat. Sbor. 84 (1971), 155-185.
- 9. C.D. Hill and M. Nacinovich, On the failure of the Poincaré lemma for  $\overline{\partial}_M$  II, Math. Annals 335 (2006), 193–219.
- 10. L. Hörmander, The analysis of linear partial differential operators, Vol. III, Springer-Verlag, New York, 1985.
- 11. H. Lewy, An example of a smooth linear partial differential equation without solution, Annals Math. 66 (1957), 155–158.
- 12. M. Mascarello and L. Rodino, Partial differential equations with multiple characteristics, Akademie Verlag, Berlin, 1997.

- 13. D. Müller, Another example in the solvability theory of PDOs with double characteristics, Comm. Partial Differential Equations 20 (1995), 2165-2186.
- 14. A. Nagel, F. Ricci and E.M. Stein, Singular integrals with flag kernels and analysis on quadratic CR manifolds, J. Functional Anal. 181 (2001), 29–118.
- 15. F. Nicola, A necessary condition for estimates for the  $\overline{\partial}_b$  -complex, Illinois J. Math. 49 (2005), 1001–1018.
- 16. L. Nirenberg and F. Treves, On local solvability of linear partial differential equations—Part II. Sufficient conditions, Comm. Pure Appl. Math. 23 (1970), 459–510.
- 17. A. Parmeggiani, An application of the almost-positivity of a class of 4th-order pseudodifferential operators, J. Anal. Math. 71 (1997), 41–57.
- 18. M.M. Peloso and F. Ricci, Tangential Cauchy-Riemann equations on quadratic CR manifolds, Rend. Mat. Acc. Lincei 13 (2002), 125–134.
- 19. ——, Analysis of the Kohn Laplacian on quadratic CR manifolds, J. Functional Anal. 203 (2003), 321–355.
- 20. P. Popivanov, Local solvability of pseudodifferential operators with characteristics of second multiplicity, Mat. Sbornik 100 (1976), 193–216.
- **21.** M.-C. Shaw and L. Wang, Hölder and  $L^p$  estimates for  $\square_b$  on CR manifolds of arbitrary codimension, Math. Ann. **331** (2005), 297–343.
- 22. F. Treves, Introduction to pseudodifferential and Fourier integral operators, Vol. II, Plenum Press, New York, 1980.
- 23. ——, A treasure trove of geometry and analysis: The hyperquadric, Notices Amer. Math. Soc. 47 (2000), 1246–1256.

DIPARTIMENTO DI MATEMATICA, POLITECNICO DI TORINO, CORSO DUCA DEGLI ABRUZZI 24, 10129 TORINO, ITALY

Email address: fabio.nicola@polito.it