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LOCAL SOLVABILITY FOR 0, ON DEGENERATE
CR MANIFOLDS AND RELATED SYSTEMS

FABIO NICOLA

ABSTRACT. We show that the Kohn Laplacian is locally
solvable in Sobolev spaces H*, k > 0, on any degenerate CR
manifold whose Levi form has a kernel of constant dimension.
A similar result is indeed proved for a more general class of
systems of linear partial differential operators.

1. Introduction and discussion of the results. Let M be an
abstract C'R manifold of C' R-dimension n and real codimension h (so
that dim M = 2n + h), and denote by N*(M) its characteristic bundle
(of rank h). Consider the tangential Cauchy-Riemann complex 9; on
M and the corresponding Kohn Laplacian ng) = 5(,5; + 5:513 acting
on (0, g)-forms on M, see e.g., Shaw and Wang [21] or Section 3 below
for terminology). In this paper we carry on the investigation in [15] of
the following L? estimate:

For every xg € M and every § > 0, there exists an open neighborhood

Qs C Mof xg such that ||lullo < J(Déq)u,u),

(1.1)
for all u € Do 4)(2s),

where (-,-) denotes the L? inner product, || - [lo the L?-norm, and

D(0,q)(€2s) is the space of smooth (0, g)-forms with compact support in

s. Such an estimate is weaker than both the subelliptic ones and the

semi-maximal estimates of Derridj and Tartakoff [3, 4]. It is however

strong enough to guarantee local solvability of [1, in the Sobolev spaces
H(k0 o k=0, of (0, g)-forms.

In [15] we proved that, if (1.1) holds, then the Levi form £(p) of M
at any characteristic point p € N*(M) \ 0 cannot have ¢ positive and
n —q negative eigenvalues. Of course, this necessary condition is clearly
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satisfied at those points where the Levi form is degenerate. This paper
is devoted to prove that, in fact, when the Levi form £(p) is degenerate
and has locally constant dimension (when p varies in N*(M)\0), there
are no further obstructions for (1.1) to hold.

Theorem 1.1. Let M be an abstract C R manifold of C R-dimension
n and real codimension h; let D,()q) be the Kohn Laplacian with respect
to a fized Riemannian metric on M, acting on (0,q)-forms. Let us
suppose that the Levi form L(p) is degenerate and has a kernel of locally
constant dimension when p varies in the characteristic bundle N*(M)
with the 0-section removed. Then

(a) (1.1) holds true;

(b) for every point xg € M and any integer k > 0 there exists a
neighborhood Q. of xo such that the system Dl()q)u = f has a solution

u € H(ko,q)(ﬂk) for every f € cho,q)(Qk): g=0,...,n.

Notice that under the hypotheses of Theorem 1.1 condition Y(q)
may of course be violated. For example, condition Y (n) does not hold
on any pseudoconvex manifold of C'R-dimension n, see e.g., [2]. The
condition given is therefore sufficient for local solvability in the absence
of hypoellipticity (in general).

It is interesting to observe that Theorem 1.1 highlights the different
behavior of the 9y-complex and the Kohn Laplacian [, as regards local
solvability in degenerate C' R manifolds. In fact, a recent result by Hill
and Nacinovich [9] shows that, under the assumptions of Theorem 1.1
(and M embeddable), if the Levi form L(p), p = (z0,&), &0 # 0, has
q positive eigenvalues, with the other being < 0, the Poincaré lemma
does not hold in degree g at zg, i.e., there is a smooth (0, ¢)-cocycle f in
an open neighborhood V of z( such that, for every open neighborhood
U C V of zo there are no distributions u € D, ;) (U) which solve

Oyu = f in U. Instead, Theorem 1.1 shows that Déq) is always locally
solvable.

In the special case when M is a quadratic C' R manifold, i.e., M =
{(z,t +iu) € C" x C™ : u = P(z,2)} for some Hermitian map
®: C" x C" — C™, Theorem 1.1 was already proved without the
constant rank assumption by Peloso and Ricci [18, 19], see also Nagel,
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Ricci and Stein [14], Treves [23], by taking advantage of the natural
group structure carried by such a C' R manifold where techniques from
harmonic analysis then apply. In particular, they make use of explicit
representations.

Theorem 1.1 will be shown to follow from a more general result we
are going to establish, concerning a class of systems with double char-
acteristics whose principal symbol is a scalar multiple of the identity
matrix.

More precisely, let X be an open subset of R, and consider an N x IV
system P of linear partial differential operators in X of order m. We
will assume the following:

(Hy) The principal symbol of P has the form p,ldyxn, where
Pm (2, &) is homogeneous of degree m with respect to & and vanishes
ezactly to second order on a manifold ¥ C T*X \ 0 (transversal
ellipticity), namely Ker F}, (p) = T,X, for all p € X.

Here we used standard notation for the fundamental matrix (or
symplectic Hessian) F),  (p) associated with p,,, defined by

1
(v, Fp,, (p)w) = ; (Hess pm (p) v, w),
for all v,we T,T"X,

(1.2)

where ¢ = E?:l d&; N dx; is the canonical symplectic 2-form on
T*X. The definition (1.2) has an invariant meaning at points of X,
because p,, vanishes to second order there, see [10, subsection 21.5].
Moreover, since p,, is nonnegative, the spectrum of F, consists of
the eigenvalue 0 and of eigenvalues +ip;, with p; > 0. One then sets
T F, Pm Zj Hj-

We moreover suppose that

(Hs) X is a manifold with locally constant symplectic rank, namely
dim (T,XNT,X7) = const, when p varies in the connected components
of ¥ where T,%7 s the symplectic orthogonal of T,%;

(Hs) ols is degenerate, namely dim (T,XNT,X7) > 1, for all p € Z;

(Hy) for every p € ¥, T,ENT,X° ¢ Kerdn(p), where 7 : T*X — X
s the projection.
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Before stating the result, we recall that the subprincipal symbol p;,_;
of P is defined by p2,_; = pm—1+(2/2)(0z, O¢)Pm Id, (pm—1 denotes the
matrix of the homogeneous terms of degree m — 1), and is invariantly
defined at points of ¥ as well. Moreover, for any given complex matrix

Q we set Re @ := (Q + Q*)/2.

Theorem 1.2. Let P be an N XN system of linear partial differential
operators in X of order m, satisfying (H1)—(Hy). Let us suppose, in
addition, that

(1.3) Reps, ,(p) + Tr"F, (p)Id>0, forallpcy,

as a Hermitian matriz. Then

(a) for every o € X and every § > 0, there exists a neighborhood s
of xy such that

(1.4) |ulld < §Re (Pu,u), for all u € C5°(Qs;CN);

(b) for every xy € X and any integer k > 0, there exists a
netghborhood Qi of xo such that the system Pu = f has a solution
u € HF™=2(Q;CN) for every f € HF(Qy;CN).

As a model in the scalar case (N = 1), the reader may think of the
Baouendi-Goulaouic type operator

P = Dj +21D3 + D3 — Dy

in R? (as usual D; = —id/0x;). We can write P = M M* + D3, where
M = Dy + iz D5 is the Mizohata operator, and therefore solvability in
L?(B(0,6)), § > 0, immediately follows from the estimate

1
(Pu,w) 2 [ Daullf = 5 ul,

for a smooth u with suppu C B(0, ).

When N =1, k =0, and T,X° C T,X for every p € ¥, namely, ¥ is
involutive, Theorem 1.2 reduces to Theorem 3 (2D) by Popivanov [20].
Notice that Tr™ F}, =0 in that case.
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Let us now discuss the hypotheses of Theorem 1.2 in more detail.

For a formally self-adjoint second order system satisfying (H;) and
(H3), condition (1.3) is actually equivalent to saying that P is bounded
from below in L?, see Theorem 3.1 below, i.e., (Pu,u) > —Ck||ul|2, for
any compact subset K C X and every u € C§°(K; C"), which is of
course true for [p.

As regards Hypothesis (Hy), it is easy to see that it is really essen-
tial; for example, the operator P = (z2D; — x1D5)? satisfies all the
remaining hypotheses (with N = 1), but it is not locally solvable at
the origin, because P*u = 0 for every u € C§°(R?) which is rotation
invariant.

Also, if the symplectic form is nondegenerate, then P may not be
locally solvable, as D,(JO) on the Heisenberg group H,,, see Lewy [11],
Folland and Stein [5], or the operator P = D} + 22D2 — D, in R?,
see Grushin [8], Gilioli and Treves [6], cf. also Miiller [13]. However,
if we replace (1.3) by a strict inequality, then the system is known
to be hypoelliptic and locally solvable with the loss of one derivative
(without assuming (Hz)—(H4), and the fact that the principal symbol
is diagonal), as shown by Boutet de Monvel, et al. [1]. For the Kohn
Laplacian on a C'R manifold, this corresponds to the case in which the
condition Y'(q) is satisfied, as shown by Grigis [7] and Nicola [15], see
also Parmeggiani [17]. Instead, under the hypotheses of Theorem 1.2,
system P is not hypoelliptic in general; one may think, for example, of
the operator P = D% in R", n > 2.

Finally, we observe that in Theorem 1.2 the radial vector field is
allowed to be symplectically orthogonal to the tangent space to % at
some characteristic point.

Theorem 1.2 is proved in Section 2. Then, in Section 3 we will prove
Theorem 1.1 by verifying that, under the assumptions in that theorem,
O, satisfies the hypotheses of Theorem 1.2.

2. Proof of Theorem 1.2.

Proof of Theorem 1.2 (a). We will use the following result, due to
Hormander that the reader can extract from the proof of Theorem
22.3.2 of [10].
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Lemma 2.1. Consider a smooth nonnegative function ps(z,§)
which is positively homogeneous of degree 2, with respect to £, and
vanishes exactly to second order on a manifold ¥ C T*X \ 0 satisfying
(Hp). Fiz any po € %, and let | = dim (T,X N T,X7) and 2v =
dimT,%7/(T,X N T,X7) for p near po. Then there exist independent
real functions f;, j =1,...,2v + 1, defined in a conic neighborhood V
of po, and homogeneous of degree 1, such that

2v+1

p2($7£) = Z fj(xa€)27
j=1
and, upon defining

T s +Z 5 -:1,...,1/,
(2‘1) {gj f2] 1 f2] J

gV+j:f2U+j jzla"'al)
satisfying Z;zl{ﬁj,gj} =-2{TrTF,, at XNV and

{9j,9x} =0 at XNV,
(2.2) forall j=v+1,...,v+I,
forall kE=1,...,v+1.

Consider then a point zy € X, and apply Lemma 2.1 to any charac-
teristic point pg = (o, &) in the fibre over . Let X; € OPS!(X;CY)
be pseudodifferential systems whose principal symbols coincide with
g;1d in V. Microlocally near py we have

v+l
Q:=P-) X;X;€0PS".
j=1
Moreover, the principal symbol of @ is given, at XNV, by

S i - — S
@=pits > {g;,9;1d = p} + Tr T F,,1d,
j=1
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so that Resqr > 0 on X NV by (1.3). Now we take any Hermitian
matrix §(z, ), defined in V, nonnegative and positively homogeneous
of degree 1, such that § = Req; on X NV. Then

v+l
Req =G+ » rjgj+g;m; iV,
j=1

for convenient N x N matrices r;(z,£) homogeneous of degree 0. Let
Q € OP §'(X;CN) and R; € OP S°(X; CN) be pseudodifferential sys-
tems whose principal symbols coincide with ¢ and r; in V, respectively,
and let ¢ € S°(X x R™) be any real symbol supported in V. Upon
setting ¥ = ¢(z, D) ® Id, by the Sharp Garding inequality for systems
applied to Q, see, e.g., [10, Theorem 18.6.14], we have
(2.3)
v+l
Re (P¥u, Vu) > Y ||(X; + By)Yull§ — Cllulfs
j=1
v+l1
> 3 X + By wuld - Clull
j=vr+1
v+l
> Y 11X %ulf - Cllulls,  Vue G (X;CN).
j=v+1

Now we are going to prove the following estimate:

For some jo € {v + 1,...,v +1} and every § > 0 there exists a
neighborhood Q5 of xo such that

1
o) 1o Wullo = 51 Bulld = Callull

for all u € C§°(Qs;C™).

To this end, we observe that, by (2.2), the vector bundle T¥NT%° on ¥
of rank [ is generated by the Hamiltonian vector fields Hy, ,,,... , Hy, .,
on ¥ NV. By Hypothesis (Hy) it follows that for some jo € {v +
1,...,v + 1} one has deg;, # 0 at py. Possibly after shrinking V', by
the implicit function theorem and Taylor’s formula, we can then write,
say, gjo(1,€) = e(2,€)(&1 — A(z,€)) in V, with & = (&,... &), for
suitable real functions A\ and e homogeneous of degree 1, and e # 0.
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The elliptic factor e is of course irrelevant, so that we can assume
that g;,(z,&) = & — A(z,¢') in V. Now, there exists a canonical
transformation (y,n) = X(z,€) from V into a conic neighborhood of
(o,€n), €n = (0,...,0,1) € R™, with y; = z; and 71 = gj,- Let F
be any properly supported unitary Fourier integral operator associated
with X. By Egorov’s theorem, see e.g. [22, Theorem 6.2], we have

(2.5) 1 X0 ullo = [| Dy, Fullo + O([[Wullo)-

Now, for any given ¢, we take ¢1 € C§°(B(x0,9)), p2 € C§°(B(xo,9/3)),
with ¢o = 1 on B(zg,6/4), and ¢; = 1 in B(zg,§/2), so that ¢ou = u
if suppu C B(zg,d/4). Then the operator (1 — ¢1)F¥¢o is regulariz-
ing, i.e., it maps D'(X) — C*°(X), because of the choice of X, see for
example [12, subsection 4.1]. It follows from the Poincaré inequality
that

1
1Dy F¥ullo > —=l61F¥aullo — Cslull -+

%

1
> ——|[Wullg —
el \/56” ”0

for all u € C§°(B(x0,d/4)). From (2.5) and (2.6) we obtain (2.4). In
view of (2.3) we therefore deduce the following estimate:

(2.6)
Csllull-1,

Any given point py = (x0,€) has a conic neighborhood V' such that,
for every real symbol ¢ € S°(X x R™) supported in V and any § > 0
there exists a neighborhood Qs of xy for which

1
(2.7) Re (PWu, Uu) > —|Qul|2—Cslul|®,, forall u € C§°(Qs; CN).

Indeed, when pg ¢ %, this estimate is of course satisfied.

Now we are going to patch together the microlocal estimates (2.7).
We take real symbols ¢; € S°(X x R"), j = 1,...,J, with so small
support such that (2.7) holds for each of them, and 23'121 Yi(z,€)? =1
for z in a neighborhood 2 of zy. Then we observe that, with ¥; =

¥j(z, D) ® Id, we have Re (Pu,u) = Z;.Izl Re (P u, ¥ u) + O(||ul|?)
and ||[ul|3 = Z;.Izl |¥;ul|? + O(||ul|?5) for u € C§°(Q; C). Hence, for
any ¢’ > 0 we can find an open neighborhood Qf%, such that

1
Re (Pu,u) > <[lull = Cllullg - Cs [[ullZy,  for all u € C§° (25 C),
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where the constant C' > 0 is independent of ¢’. Given § > 0, we
therefore choose §' < min{C/2,§/4}, and we take any neighborhood
Qs C Qf, such that C§||ul|2, < (1/49)||ul|3 for every u € C§°(Q5; CN).
Then (1.4) is verified.

Proof of Theorem 1.2 (b). We first prove the following estimate:

For every 6 > 0, s € R, and any point xy € X, there erists an open
neighborhood Qs s of xg such that
(2.8) |lulls < 0||Pul/sy2—m + Cs.s|ulls—1, for all u € C§°(s,5; CN).

After that, we will show that (2.8) implies statement (b) of Theo-
rem 1.2. This second step indeed follows by classical arguments from
functional analysis as in the proofs of Theorems 1 and 5 of [16]. In any
case we will give a detailed proof for the convenience of the reader.

It suffices to prove (2.8), with m = 2, for any second order classical
and properly supported pseudodifferential system P € OP S?(X;CY)
satisfying the hypotheses of Theorem 1.2. Hence, by Cauchy-Schwarz’s
inequality, it is enough to prove that

(2.9) [lull? < 6Re (Pu,u)s + Cj Jlul|?_y, for all u € C§°(Qs.5; CY),

where (+,-)s denotes the scalar product in H*(R"; C").
Let A(€) = (1 +]¢]*)Y/? and A® = A(D)* ® Id, s € R. We have

(Pu,u)s = (A°Pu, A°u) = ((P + [A®, P]JA"°)A’u, A°u).

Now the operator [A*, PJA=% € OP S(X; C") has the principal symbol

i —s
_§{|£|Sap2(x7£)}|§| Id7
which is conjugate-Hermitian. It follows that
Re (Pu,u)s = Re (PA*u, A*u) + O(||ul|?),

for smooth u supported in a fixed compact subset of X. Then (2.9)
easily follows from (1.4), and (2.8) is proved.

We now observe that (2.8) implies the following a priori estimate:
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For every s € R and any point ©y € X, there exist an open
neighborhood Qs of x¢ and a constant C' > 0 such that

(2.10) lulls < C||Pul|sio-m, forallue C5(Q;CN).

In fact, suppose that for some zy € X there is no such open neigh-
borhood, namely, there is a sequence u; € C§°(X;CY) such that
llujlls = 1, ||Pujlls42-m — 0 and suppu; C B(zo,1/j). Then a sub-
sequence converges in H*~! to u € H*~}(R"; C"), with Pu = 0 and
suppu C {zo}. Moreover, by (2.8) we have |ju||s—1 > C;!. Hence,
we have found a nontrivial solution to Pu = 0 whose su;;port is re-
duced to {z¢}. By Lemma 1 of [16, page 469], this is only possible
if pi(z, &) vanishes identically at x = xo, but this is not the case by
our assumptions (precisely, see the second sentence after (2.4)). This
proves (2.10).

Finally we observe that also the formal adjoint P* satisfies (2.10);
namely, one has

(2.11) lulls < C||P*ulls12-m, forall u € C§°(Q;CN).

Indeed, P* satisfies the same hypotheses as P, having the same prin-
cipal symbol and subprincipal symbol given by the adjoint p3, _,(z,£)*
(as matrix) of that of P.

We can now prove statement (b) of Theorem 1.2. Precisely, given any
integer k£ > 0, consider the open neighborhood Q_j for which (2.11)
holds with s = —k. Possibly after shrinking this open set, we can
suppose that it has a smooth boundary, so that every f € H*(Q_; CN)
extends to a function f € H¥(R™; CV) (see [2, page 339, Theorem
A .6]). Then, for such an f we consider the linear functional

HF=m+2 (R, CY) 5 PF(C52(Q_45 CN)) — C

(
given by P*v — (v, f). It is well defined in view of (2.11), and also
continuous since, by (2.11), with s = —k,

(@, )] = 10, ) < [oll=kllFllk < CIP*0ll-k—me2ll ks
for all v € Cg°(Q_y; CM).

It follows by the Hahn-Banach theorem that a u € HF*™=2(R"; CV)
exists such that
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(v, f) = (P*v,u), forallve Cy(Q_g; CN)a

namely, Pu = f in _;. This concludes the proof. O

3. Proof of Theorem 1.1. We have to verify that the hypotheses
of Theorem 1.2 are satisfied. To this end, we briefly recall the definition
of the Kohn Laplacian Dl()q) on a C'R manifold of codimension h > 1;
see [21] for details.

Let T%' M be the C'R structure of M and £9(M) := I'(M, AM), and
let £%9(M) := I'(M,A%2M) be the spaces of g-forms and (0, ¢)-forms
respectively, on M. Let m, : E9(M) — £%9(M) be the projection and

define 51(:1) = mgp10d: EXY(M) — E%9L(M). Fix a Hermitian metric
on CTM such that T M LT M, and define

00 =3 Vg™ 1 508 L g0a(ar) — %),

(for ¢ = 0, Dgo) = ggo) 5},0)) where the adjoint is taken with re-
spect to the induced inner product. Consider a local basis Ly,... , L,
of sections of T%'M and real vector fields Ti,...,T}, such that
Ly,...,Lp,Ly,...,L, T,...,T}is alocal orthonormal basis of CT M.
We recall that the characteristic bundle N*(M) C T*M counsists of the
covectors which are conormal to T*°M @ T M.

Let_wl,..._,w", w!,...,@", 7,...,7h, be the dual basis to Lq,...,
Ly, Li,..., Ly, Ty,..., T, and let ¢ = Y, ¢;@0’ be a (0, q)-form, with
I=(i1,...,ig), 1 <1 <+ <iy<m,and @ =@ A--- Aw's. An

easy computation shows that the Kohn Laplacian Dl()q) reads as

1 U
Dz(,q)¢ =73 Z Z(Lij + L;L;)$1@" + lower order terms.
I j=1

We therefore have
E:{pe T*M\O Vj = Ul(LJ)(p) =0,j=1,... 7”})
which is exactly N*(M) with the 0-section removed.

Since the vector fields Lj,fj, j=1,...,n, are linearly independent,
it follows that Hypothesis (H;) is satisfied.
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For p € N*(M) the Levi form L(p) is then defined as the Hermitian
matrix whose entries are

L(p)jn = ilp, [Lj, Le]) = o1([Ly, Lx]) (p) = i{v;, T} (p),
L k=1,... ,n.

Let p € ¥ = N*(M) \ 0; the map

(3.1) KerL(p) 2 ar—u= Zaijj +a;Hy, € T,XNT,X°
j=1

is easily seen to be an isomorphism of real vector spaces, see e.g., the
proof of Proposition 3.6 of [15]. It follows that
(3.2) dim (T,X NT,X7) = 2dim¢ Ker L(p),

and therefore Hypotheses (H3) and (Hj) are fulfilled as well.

Moreover, we observe that, if o # 0, the vector w in (3.1) satisfies
d7r(u) = iZ(aij — O[jfj) #0,
j=1

so that (Hy) is verified.

We now come to (1.3). Since Dl()q) is formally self-adjoint, its sub-

principal symbol pj is indeed a Hermitian matrix. We are going to use
the necessity part of the following lower bound.

Theorem 3.1. Let X be an open subset of R™, and let P =
P* € OP S™(X; C¥) be an N x N matrix of classical pseudodifferential
operators satisfying (Hy) and (Hs). Then the following properties are
equivalent:

(3:3) Pho1(p) + TeE, (p)Id >0, for all p € ;

for every compact subset K C X, there exists a constant Cx > 0 such
that

(3.4) (Pu,u) > —C’K||u\|%m_2)/2, for all u € C§°(K;C™).
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This theorem is a slight generalization of Theorem 22.3.2 and Propo-
sition 22.4.1 of [10], to systems with a principal symbol which is a scalar
multiple of the identity matrix. We do not repeat the proof here, which
goes exactly as the one given in [10].

Instead, we observe that the Kohn Laplacian certainly satisfies (3.4)

(m = 2), because (Dl()q)qﬁ,cj)) > 0 for every smooth (0, q)-form ¢ with
compact support. It follows from Theorem 3.1 that (3.2) is verified by

D,gq), and this concludes the proof. ]
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