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MINIMAL USCO MAPS,
DENSELY CONTINUOUS FORMS
AND UPPER SEMI-CONTINUOUS FUNCTIONS

LUBICA HOLA AND DUSAN HOLY

ABSTRACT. New characterizations of minimal USCO maps
and densely continuous forms are given. Let X and Y be topo-
logical spaces, and let Y be a 77 regular space. Let F: X — Y
be a set-valued mapping. The following are equivalent: (1) F'
is a minimal USCO map; (2) There is a quasicontinuous, sub-
continuous function f : X — Y such that the closure of the
graph Gr f of f in X X Y is equal to the graph GrF of F.
For Y = R we also prove some isomorphic results between
the class of minimal USCO maps and a certain class of quasi-
continuous functions as well as between the class of densely
continuous forms and a certain class of densely continuous
functions equipped with uniformity of uniform convergence.

1. Introduction. Let X and Y be Hausdorff topological spaces. In
our paper we give new characterizations of minimal USCO maps and
densely continuous forms from X to Y.

There is a close relation between these two important classes of set-
valued mappings. In particular, every minimal USCO map from a
Baire space X into a metric space Y is a densely continuous form, and
densely continuous forms have a kind of minimality property found in
the theory of minimal USCO maps.

Interesting results concerning minimal USCO maps were found by
Drewnowski and Labuda in their paper [5]. Our paper extends some
results from [5]. We prove the following result: Let F : X — Y be
a set-valued mapping, and let Y be a Tj regular space. Then F is a
USCO map if and only if there is a quasicontinuous and subcontinuous
function f : X — Y such that the closure of the graph Gr f of f is
equal to the graph Gr F of F.
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We also study the set of selections of real-valued minimal USCO
maps, M(X), as well as the set of selections of locally bounded real-
valued densely continuous forms, D*(X). Further, we investigate the
mapping which assigns to every element F' € M(X) the supremum
function f¥ defined by f¥(z) =sup{y:y € F(z)}.

We prove that this mapping is a uniform isomorphism between M (X)
and a certain class of quasicontinuous functions as well as between
D*(X) and a certain class of densely continuous functions equipped
with the uniformity of uniform convergence.

Continuing research of the papers [11, 12, 16] we also study the
cardinal invariants of the topology of uniform convergence on D*(X).

2. Minimal USCO maps. In what follows, let X and Y be
Hausdorff topological spaces. Following [5] the term map is reserved
for set-valued mappings. Also, for z € X and y € Y, U(z) and V(y)
are always used to denote a base of open neighborhoods of x in X and
y €Y, respectively. If F: X — Y is a (set-valued) map, then

GrF ={(z,y) e X xY :ye€ F(x)}

is the graph of F.

Notice that if f : X — Y is a single-valued function we will use the
symbol Gr f also for the graph of f and the symbol A for closure of the
set A in a topological space.

Given two maps F,G : X — Y, we write G C F and say that G
is contained in F if G(z) C F(z) for every z € X, equivalently, if
GrG C GrF.

A map F : X — Y is upper semi-continuous at a point x € X if, for
every open set V containing F'(x), there exists a U € U(z) such that

FU)=U{F(u):ueU}CV.

F is upper semi-continuous if it is upper semi-continuous at each point
of X. Following Christensen [4], we say that a map F' is USCO if it is
upper semi-continuous and takes nonempty compact values. Finally, a
map F' is said to be minimal USCO if it is a minimal element in the
family of all USCO maps (with domain X and range Y); that is, if it
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is USCO and does not properly contain any other USCO map from X
into Y. By an easy application of the Kuratowski-Zorn principle we
can guarantee that every USCO map from X to Y contains a minimal
USCO map from X to Y, see [5].

Minimal USCO maps were studied by Drewnowski and Labuda in
[5]. In their paper they gave an interesting characterization of minimal
USCO maps. In the first part of our paper we extend some results of
[5]-

Minimal multi-functions were studied in [15].

Of course, a natural question arises when functions f : X — Y do
have the property that the closures of their graphs Gr f in X x Y are
the graphs of minimal USCO maps.

If f:1]0,1] — [0,1] is a function with the property that Gr f =
[0,1] x [0,1], then Gr f is a USCO map which is not minimal. (It is
very easy to define such a function f.)

In the first part of our paper we give a complete answer to the above
question. To do this we need the following notions.

We say that a (single-valued) function f : X — Y is subcontinuous
[8] at = € X if, for every net {z, : 0 € X} in X converging to z, there is
a convergent subnet of {f(z,) : o € £}. A function f is subcontinuous
if it is subcontinuous at every point of X.

By [18, Theorem 2.1], f : X — Y is subcontinuous at z € X if and
only if for every open cover H of Y there is a finite subset F of  and
U € U(z) such that f(U) C UF.

A function f : X — Y is locally compact at x € X if there is a
compact subset K of Y and U € U(x) such that f(U) C K. A function
f is locally compact if it is locally compact at every point of X.

Of course, every locally compact function is subcontinuous, and if
the range space is locally compact, then these two notions coincide, see
[18].

A function f: X — Y is called quasicontinuous [17] at = € X if, for
every V € V(f(z)) and every U € U(x), there is a nonempty open set
W C U such that f(W) C V. If f is quasicontinuous at every point of
X, we say that f is quasicontinuous.
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The notion of quasi-continuity was perhaps used the first time by
Baire in [1] in the study of points of continuity of separately continuous
functions. As Baire indicated in his paper [1] the condition of quasi-
continuity has been suggested by Vito Volterra.

There is a rich literature concerning the study of quasi-continuity, see
for example [1, 14, 19], and a survey paper [17].

Proposition 2.1. Let X and Y be topological spaces, and let Y be
Hausdorff. Let F be a minimal USCO map from X to Y. If f is a
selection of F', then Gr F = Gr f.

Proof. GrF is a closed subset of X x Y, thus Gr f C GrF. By [5,
Proposition 3.2], Gr f is a USCO map. The minimality of F' implies
that Gr f = Gr F. O

Proposition 2.2. Let X and Y be topological spaces, and let Y be
Hausdorff. Let F be a USCO map from X to Y. If, for every selection
fof FGrf=GrF, then F is a minimal USCO map.

Proof. Suppose, by way of contradiction, that F' is not a minimal
USCO map. Let G be a minimal USCO map which is contained
properly in F. Let (z,y) € Gr F\ Gr G. Let g be a selection of G. Then
Grg C GrG, since Gr @ is a closed set in X x Y. Thus, (z,y) ¢ Grg,
a contradiction since g is also a selection of F'. ]

Proposition 2.3. Let X and Y be topological spaces. Let F be a
USCO map from X toY. Then every selection f of F is subcontinuous.

Proof. Suppose there is a selection f of F’ which is not subcontinuous.
Thus there is a net {z, : ¢ € ¥} C X convergent to a point z such that
{f(zs) : o € X} has no cluster point in Y. The compactness of F(z)
implies that there is an open set O D F(z) and o¢ € ¥ with f(z,) ¢ O
for every o > 0. The upper semi-continuity of F' at x implies that
there is a V' € U(x) with F(z) C O for every z € V. There is a o1 > 09
such that z, € V for every o > o1; i.e., f(z,) € F(z,) C O for every
o > o1, a contradiction. m]
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The following theorem extends Proposition 4.5 in [5].

Theorem 2.4. Let X andY be topological spaces. Let F' be a USCO
map from X to Y. Then the following are equivalent.

(1) F is minimal;

(2) F maps isolated points into singletons, and every selection f of
F' is quasi-continuous.

Proof. (1) = (2). Let F be a minimal USCO map from X to
Y. It is easy to verify that F' maps isolated points into singletons.
Let f be a selection of F. Suppose f is not quasi-continuous at
xo; of course, xg cannot be an isolated point. Thus, there are open
sets Oy, and Oy (,,) in X and Y, respectively, such that zo € Oy,
f(zo) € Of(ay) and such that for every nonempty open set V' C Og,
there is a z € V with f(2) € Of,). By Proposition 2.3, f is
subcontinuous. The subcontinuity of f guarantees that, for every
z € Ogy, F(x) N (Y \ Of(ay)) # @. Thus, G = Gr F \ (Oz, X Of(s))
is the graph of a USCO map and G C Gr F, a contradiction with the
minimality of F.

(2) = (1). Suppose F is not minimal. Let G C F be a minimal
USCO map, and let (zg,y0) € Gr F\ GrG. Let g be any selection of
G. Define function h from X to Y as follows:

Yo T = Zo,
h(z) = {g(w) x # xo.

Then of course h is a selection of F' which is not quasi-continuous.
(There are open sets U and V in X and Y, respectively, such that
g €U,y € Vand (UxV)NGrG = g, ie, (UxV)N(Grh\
{(zo, M(z0)}) =2.) D

Theorem 2.5. Let X and 'Y be topological spaces, and letY be a T}
reqular space. Let F be a map from X to Y. Then the following are
equivalent:

(1) F is a minimal USCO map;

(2) There exist a quasi-continuous and subcontinuous function f from
X toY such that Gr f = Gr F};
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(3) Every selection f of F is quasi-continuous, subcontinuous and

Grf=GrF.

Proof. (1) = (3) by Propositions 2.1, 2.3 and Theorem 2.4.
(3) = (2) is clear.

(2) = (1). Let f be quasi-continuous, subcontinuous and Gr f =
Gr F. First we prove that F(x) is compact for every x € X. Let
z € X. It is very easy to verify that F(z) = N{f(O): O € U(z)}. Let
G be an open cover of F(z). Let 7 be an open cover of F(x) such that
the family {U : U € H} is a refinement of G. For every y € Y \ F(z),
let O, be an open set in Y such that O, N F(z) = @. Then the family
HU{O, : y € Y\ F(z)}is an open cover of Y. The subcontinuity of f at
x implies that there is an O € Y(z) and a finite subfamily #* of H and
a finite indexed set I such that f(O) C U{U : U € #*}UU{O,, : i € I}.
Then F(z) C f(O) c U{U : U € H*}U{0O,, : i € I}. Thus,
F(z) c UW{U : U € H*}, i.e., there is a finite subfamily of G which
covers F(z); i.e., F(z) is compact.

Now we prove that F' is upper semi-continuous. Let z € X. Let
V be an open set such that F(z) C V. The regularity of Y implies
that there is an open set H with F(z) C H C H C V. We claim
that there is an O € U(x) such that f(O) C H. Suppose that, for
every O € U(x), there exists an zp € O with f(zp) ¢ H. The
net {zp; O € U(x)} converges to x. The subcontinuity of f at x
implies that the net {f(zo); O € U(x)} has a cluster point y ¢ H, but
(z,y) € Gr f = Gr F, a contradiction. Thus, there is an O € U(x) such
that F(O) C f(O)C HC V.

Now we prove that F' is minimal. Suppose that Gr f is not minimal.
Thus, there is a G C Gr f, G # Gr f which is the graph of a minimal
USCO map. Let (z,y) € Gr f \ G. Thus, there are open sets U and V
in X and Y, respectively, such that z € U, y € V and (UxV)NG = @.
Let O € V(y) be such that O C O C V. Let (u, f(u)) € U x O. The
quasi-continuity of f at u implies that there is a nonempty open set
L C U such that f(z) € O for every z € L. Take s € L and y € G(s).
Then (s,y) € Lx (Y \O) but L x (Y \O)NGr f = @, a contradiction,
since G C Gr f. O
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We have the following variant of Theorem 2.5 for locally compact
Hausdorff spaces Y.

Proposition 2.6. Let X and Y be topological spaces, and let Y be a
locally compact Hausdorff space. Let F be a map from X toY. Then
the following are equivalent:

(1) F is a minimal USCO map;

(2) There exists a quasi-continuous, locally compact function f : X —

Y such that Gr f = Gr F;

(3) Every selection f of F is quasi-continuous, locally compact and
Grf=GrF.

3. Densely continuous forms. In this part of our paper we
continue the study of so-called densely continuous forms introduced
by McCoy and Hammer in [9] and then studied by Hold, McCoy, Holy
and Vadovi¢ in their papers [10-13].

Let X and Y be Hausdorff topological spaces. Densely continuous
forms from X to Y can be considered as maps (set-valued mappings)
from X to Y which have a kind of minimality property found in the
theory of minimal USCO maps. In particular, every minimal USCO
map from a Baire space X into a metric space Y is a densely continuous
form.

To define a densely continuous form from X to Y [9], denote by
DC(X,Y) the set of all functions from X to Y which are continuous
at all points of some dense subset of X. We call such functions densely
continuous. Of course, DC(X,Y) contains the set C(X,Y) of all
continuous functions from X to Y. There are many other interesting
subsets in DC(X,Y). For example, if Y is a locally compact second
countable space and X is a Baire space, then DC(X,Y") contains all
functions from X to Y with closed graphs [10].

If Y is the set R of all real numbers and X is a Baire space, then

also all upper and lower semi-continuous functions on X belong to
DC(X,Y).

For each function f from X to Y, denote by C(f) = {x € X : f is
continuous at z}. For every f € DC(X,Y), Gr (f[C(f)) is a subset of
X x Y. Denote by Gr (f[C(f)) the closure of Gr (f[C(f)) in X xY.
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We define the set D(X,Y’) of densely continuous forms by

D(X,Y) ={Gr(f[C(f)): f € DC(X,Y)}.

The densely continuous forms from X to Y may be considered as
maps (set-valued) mappings. For each z € X and ® € D(X,Y), define
O(z)={yecY:(z,y) € 2}

Define by A(X,Y) the following set of functions

AX,Y)={f:X - Y : for every x € X and for every
neighborhood U of (z, f(x)) there exist y € C(f)
such that (y, f(y)) € U}.

Of course, A(X,Y) C DC(X,Y).

It is very easy to verify that every function from A(X,Y) is quasi-
continuous. The following example shows that the opposite is not true.

Example 3.1 [19]. Let X = R with the usual Euclidean topology,
and let Y = R with the Sorgenfrey topology. Let f : X — Y be the
identity function. Then f is quasi-continuous, but the set C(f) = @.

However, if X is a Baire space and Y is a metric space, then every
quasi-continuous function f : X — Y has a dense set C(f) of the points
of continuity [17], i.e., f belongs to A(X,Y).

Clearly, if f : X — Y, then f € A(X,Y) if and only if Grf =
Gr (f[C(f))-

We have the following characterization of elements of D(X,Y).

Proposition 3.2. Let X and Y be topological spaces, Y reqular and
F: X =Y such that F(z) # & for every x € X. Then the following
are equivalent:

(1) F € D(X,Y);
(2) There is a function f € A(X,Y) such that Gr f = Gr F}
(3) Every selection f of F belongs to A(X,Y) and Gr f =GrF.
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Proof. (1) = (3). Let f be a selection of F. Thereisa g € DC(X,Y)
such that F = Gr(g[C(g). Of course, F(z) = {g(z)} for every
z € C(g), i.e, f(z) = g(z) for every x € C(g). It is easy to verify
that C(g) C C(f). (Let z € C(g). Suppose z ¢ C(f). There is a
V € V(f(x)) such that for every U € U(z) there is an zy € U with
f(zy) ¢ V. Let H € V(f(x)) be such that H C V. The continuity
of g at x implies that there is an O € U(x) such that g(O) C H.
Then O x (Y \ H) is a neighborhood of (zo, f(zo)) which has an
empty intersection with the graph Grg of g, a contradiction, since
Gr f C Gr(g[C(9)).)

Thus, the set C'(f) of the points of continuity of f is dense in X, i.e.,
f € DC(X,Y). Since Grf C Gr F = Gr (9[C(g)) C Gr (f[C(f)), we
have that f € A(X,Y) and Gr F = Gr f.

(3) = (2) is trivial.

(2) = (1) is also trivial since if f € A(X,Y), then of course
f € DC(X,Y) and by the above, Gr f = Gr f[C(f). i

Corollary 3.3. Let X be a Baire space and Y a metric space. Let
F:X =Y be such that F(x) # @ for every x € X. The following are
equivalent:

(1) F € D(X,Y);

(2) There is a quasi-continuous function f : X — Y such that
Grf = GrF;

(3) Every selection f of F is quasi-continuous and Gr f = Gr F.

Denote now by D(X) [16] the space of all real-valued densely contin-
uous forms from a topological space X.

If : X — R is a mapping (single-valued or set-valued) and A C X,
we say that @ is bounded on A, provided that the set

o(A) = J{®(x): z e A}
is a bounded subset of R. We say that ® is locally bounded, provided
that each point of X has a neighborhood on which @ is bounded.

Now define D*(X) to be the set of all members of D(X), that are
locally bounded.
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Remark 3.4. Let U(X) and M (X) be the set of all real-valued USCO
maps and minimal USCO maps, respectively. Then D*(X) C M(X).
In fact, if ® € D*(X), then for all z € X, ®(x) is a nonempty compact
set. By a result of Berge [3, page 112] any map with a closed graph
which has a compact range is upper semi-continuous. Since upper semi-
continuity is a local property, every ® € D*(X) belongs to U(X). Now
by [5, Theorem 4.7], ® is minimal USCO and D*(X) C M(X).

If X is a Baire space, then M (X) C D*(X). In fact, if ® is an upper
semi-continuous map with nonempty values, then by [7] there is a dense
subset E of X such that ® is lower semi-continuous at each z € E. The
minimality of ® implies that ® must be single-valued at every point of
E. Then any selection of ® is continuous in each x € E and by [5]
® € D(X). It is easy to show that every USCO map from X to R is
locally bounded. As a result, we have that if X is a Baire space then
M(X) = D*(X).

We use the notation DC(X) and A(X) for DC(X,R) and A(X,R),
respectively, and DC*(X), A*(X) for locally bounded elements of
DC(X) and A(X), respectively. By UC(X) we denote the set of all
upper semi-continuous functions.

Remark 3.5. We have an equivalence relation on DC*(X) defined by
f ~ g if and only if Gr (f[C(f)) = Gr(g9[C(g)), so that D*(X) can be
identified with the set of equivalence classes of DC*(X) under ~, see
[9].

Let F be a USCO map from a topological space X to R. Define the
function f¥ as follows:

fF(:v) =sup{y:y € F(x)}.

Then of course f¥ is a selection of F and f¥ is upper semi-continuous.

If F is a minimal USCO map from a topological space X to R, then
by Theorem 2.6, f¥ is also quasi-continuous and locally bounded.

In what follows denote by Q(X) the space of all quasi-continuous
real-valued functions defined on a topological space X and by Q*(X)
the set of all locally bounded elements of Q(X).

Define a mapping Q: M(X) — Q*(X)NUC(X) by Q(F) = fF.
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Proposition 3.6. The mapping Q: M(X) —» Q*(X)NUC(X) is a
bijection and Q(D* (X)) = A*(X)NUC(X).

Proof. To show that € is one-to-one, let F,G € M(X) be such that
F # G, ie., Gr fF #£ Gr fG. Without loss of generality, we can suppose
that there is a point (u,v) € Gr f¥ such that (u,v) ¢ Gr f¢. Then
there exists an open neighborhood U of (u,v) such that UNGr f¢ = @.
There must exist a point w € X such that (w, ff(w)) € U and
so (w, fF(w)) ¢ GrfG. Since f© is a selection of G, we have that
fr#fe

To show that the mapping 2 is onto, let f € Q*(X)NUC(X). By
Theorem 2.6, Gr f is a minimal USCO map. The upper semi-continuity
of f guarantees the equality f(z) = sup{y : (z,y) € Gr f} for every
z € X, ie., Q(Gr f) = f. Thus, Q is onto.

If F € D*(X), then by Proposition 3.2, ff € A(X). Of course,
f¥ is upper semi-continuous and locally bounded, i.e., Q(D*(X)) C
A*(X)NUC(X). Now we prove the equality. Let f € A*(X)NUC(X).
By Proposition 3.2, Grf € D(X) and since f is locally bounded
Gr f € D*(X). The upper semi-continuity of f guarantees the equality
f(z) =sup{y : (z,y) € Gr f} for every z € X. Thus, Q(Gr f) = f. 0

Of course, for a map F : X — R with bounded values we can define
also

fr(z) =inf{y:y € F(z)}.

If F is a USCO map, then fg is lower semi-continuous. We can give a
similar result for lower semi-continuous functions as we gave above for
upper semi-continuous functions. The result for lower semi-continuous
functions is dual.

Denote by LC(X) the set of all lower semi-continuous functions, and
define the mapping S : M(X) — Q*(X) N LC(X) by S(F) = fr.

Proposition 3.7. The mapping S : M(X) - Q*(X)NLC(X) is a
bijection, and S(D*(X)) = A*(X) N LC(X).
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4. Let (X, d) be a metric space. The open d-ball with center zyp € R
and radius € > 0 will be denoted by S:(29), and the e-parallel body
UseaSe(a) for a subset A of R will be denoted by S.(A4).

We denote by 2R the space of all closed subsets of R, by CL(R)
the space of all nonempty closed subsets of R. By K(X) and §(X)
we mean the family of all nonempty compact and finite subsets of X,
respectively.

If A € CL(R), the distance functional d(.,4) : R — [0,00) is
described by the familiar formula

d(z,A) = inf{d(z,a) : a € A}.

The Hausdorff (extended-valued) metric Hy on 2R [2] is defined by
Hy(A, B) = max{sup{d(a,B) : a € A}, sup{d(b, A): b e B}},

if A and B are nonempty. If A # &, take Hy(A, D) = Hqy(, A) = 0.
We will often use the following equality on CL(R):

Hy(A,B) =inf{e >0: AC S.(B) and B C S.(A)}.

The topology generated by Hy is called the Hausdorff metric topology.

Denote by F(X) the set of all maps from a topological space X to R
with closed values.

Following [9] we will define the topology 7, of pointwise convergence
on F(X). The topology 7, of pointwise convergence on F(X) is
induced by the uniformity i, of pointwise convergence which has a
base consisting of sets of the form

W(A,e) ={(®,¥): forallz € A, Hy(®(z),¥(z)) < &}

where A € F(X) and € > 0. The general 7,-basic neighborhood of ® €
F(X) will be denoted by W(®, A,¢), i.e., W(®,A,e) = W(A4,¢)[®] =
{U : Hg(®(x),¥(z)) < € for every x € A}. If A = {a}, we will write
W(®,a,¢) instead of W(®, {a},e). The space D*(X) (M (X)) with the
induced topology 7, will be denoted by Dy (X) (M,(X)) for short.

We will define the topology 7x of uniform convergence on compact
sets on F'(X) [9]. This topology is induced by the uniformity ${x which
has a base consisting of sets of the form

W(K,e) ={(®,7): forall z € K, Hy(®(z),¥(z)) < e},
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where A € R(X) and € > 0. The general Tx-basic neighborhood
of & € F(X) will be denoted by W(®, K,¢), ie, W(®,K,e) =
W (K,¢)[®]. The space D*(X) (M (X)) with the induced topology 7k
will be denoted by D (X) (Mg (X)).

Finally we will define the topology 7y¢ of uniform convergence on
F(X) [9]. Let e be the (extended-valued) metric on F(X) defined by

e(®,¥) = sup{Hy(®(z),¥(z)): z€ X}

for each ®, ¥ € F(X). Then the topology of uniform convergence for
the space F(X) is the topology generated by the metric e. The space
D*(X) (M(X)) with the induced topology Tyc will be denoted by
Do (X) (Myc(X)).

We use the symbols 7, (H,), 7k (Uk) and Tyc (Muc) also for the
topology (uniformity) of pointwise convergence, the topology (unifor-
mity) of uniform convergence on compacta and the topology (unifor-
mity) of uniform convergence on the space of all functions from X to
R, respectively.

Remark 4.1. 1t is easy to see that if A and B are nonempty compact
subsets of R, then d(sup A,sup B) < Hy(A, B).

Proposition 4.2. Let X be a topological space. Then the mapping €2
from (M(X),4,) onto (Q*(X)NUC(X),4,) is uniformly continuous.

Proof. The proof follows from Remark 4.1. O

The following example shows that even Tx-convergence in Q*(X) N
UC(X) does not imply the convergence in Mp(X).

Example 4.3. Let W be the set of all ordinal numbers less than
or equal to the first uncountable ordinal number w; with the usual
topology. Let L be the set of all limit ordinal numbers different from
wi. Put X =W\ L and equip X with the induced topology from W.

If X is a nonlimit number, there are a unique integer I(\) € Z* and
a limit number § such that A = 8+ I(A).
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For every n € Z*+, put C,, = {\ € X \w; : I(\) = n}. Then w; € C,,
for every n € Z*. Further, for every n € Z 7T, let f, € Q*(X)NUC(X)
be defined as follows: f,(z) =0ifz € C, and f,,(z) = 1 otherwise. It is
easy to verify that {f,,} Tx-converges to the function f identically equal
to 1. However, the sequence {Q~1(f,)} fails to converge to Q71(f) in
M,(X) since Q7 *(f,) = Gr f,, takes the value {0,1} at wy for every
n€ Zt and Q 1(f)(w1) = {1}

Theorem 4.4. Let X be a topological space. Then the spaces
(M(X),e) and (Q*(X)NUC(X),e) are uniformly isomorphic. Also the
spaces (D*(X),e) and (A*(X) NUC(X),e) are uniformly isomorphic.

Proof. As we proved above, the mapping Q from M (X) to Q*(X) N
UC(X) is a bijection. By Remark 4.1 we have that Q : (M (X),e) —
(Q*(X) NUC(X),e) is uniformly continuous. To prove that also
Q! is uniformly continuous, it is sufficient to show that if, for
f,9 € Q*(X)NUC(X), d(f(z),9(x)) < e for every ¢ € X, then

Hy(Gr f(z),Grg(z)) < e for every z € X.

Suppose that this is not true. Then there exists an xy € X such
that Ha(Gr f(zo), Grg(wo)) > e. There is an r € Gr f(zq) such
that d(r,Gr(g)(xzo)) > ¢, or there is an s € Gryg(zp) such that
d(s,Gr f(z9)) > €. Suppose the first case occurs; the proof of the
second one is analogous. Put 3 = d(r, Gr g(zo))—¢. Let {z, : 0 € ¥} be
anet in X converging to o, such that the net { f(z,) : ¢ € X} converges
to r. Then for 3/4 there is a 09 € ¥ such that f(z,) € Sg/4(r) for all
o > 0p. The upper semi-continuity of Gr g at xy implies that there is a
U € U(zo) such that Grg(z) C S5/4(Grg(zo)) forallz € U. Let o € &
be such that ¢ > g and z, € U. Then of course d(f(z,),g(zs)) > &,
a contradiction.

Concerning the proof of the second statement of the theorem, by
Proposition 3.6 we have that Q(D*(X)) = A*(X) NUC(X), and by
the above we know that Q : (M(X),e) — (Q*(X) NUC(X),e) is
uniformly isomorphic. Thus, also the restriction of © on D*(X) to
A*(X)NUC(X) is uniformly isomorphic. O

Theorem 4.5. Let X be a locally compact topological space. The
spaces (M(X),8k) and (Q*(X) NUC(X),4k) are uniformly isomor-
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phic. Also the spaces (D*(X),Uk) and (A*(X)NUC(X),Uk) are uni-
formly isomorphic.

Proof. As we proved above, the mapping Q from M (X) to Q*(X) N
UC(X) is a bijection. By Remark 4.1, we have that Q : (M (X), ) —
(O*(X)NUC(X), g ) is uniformly continuous. To prove that also 27!
is uniformly continuous, let K € #(X) and ¢ > 0. The local compact-
ness of X implies that there is an open set GG in X such that K C G and
G is compact. Let f,g € Q*(X)NUC(X) be such that d(f(z), g(z)) <
for every z € G. To prove that Hy(Gr f(z),Grg(z)) < ¢ for every
x € K, we can use a similar idea as in the proof of Theorem 4.4. O

The cardinal function properties of character, pseudo character, den-
sity, weight, net weight and cellularity on Dj(X) and Dy(X) were
studied in the papers [11, 12].

We will end our paper with some results concerning cardinal invari-
ants on Df;(X).

Let X be a topological space. Since D}, ~(X) is always metrizable,
we have

(D (X)) = d(Dje(X)) = nw(Djc (X)) = w(Die(X)).

We give some estimates for cellularity of D}~ (X), i.e., also for its
density, net weight and weight.

Let us recall that for cardinals u, 7, it is customary to put

p<" =sup{u® : a < n,a cardinal}.

Proposition 4.6. For every space X, 2<¢X) < ¢(Df (X)) <
2uw(X),

Proof. First we prove that 2<¢(X) < ¢(Df,,(X)). We will use some
ideas from [11]. Let G be a family of pairwise disjoint nonempty open
subsets of X. Let 29 denote the set of all functions from G to {0,1}.
For each ¥ € 29, define fy : X — R as follows: fy(z) = ¥(G)ifz € G
for some G € G and fy(z) = 0 otherwise.
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Of course, for each ¥ € 29, the set C(fy) is dense in X. So each
Fy = Gr(fg[C(fy)), is a member of D*(X). Now, for each ¥ € 29,
define By = {® € D*(X) : e(Fy,®) < 1/4}. Then {By : ¥ € 29}
is a pairwise disjoint family of nonempty open subsets of Dy (X).

Therefore,
2191 < (D (X).

Since G is any family of pairwise disjoint nonempty open subsets of
X we have
2 < (Do (X))

Now ¢(D}; (X)) < d(D}j (X)) < |D*(X)|. By [16, Proposition 5.3],
|D*(X)| < 2*(X), s0 we are done. o

Remark 4.7. Tt is easy to verify from the proof of Proposition 4.6
that if X is a topological space in which there is a family of pairwise
disjoint nonempty open sets with the cardinality of ¢(X), then

2 < (Do (X)) < 20,

Corollary 4.8. If X is a metrizable space, then
2 = (Do (X)) = w(De(X)) = 209,

Proof. If X is a metrizable space, then we have ¢(X) = d(X) =
nw(X) = w(X). Moreover, if X is a metrizable space of weight m,
there exists a family of pairwise disjoint nonempty open sets which has
cardinality m [6]. o

Of course the assumption of the metrizability of X in the above
corollary is essential.

Example 4.9. Let D(m) be the discrete space of the cardinality m,
and let SD(m) be the Cech-Stone compactification of D(m). Then we
have

c(Df e (BD(m)) = 2™ = 2¢(8D(m)  qu(BD(m)) _ 92™
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Proof. It is sufficient to realize that we have d(Dj,(8D(m))) <
|Dfc(BD(m))| = |C(BD(m))| < (2%0)™ = 2m, o

There are also nonmetrizable spaces for which the equality in Corol-
lary 4.8 holds.

Example 4.10. Let X = B3N\ N. Then 2° = 2°X) = ¢(Dj;(X)) =
w(Do (X)) = 2@ Tt is known [6] that ¢ = ¢(X) = w(X) and
that X contains a family of cardinality ¢ consisting of pairwise disjoint
nonempty open sets.
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