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ROOTS OF POLYNOMIALS OF BOUNDED HEIGHT
PAULIUS DRUNGILAS AND ARTURAS DUBICKAS

ABSTRACT. Let V be the set of roots of {—1,0,1} poly-
nomials. Each a € V must be a unit which lies with its
conjugates in the annulus 1/2 < |z| < 2. We begin with an
explicit example showing that this condition is not sufficient.
Furthermore, for each g € (1,2], we show that the set of units
that lie with their conjugates in 1/p < |z| < ¢ but do not
belong to V is everywhere dense in the annulus 1/p < |z] < p.
This is derived from our main result claiming that the num-
ber ae?™/P is not a root of a nonzero integer polynomial of
height < H if p is a sufficiently large prime number, £ < pis a
positive integer, and a # 0 is an algebraic number having at
least one conjugate of modulus # 1.

1. Introduction. Recall that « is an algebraic number over the field
Q if there is a nonzero monic polynomial P(x) € Q|z] such that P(a) =
0. Generally speaking, for any proper subset .S of Q, one may ask which
algebraic numbers are roots of (not necessarily irreducible) polynomials
with coefficients in S and which are not. There are many interesting
problems regarding some small sets S in this context. In [24] Odlyzko
and Poonen considered the set S = {0,1}. (Such polynomials are
called Newman polynomials.) They have established several interesting
results for the set W of roots of Newman polynomials. For instance, it
was proved in [24] that the closure W is path connected. This result
was recently generalized in [18]. Some interesting aspects of multiple
roots of Newman polynomials have been investigated by Borwein and
Mossinghoff [7, 22]. (See also [14, 19] for other problems concerning
Newman polynomials.)

In this paper, we shall denote by V the set of roots of integer
polynomials of height 1 with nonzero constant term, that is, « € V
if and only if there are hy,...,h, € {-1,0,1} such that 1+ hyja +
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-+« + h,a™ = 0. More generally, for H € N, let Vi be the set of
nonzero roots of integer polynomials of height < H. (Recall that the
height of the polynomial Z?:o hjz? is the maximal modulus of its

coefficients maxo<j<n, |hj|.) Some results about the closure V similar
to those about W have been established by Boush [9] and Barnsley and
Harrington [3], see also [2]. According to [3], every « in the annulus
1/v2 < |a| < 1 is a root of some {—1,0,1} power series. Truncations
of these series show that {z € C:1/v/2 < |2|] < 1} C V. Since V is
closed under the map z + 1/, this implies that {z € C: 1/v2 < |2| <
V2 C V.

By a simple modulus consideration, it is clear that « can belong
to Vg only if it is an algebraic number whose conjugates over Q
(including « itself) all lie in the annulus 1/(H +1) < |2| < H+ 1. In
addition, the moduli of both extreme (leading and constant) coefficients
of the minimal polynomial of & (in Z[z]) must be < H. In particular,
a € V = V] implies that « is a unit whose conjugates over Q (including
« itself) all lie in the annulus 1/2 < |z| < 2. On the other hand,
Pathiaux [26] and Mignotte [21] proved that each nonzero unit whose
Mahler measure M () is smaller than 2 belongs to V. (Recall that, for
a unit o with conjugates a; = q, .. ., ag, its Mahler measure is defined
by M(a) := HZ:l max{1, |ax|}.) The proof of this statement is based
on Siegel’s lemma. Its most general version can be found in [6].

Of course, not every unit o which lies with its conjugates in 1/2 <
|z| < 2 has the property M(«a) < 2, so there is a “gap” between neces-
sary and sufficient conditions stated above. Let E be the “exceptional”
set of units a that lie with their conjugates in 1/2 < |z| < 2 but do
not belong to V. We begin with an explicit example showing that the
set F is not empty. Hence, the above mentioned necessary condition is
not sufficient.

Theorem 1. The unit 0 := (1 + V/5)(—=1 + iv/3)/4 lies with its
conjugates in the annulus 1/2 < |z| < 2 and is not a root of a nonzero
polynomial with {—1,0,1} coefficients.

The minimal polynomial of § over Q is x*+x3+2x?—x+1. Theorem 1
claims that this polynomial is not a factor of a nonzero {—1,0,1}
polynomial. Two proofs of Theorem 1 are given in Section 2. As it
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was observed in [18, 24], the set V N {z € C : |z| < 1} is the set
of zeros of power series 1 + Z;’il h;z?, where h; € {—1,0,1}. Thus,
Theorem 1 can be easily derived from certain general theorems on the
roots of power series [4] (see our first proof). Roughly speaking, with
this method one can prove that a ¢ V by showing that o/ ¢ V for some
o' which is conjugate to a. Nevertheless, we shall give another proof
which works for polynomials only. Since 6 is the product of the “golden
mean” (14 +/5)/2 and the primitive cube root of unity (—1 4 /3)/2,
it is not surprising that this proof involves Fibonacci numbers.

Our main theorem is a generalization of Theorem 1 to integer poly-
nomials of arbitrary height and to algebraic numbers having at least
one conjugate of modulus # 1. Using it, we will be able to prove that
a ¢ V although all conjugates of « lie in the interior of V.

Theorem 2. Let o # 0 be an algebraic number having at least one
conjugate of modulus # 1, and let H be a positive integer. Then there
is a constant po(a, H) such that, for each prime number p > po(a, H)
and £ € {1,2,...,p— 1}, the algebraic number ae?™ /P is not a root of
a nonzero integer polynomial of height < H.

The proof of Theorem 2 is given in Sections 3 and 4. Formally, we just
follow our second proof of Theorem 1. However, the proof of Theorem 2
is much more subtle and uses tools from several sources (for instance,
a “standard” estimate for linear forms in two logarithms and an old
classical result about the intersection of two cyclotomic fields). All
complications come from the fact that, in general, some quotients of
two conjugates of a can be roots of unity. Note that, for large p, the
conjugates of ae? /P over Q are uniformly distributed in the angles
with vertex at the origin. Usually, this reflects the fact that the height
of a respective minimal polynomial is not too large, see e.g., [15] for
a converse statement. Nevertheless, Theorem 2 shows that it is large
and, moreover, it cannot be reduced to a constant by multiplying the
minimal polynomial of ae?™*/P by an arbitrary integer polynomial.

Our next theorem emphasizes that some restrictions on the size of
the conjugates of @ cannot, in principle, guarantee that « lies in V.
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Theorem 3. For each ¢ € (1,2], the set of units that lie with their
conjugates in 1/p < |z| < o but do not belong to V is everywhere dense
in the annulus 1/9 < |z| < o.

In view of {z € C:1/v/2 < |z| < v/2} C V, this theorem is especially
interesting for ¢ € (1,4/2). Then, as we said above, each complex
number « in the annulus 1/p < |z| < g is a root of a certain {—1,0,1}
power series. However, given any € > 0, by Theorem 3, there is an
algebraic unit « which is not a root of unity and lies with its conjugates
in a “very narrow” annulus 1/(1+¢) < |2| < 14¢ but is not a root of a
{-1,0, 1} polynomial. The proof of Theorem 3 is based on Theorem 2
and Robinson’s result stating that there are infinitely many algebraic
integers lying with their conjugates in any given interval of length > 4.
(See [23, page 51] and also [10], where a corresponding result for units
was obtained.) We will prove Theorem 3 in Section 5.

Our next statement is the following zero one expansion of a number
in base w:

Theorem 4. Let w € [1/2,1) and r € [0,w/(1 —w)] be two fized real
numbers. Then there exist 81, 02,d3,... € {0,1} such that

r = 01w + Sow? + dzwd +--- .

A simple proof of this theorem using so called B-expansions will be
given in Section 6. We will also give its corollaries concerning the
density of real roots of polynomials with restricted coefficients.

In particular, Theorem 3 with ¢ = 2 implies that E = {z € C:1/2 <
|z| < 2}, namely, that the “exceptional” set E is everywhere dense in
the annulus 1/2 < |z| < 2. Our final theorem is a generalization of this
statement:

Theorem 5. Suppose that H € N. Then, for each complex number
zo satisfying 1/(H + 1) < |z0| < H + 1 and for any € > 0, there is an
algebraic number o such that

(i) |a — 20| < &,

(ii) a and its conjugates all lie in the annulus 1/(H+1) < |z| < H+1,
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(iii) the moduli of both extreme (leading and constant) coefficients of
the minimal polynomial of c, in Zlz], are < H, and

(iv) « is not a root of an integer polynomial of height < H.
2. Fibonacci numbers: The proof of Theorem 1.

First proof of Theorem 1. Set a := (14+/5)/2 and ¢ := (—1+iv/3)/2.
Obviously, two conjugates of # = a( lie on |z| = aand two on |z| = a~L.
Clearly, if 6 is a root of a {—1,0, 1} polynomial, then so is —1/6. Then,
obviously, —1/6 = (v/5 — 1)e™/3/2 must be a root of a certain power
series 1 + Z;’il h;z?, where h; € [—1,1]. However, according to the
computations shown in Figure 2 of [4], see also [5], the modulus of a
root of such a power series lying on the ray 0€™/3 o > 0, must be
greater than 0.63, whereas | — 1/6] = (v/5 — 1)/2 = 0.618033... is

smaller, a contradiction. ]

Second proof of Theorem 1. Let F,,, n =1,2,3,..., be the Fibonacci
sequence, namely, F} = F, = 1, F,, = F,,_1 + F,_2 for each n > 3.
Below, we shall use the following identity

B+Fh+- -+ F2=F,—1

which holds for each n > 3. Put Fy := 0. It is well known that
o L((l + \/5>” B <1 — \/5>"> _a®—(=1/a)"
Vs 2 2 V5 '

Therefore, a™ = F,a + F,,_ for each n € N. So, using 6" = (a()" =
(Fpa+ F, 1)¢", ¢3=1and (? = —( — 1, we find that

F,a+ F,_ ifn=0 (mod 3),
0" = (aQ)" = Fpaf+ F—1( ifn=1 (mod 3),
—F,o(—F,a—F,_1(—F,_; ifn=2 (mod3)

for n € N.

To obtain a contradiction, suppose that 6 is a root of a nonzero
{-1,0,1} polynomial. Then 5,67 + --- + by = 0 with b, = 1,
bg—1,...,00 € {-1,0,1}, ¢ > 4. Selecting 6 € {0,1,2} such that
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g+ 6 =3k+1, where k € N, we get 0351 £ bay_56%F + ... 4 b6 = 0.
Hence, there are csg,...,c1,¢0 € {—1,0,1} such that

0%+ + 30 + -+ + 10+ o = 0.

Evidently, 1,{,a,a( is a basis of the field Q(a,¢) = Q(v/5,iV3).
Expressing each 0", where n = 0,1, ...,3k+1, in this basis by the above
formulas we obtain that the coefficient for a( in the expression #3¢+1 4+
csk0®F +- - -+cp is equal to Fappq +E?;3 c3j+1F3541 —Z?;é c3j+2F3540.
It must be equal to zero, so

k-1 k-1
Fspy1 = E c3j+2F3j42 — E c3j+1F3541-
j=0 j=0

However, using c3j12 < 1 and —c3j41 < 1, we derive that the righthand
side of this equality is smaller than or equal to

k-1 k—1

ZF3j+2 + ZF3j+1 SFi+Fo+---+ F3 1 = F3pp1 — 1 < Fagya,
=0 =0

a contradiction. O

3. Auxiliary results. In Section 2 we used the fact that the
numbers 1,4v/3, /5 and iv/15 are linearly independent over Q. Below,
this observation will be replaced by the following lemma:

Lemma 6. Let o be an algebraic number of degree d. Then, for each
prime number p > p(a), the d(p — 1) numbers Cgak, where ¢, = e2mi/p,
0<j<p—2,0<k<d—1 form a Q-basis of the field Q(a,(p).

Proof of Lemma 6. Since d = deg (o) and p — 1 = deg ((p), it suffices
to show that the numbers (gozk, where 0 < j<p—-2and 0<k<d—1,
are linearly independent over Q. To obtain a contradiction, suppose
that they are linearly dependent over Q. Then the minimal polynomial
P(z) = (z—oa1) - (z — ag) of a over Q (in Q[z]) is reducible in
Q(¢p)[z]. If this happens for each p € P;, where P; is an infinite
set of prime numbers, then there is a nonempty proper subset J of
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{1,2,...,d} and an infinite subset Py of P; such that the polynomial
Pj(z) = [I;cs(z — a;) has coefficients in Q((,) for each p € P,. Since
Py(z) ¢ Q[ia:], at least one coefficient of Py(z) is irrational. Thus, there

is an irrational number f € Q(ay,...,aq) which belongs to infinitely
many fields Q(¢,). However, Q(¢,)NQ(¢,r) = Q for any prime numbers
p # p, see e.g., [20], a contradiction. o

In the remaining part of this section we shall prove the following key
lemma.

Lemma 7. Let a # 0 be an algebraic number, and let £ # 0 be a
fized number lying in the field Q(a). Suppose that p is a sufficiently
large prime number and py € {0,1,...,p — 1}. Then there is a

positive constant A = A, §) and infinitely many m € N for which

| Trace (EaP™TPo)| > p’)‘mpmﬂjo .

Here and below, m is the maximal modulus of conjugates of « over
Q and Trace (8) is the sum of conjugates of 8 over Q.

The next statement is a simple application of the Vandermonde
determinant. See, for instance, [11, page 134] or [12] for an almost
“one line proof.”

Lemma 8. Let s € N, and let wy,...,ws be distinct complex
numbers. Suppose that Yy,...,Ys—1 € C. Then the linear system
Xiwk + o+ Xowk = Y, where k = 0,1,...,5 — 1, has a unique
solution

Z;})(wts_k_l +owi TR o g owr + 0 k1) Y
Xt = 7 )
Q (wt)

t=1,2,...,s, where Q(z) = (x —wy)...(z — wy) := 2° + oyz°~! +
cer 051 + 0.

The next lemma will be derived from the theory of linear forms in
two logarithms. Here, ||z|| stands for the distance from a real number
x to the nearest integer.
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Lemma 9. Suppose that a = pe'¥ and o/ = gei“’l are two distinct
algebraic numbers of equal moduli. Then there is a positive constant
A1 = Mi(a,a’) such that the inequality ||p(¢ — ¢')/2x|| > p~>* holds
for each prime number p > p1(a, ).

Proof of Lemma 9. There is no loss of generality in assuming
that 0 < ¢’ < ¢ < 2m. If (¢ — ¢')/2m is a rational number, say,
(p — ¢')/2m = w/v with positive integers u < v (where v > 2) then
|lpu/v|| > 1/v for each prime number p > v. This proves the required
inequality in this case. Now suppose that (¢ — ¢')/27m ¢ Q. Then,
as the logarithms of algebraic numbers log(a/a’) = (p — ¢')i and
log(—1) = 7 are linearly independent over Q, the theory of linear forms
in logarithms, see e.g., [1], says that there is a constant \; = A\;(a, &)
such that |plog(a/a’) — 2mlog(—1)| > p~*: for all integers p > 2 and
m € Z. Upon dividing both sides by 2w = |27i|, we obtain the required
inequality. a

Lemma 10. Suppose that aq = pe¥'?, ... o5 = pe¥s’ are distinct
algebraic numbers of equal moduli and 1y, ...,ns € C. Let p be a prime
number. Set D,, 1= n1e™PP1 4 ... £ n,e™P?st for m € N. Then there
are positive constants Ay = Aa(ay,...,0s,8) and pa = pa(ay,...,q)
such that

ma‘x{‘DmL |Dm+1‘7 sy |Dm+s—1|} Z |7]1 |p7)‘2

for each prime number p > ps and each m € N.

Proof of Lemma 10. We can certainly assume that n; # 0. Fix
m € N. Set X; := ne™%* and w; := eP¥*’ for t = 1,...,s, and
consider the linear system X;lw{c 4+ -+ Xso.;éc = Dy 4k, where k =
0,1,...,s — 1. Using |w¢| =1 for t € {1,...,s}, we deduce that |o;| =
lwi oo owj+ - ws—jgr e ws] < (j) Since Q'(w1) = H;:2(w1 — wj),
Lemma 8 implies that | X1|[[;_, w1 —w;j| < 2°(| D |+ - -+ [Dimys-1l)-
Note that

wi — w;| = 2|sin(p(e1 — ¢;)/2)]
= 2|sin(n||p(e1 — ¢;)/27]])|
> 4llp(p1 — @5)/27]]-
(Here, the last inequality follows from sin z > 2z/m, where z € [0,7/2].)
Hence, by Lemma 9, |w; — w;| > 4p~* for each j € {2,...,s}.
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Next, using |mi| = Xi and [[j_; |w1 — w;| > (4p~*1)*7", we find
that at least one of the numbers |D,,|,...,|Dmis_1]| is greater than
|45~ 1p= (=DM /525 = |n |25 2p=(s=DM /s This is greater than
|m|p~>2 with Ay = (s —1)A\; + 1 foreach p > 2. O

We can now prove Lemma 7.

Proof of Lemma 7. Sy, :=&1af +---+&qal}. Here, a1 = o, 09,..., 04
are the conjugates of o over Q and §; = g(«;), where £ = &; is written
as £ = g(a) with g(z) € Q[z]. Evidently, S,, = d¢Trace ({£a™), where
dy is a positive integer divisor of d. What is left is to show that

T—pm+ . .
[Spm+po| > d|a|pm P°p=2 for infinitely many m € N.

Suppose that a; = geﬁi, ..., = pe¥! are the conjugates of a lying
on the circle |z| = o = |a|, whereas all remaining conjugates of « lie in
the disc |z| < o1 < o. Set D, 1= £1ePoP1lePPLl ... | £ ePOPsleMmPPst,
Then

d
m+
Spmtpo = oP™tPop, 4+ Z é:ja? Po_
j=s+1

Take p > po(a) and one of m € N that satisfy the condition of
Lemma 10, more precisely, m € N such that |D,,| > |¢1|p~*2. Suppose,
in addition, that m is so large that

(d— s)dy™ ™ max [g(2)| < |é1|eP™TPop™2 /2.
z1<]€]

Then |Spm-4p, |07 7P > [Dm| — (01/0)P™F#°(d — 5) maxi<j<alé;| >
|é1|p~*2/2. This is greater than dp * for some A = A(a,&) and
p > ps(a). Thus, |Spmip,lo P™ P > dp > for infinitely many
méeN. O

As a special case of Lemma 7, we state the following corollary:

Corollary 11. Let a # 0 be an algebraic number of degree d with
minimal polynomial P(z) = (z—ay) --- (x—aq) € Q[z]. Then there are
positive constants A3 = Az(a), pa(a) such that for each prime number
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p > pa(a) the inequality

w_’_..._’_w > 7>\3me+1)72
P'(ar) Plag) |~ 7

holds for infinitely many m € N.
4. On numbers which are multiples of roots of unity.

Proof of Theorem 2. Assume that aCIf (where ¢, = €2™/P and « # 0)
is a root of a nonzero integer polynomial of height < H. Evidently,
oFICIj ¢ is also a root of a nonzero integer polynomial of height < H.
Take the number 3 € {ay,...,aq,07",.. .,a;l} of largest modulus.
Then there is an index j € {1,...,d} such that either 8 = «; or
8= aj_l. In the first case, thereisa k € {1,...,p — 1} such that ajg";f
is a conjugate of agﬁ. In the second case, thereis a k € {1,...,p — 1}
such that ozj_lg“;f is a conjugate of a_lg“p_e. Hence, in both cases, BCL“ is
a root of a nonzero integer polynomial of height < H and || = |8] > 1.

Thus, without loss of generality, we can assume that 8 = «. Further-
more, we can label the conjugates of o so that oy = «, s, ..., a; will be
the conjugates of o on the circle |z| = || > 1. By our assumption, a(,
where ¢ := CS, is a root of a nonzero integer polynomial of height < H.
Hence, there are integers by # 0,b4—1,...,00 € {—H,...,H —1,H}
such that bg(a)?+ - - -+ bia¢ + by = 0. Multiplying this equality by a
proper power of al, we can assume that ¢ = pm + p — 2 with m € N.
Dividing by b, yields that there are rational numbers cpy4p—3,.--,Co
satisfying |cpm+p—3| < H,...,|co| < H such that

(aopm+p72 — Cpm+p_3(ag)pm+p73 + -+ cral + cp.

Next, we take a prime number p and m € N so large that Lemma 6

— —2
and Corollary 11 are true and also so large that [af > 1+2T[a| Hp*,
where
T:= in |P'
d/ min |P'(or)]

and where A3 is the constant of Corollary 11. Here,

P(:U):(a:—ozl)...(:c—ozd)za:d—i-ad,lmd_l—i—---—i—aoEQ[:I:]
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is the minimal polynomial of a over Q (in Q[z]). The proof of the
theorem will be completed as soon as we derive the opposite inequality

— 2
la]’ <1+ 2T]a] Hp*.

Write each integer power of a as a linear form with rational coefli-
cients in the basis 1,a,...,a% 1

d—1 d—2
a = An,d—la + An,d—2a +o 4+ An,O-

Equality a"™? + ag_1a"t47! + ... + qga™ = a"P(a) = 0 shows that,
for each j € {0,1,...,d — 1}, the sequence of rational numbers A, ;,
n=0,1,2,..., satisfies the linear recurrence relation

Aptdj+aa—1Anta—1j+ -+ agdn; =0,

where AO,]’ == = Aj—Lj = Aj+1,j === Ad—l,j =0 and Aj,j =1.
Hence, there exist certain complex numbers &; j,...,&q; such that
Anj = & 07 + -+ + &4 50 for each integer n > 0. Upon applying
Lemma 8 to X; = & ; (where 1 <t < dandn =0,1,...,d - 1), we
obtain
_(ad—j—1 d—j—2 /
&j = (o + ag-10; + ot ajre0r +aji1)/P(a).

In particular, this implies that & ; € Q(ai),...,8s; € Q(aq) are
conjugate algebraic numbers. Furthermore, setting j = d—1, we derive
that

af ol aly
Ana=t = By Flag) T T Plag)
for n = 0,1,2,.... Since T = d/minj<k<q|P'(ar)|, we obtain
| A, d-1] < T|a|n for every n € N.
Next, since (P71 = —(P~2 — ... — ( — 1, setting n, = n (mod p) €

{0,1,...,p — 1}, we can express the nth power of a( as

Ap g1 + Ay, g00d72M oo+ A, o™
ifn, <p-2,

An7d71ad—1(_gp—2 —ee = 1) An,o(—Cp_2 - 1)
ifn,=p—1.

()" =
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Let us write each power of a as above and then collect the coefficient
for a471¢P=2 in the expression (a)P™*P~2 — cypmip3(a)PmP—3 —
-+ —c1af — cp = 0. By Lemma 6, we obtain that

m

m
Apm+p_27d_1 = — E cpj—lApj—l,d—l + E ij—2Apj—27d—1'

j=1 j=1

Since |4, 4—1] < Tmn and |e,| < H, the modulus of the righthand
side is smaller than or equal to

Y T B> Tl <2rE Y o]
i=1 i=1

Jj=1

<2rH[o"" " /(al - 1).

Recall that we took m € N for which Corollary 11 holds. There-
fore, the modulus of the lefthand side, |Apmip—2,4-1|, is greater than
—pm+p—2
o’

p~3. Canceling

—pm+p

—pmAp—2 . —pmtp—2 _ —
o[ T i Jaf T pTM < 2T Ha /(ja” = 1)

— —2
produces the required inequality af < 1+ 2T[a| Hp*. O

5. Full sets of conjugates in an interval: The proof of
Theorem 3.

Proof of Theorem 3. Fix g € (1,2] and zy = we'®, where w € [1/p, o]
We will show that, for any € > 0, there is a unit o which lies with its
conjugates in 1/p < |z| < g, satisfies |a — z¢| < 24/¢ and is not a root
of a {—1,0,1} polynomial. We remark that it suffices to prove this
for w = p. Indeed, if w € (1,p), then we can consider the narrower
annulus 1/w < |z| < w for the conjugates of a. For w € [1/p,1),
we can replace o by o~ ! and w by w™!. Finally, for w = 1, namely,
20 = €', we can replace zg by (1 + 2v/€)2p and set o = 1 + 2,/c.
Then |a — (1 + 2v/€)e®¥| < 24/ implies that |a — e'?| < 4,/¢, and the
inequality € < (1 — 1/9)? below holds. So there is no loss of generality
in assuming that zyp = pe’®.
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Fix ¢ > 0 so small that ¢ < (1—1/p)%. Then 2+¢ < p+¢ . Consider
the interval [o+ 0 ! —4—2¢/3, 0+ 07! —¢/2]. Since its length 4+¢/6 is
strictly greater than 4, the interval contains infinitely many full sets of
conjugate algebraic integers, see [23, page 51]. Similarly, see [23], the
interval [o+ 07! —4 —2¢/3,0+ 07! —¢] of length 4 — /3 < 4 contains
only finitely many full sets of conjugate algebraic integers. Thus, there
is an algebraic integer oy € [p+0 ! —¢, 0+ 0 ' —¢/2] whose conjugates
all lie in the interval [+ 0! —4 —2¢/3,0+ 0! — ¢/2]. Since o > 2,
there is a 3 > 1 that satisfies g = B+5~'. Clearly, 3 is a real algebraic
unit. Note that —2 < ¢+ o=! — 4 — 2¢/3. Thus, setting

U B il e VA (R ) W

2

_otot—eg/2+/(otol —¢/2)2 -4
2 )

we derive that each conjugate of 8 € [u,v] lies either in the interval
[1/v,v] or on the unit circle. So 3 lies with its conjugates in the annulus
1/v < |z] < v. Tt is easy to check that v < g and, using ¢ < (1 —1/9)?,
that u > o — /€.

Summarizing, we see that there is a real algebraic unit 3 satisfying
|8 — o] < /¢ whose conjugates all lie in 1/p < |z| < p. Since
|z0] = o, by taking a sufficiently large prime number p we can find
¢ € {1,...,p — 1} such that |3e?™*/P — 25| < 2,/z. Evidently, the
conjugates of a := e /P are all lying in the annulus 1/p < |z| < o
and the unit « is not a root of a {—1,0, 1} polynomial by Theorem 2. O

6. Zero one expansions.

Proof of Theorem 4. The theorem is trivial for r =0, r = w/(1 — w)
and for w = 1/2 (expansion of r in base 2). Set §:=w ! and fix 7 €
(0,1/(8—1)) and B € (1,2). Note that 1/(3—1) = 371 +72+--- . The
theorem then follows from the fact that the number r € (0,1/(58 — 1))
has the B-expansion r = E;’;l r_j,b”j, where r_; € Z, 0 < r_; < f3,
see [27]. Thus, we can set §; := r_; € {0,1} for each j > 1. The
“digits” ¢; can be computed by the “greedy” algorithm. (See [25, 27]
and, for instance, [16, 17| for more about complexity and arithmetics
of B-expansions.) O
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Similarly, for any given 8 € (1,H + 1), by expanding 1 as 1 =
Z;’il r_jB377, where r_; € {0,1,...,H}, we obtain that 1 = §;w +
Sow? + -+, where w := 8! € (1/(H + 1),1) and 81,02,... €
{0,1,...,H}. Set R,(z) := 6pa™ + --- + 612 — 1. It is clear that,
for each fixed number w € (1/(H + 1),1) and any £ > 0, there is
an n € N so large that R,(z) has a real root o which lies in the
interval [w,w + €). (See [8] for the rate of approximation in the
case H = 1.) Similarly, by considering the polynomials R, (—z) and
2" R, (1/x) (they all are integer polynomials of height < H), we derive
that [-H —1,—-1/(H +1)]U[1/(H +1),H + 1] € V.

Corollary 12. Suppose that H € N. Then, for any w € [-H +
1,-1/(H+1)]JU[l/(H+1),H+1] and € > 0, there is a nonzero integer
polynomial of height < H whose real root o satisfies | — w| < €.

For example, let us take the first nine nonzero terms of S-expansions
of 1 in bases 8 = 3/2 and 8 = 7/2. This produces the polynomials

CE39+$34+£L'27+$17+1715+I12+$9+$3+$—1

and
237 g3 28 24 L 022 016 L 5 L 03 L o

having roots 0.66666667 ... and 0.636619774 ... close to 2/3 and to
2/m =0.636619772..., respectively.

Next, we will combine this corollary with Theorem 2.

Proof of Theorem 5. Corollary 12 implies that for each w € [1/(H
+1),H+1] and £ > 0 there is a real root « of a nonzero polynomial of
height < H such that |ap—w]| < /2. Clearly, o can be chosen different
from %1, so o has at least one conjugate of modulus # 1. Moreover, g
lies with its conjugates in the annulus 1/(H+1) < |z| < H+1. Thus, for
each complex number 29 = we®® in the annulus 1/(H+1) < |2| < H+1
and any positive number &, there is a large prime number p and
¢ €{1,2,...,p—1} such that |age?™™/P 2| < e. Clearly, o = age>™/P
is an algebraic number which lies with its conjugates in the annulus
1/(H + 1) < |z2| < H 4 1. Furthermore, the moduli of both extreme
(leading and constant) coefficients of the minimal polynomial of a (in



ROOTS OF POLYNOMIALS OF BOUNDED HEIGHT 541

Z[z]) are < H. Finally, by Theorem 2, « is not a root of a nonzero
integer polynomial of height < H, if p is sufficiently large. This
completes the proof of the theorem. u]

Selecting r := (1+w/(1—w))/2 in Theorem 4 we derive that, for each
w € [1/2,1), the number (1 +w/(1 —w))/2=(1+w+w?+---)/2is
equal to §;w + dow? + - - -, where 6y, 82, -+ € {0,1}. Thus, Z;i1(25j —
Lw/ —1 = 0. Note that 26; — 1 € {—1,1}. Next, let us consider
the following partial sums Ry (z) = >7_;(26; — 1)27 — 1 which are
polynomials of degree n. Fix w € [1/2,1). Let a,, be the root of Ry, (z)
closest to w. By continuity, we see that a,, — w as n — oo. Thus, for
each w € [1/2,1], there is a polynomial with {—1, 1} coefficients, whose
root « satisfies |« — w| < e. Similarly, by considering R,(—z) and
2" R, (1/x), we obtain the following statement which is more precise
than Corollary 12 for H = 1:

Corollary 13. For any w € [—2,—1/2]U[1/2,2] and € > 0, there
is a nonzero polynomial with {—1,1} coefficients whose root o satisfies
o —w| < e.

In [18], Hare, Mohammadzadeh and Trujillo considered the set of
polynomials with cyclotomic coefficients. Let C be the set of their
roots, namely, o € C if and only if there are n € N and certain roots
of unity hq,...,h, such that 1 + hja + --+ + h,a™ = 0. Observe that
then, for each r» € Q, the number ae?™" is a root of the polynomial
14+h1e 2™ 24 . . h, e~ 2™ 2" with cyclotomic coefficients. Combined
with Corollary 13 this gives the following complete description of C:

Corollary 14. We have C = {z € C:1/2 < |z| < 2}.

Note that Theorem 3 yields that for each o € (1, (1 + v/5)/2] and
any € > 0 there is a unit « which lies with its conjugates in the
annulus 1/p < |z| < p, satisfies | — 29| < ¢ and is not a root of a
Newman polynomial. In addition, o can be chosen so that it has no
real conjugates (see the proof of Theorem 3). It is known that W C
{z€C:(v/5-1)/2 < |2| £ (V5+1)/2}, see [24]. On the other hand,
thereis a d > 0 such that {z € C:1-6 < |2| < 146, |R(2)| > 6} C W,
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see [24]. Once again, as in the case of V, there are no restrictions on
the size of conjugates of o which can guarantee that a € W, although
all conjugates of « lie in the interior of W.

Finally, we remark that condition (ii) of Theorem 5 can be replaced
by a more restrictive condition. One can use, for instance, Corollary 2
of [13], where an irreducible polynomial with roots lying “close” to two
circles |z| = R > 1 and |z| = r < 1 is given. The construction is based
on Rouché’s theorem.
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