GENERATING SINGULARITIES OF WEAK SOLUTIONS OF p-LAPLACE EQUATIONS ON FRACTAL SETS

DARKO ŽUBRINIĆ

ABSTRACT. We study p-Laplace equations $-\Delta_p u = F(x)$ possessing weak solutions in the Sobolev space $W_0^{1,p}(\Omega)$, $\Omega \subset \mathbf{R}^N$, that are singular on prescribed fractal sets having large Hausdorff dimension. With an appropriate choice of $F \in L^{p'}(\Omega)$, the Hausdorff dimension of a singular set of the weak solution can be made arbitrarily close to N-pp' if pp' < N. For p=2, that is, for the classical Laplace equation, the bound N-4 is optimal, provided $N \geq 4$. Moreover, there exist maximally singular solutions, that is, such that the bound is achieved. The proof is obtained via an explicit lower a priori bound of supersolutions corresponding to special choice of righthand sides that are singular near a fractal set.

1. Introduction. Let Ω be an open set in \mathbb{R}^N and 1 . Throughout this paper we assume that <math>p < N, so that functions from the Sobolev space $W^{1,p}(\Omega)$ may have discontinuities. It is well known that, for any function $F \in L^{p'}(\Omega)$, where p' = p/(p-1) is the conjugate exponent, there exists a unique weak solution u of the boundary value problem involving the p-Laplace equation:

(1)
$$-\Delta_p u = F(x) \quad \text{in } \mathcal{D}'(\Omega), \quad u \in W_0^{1,p}(\Omega).$$

We are interested in how large the Hausdorff dimension of the singular set of solutions of this equation can be, generated by righthand sides from $L^{p'}(\Omega)$. Let us recall the definition of the singular set Sing u.

We say that $a \in \Omega$ is a singular point of a measurable function $u: \Omega \to \mathbf{R}$ if there exist positive constants γ, ε, C such that

$$u(x) \ge C \cdot |x-a|^{-\gamma}$$
 for almost every $x \in B_{\varepsilon}(a)$,

where $B_{\varepsilon}(a)$ is the open ball of radius ε around a.

Keywords and phrases. p-Laplace equation, weak solution, singular set, fractal set.

set. Received by the editors on September 10, 2005, and in revised form on May 12, 2006.

DOI:10.1216/RMJ-2009-39-1-359 Copyright © 2009 Rocky Mountain Mathematics Consortium

The set of all singular points of a measurable function $u \colon \Omega \to \mathbf{R}$ is denoted by Sing u, and we call it the singular set of u. If there exists a set A in Ω and C > 0 such that $u(x) \geq C \cdot d(x,A)^{-\gamma}$ almost everywhere in a neighborhood of A, where d(x,A) is the Euclidean distance from the point x to A, we say that u has an order of singularity γ on A. We shall also need the notion of an extended singular set of u, denoted by e-Sing u, containing all $a \in \Omega$, such that

$$\limsup_{r\to 0}\frac{1}{r^N}\int_{B_r(a)}u(y)\,dy=+\infty.$$

It is easy to see that $\operatorname{Sing} u \subseteq \operatorname{e-Sing} u$. The extended singular set also contains weaker types of singularities, like logarithmic singularities a, that is, $u(x) \geq C \log 1/|x-a|$ in a neighborhood of a, and iterated logarithmic singularities.

Let X be a given space (or just a nonempty set) of measurable functions from Ω to \mathbf{R} . We define the lower and upper singular dimension of X by

s-
$$\underline{\dim} X := \sup \{ \dim_H (\operatorname{Sing} u) : u \in X \},$$

s- $\overline{\dim} X := \sup \{ \dim_H (\operatorname{e-Sing} u) : u \in X \}.$

Clearly, s- $\underline{\dim} X \leq \text{s-}\overline{\dim} X$. If both values coincide, the common value is denoted by s- $\dim X$ which we call the *singular dimension* of X. These dimensions have been introduced and studied in [6]. We say that a function $u \in X$ is *maximally singular in* X if $\dim_H(\text{Sing } u) = \text{s-}\dim X$. Such functions have been studied in [3, 7, 8].

We are interested in finding fractal sets A in Ω possessing Hausdorff's dimension as large as possible, such that there exists a righthand side $F(x) \in L^{p'}(\Omega)$ for which the corresponding weak solution u of p-Laplace equation (1) is singular on A.

Let X(N,p) be the set of weak solutions of (1) generated by all $F \in L^{p'}(\Omega)$. First we would like to estimate s- $\dim X(N,p)$ from below. We show that s- $\dim X(N,p) \geq N-pp'$. It is known that s- $\dim X(N,p) \leq N-p$ since $X(N,p) \subset W^{1,p}(\Omega)$ and s- $\dim W^{1,p}(\Omega) = N-p$, see [6]. Namely, it can be shown that, for the Sobolev space $W^{k,p}(\Omega)$, kp < N, we have

(2) s-dim
$$W^{k,p}(\Omega) = N - kp$$
,

and moreover, there exist maximally singular Sobolev functions u, that is, such that $\dim_H(\operatorname{Sing} u) = N - kp$, see [3].

When p=2, that is, in the case of the usual Laplace equation, we have the optimal result s-dim X(N,2)=N-4 when $N\geq 4$, see Theorem 2. On the other hand, s-dim X(N,2)=0 for $N\leq 3$ since all solutions are continuous in this case.

The question of generating singularities when A is a single point set has been solved in [5, Theorem 3] using Tolksdorf's comparison principle [4]. There it was shown that if F(x) has singularity of order $\gamma > p$ in a point a in Ω , then the weak solution u of (1) has singularity at a of order $(\gamma - p)/(p - 1)$. More precisely, if $F(x) \geq C|x - a|^{-\gamma}$ for almost every $x \in B_{\varepsilon}(a)$ and $\gamma \in (p, 1 + N/p')$, then we have the following lower estimate for any positive weak solution of (1): (3)

$$u(x) \geq \left(\frac{C}{N-\gamma}\right)^{p'-1} \frac{p-1}{\gamma-p} \left(|x-a|^{-(\gamma-p)/(p-1)} - \varepsilon^{-(\gamma-p)/(p-1)}\right),$$

for almost every $x \in B_{\varepsilon}(a)$. A similar estimate can be obtained in the case of $\gamma = p$, see [5, Theorem 3]:

$$(4) \quad u(x) \geq \left(\frac{C}{N-p}\right)^{p'-1}\log\frac{\varepsilon}{|x-a|}, \quad \text{for almost every } x \in B_{\varepsilon}(a).$$

It can formally be obtained from (3) by passing to the limit as $\gamma \to p$.

For a subset $A \subset \mathbf{R}^N$ and $\varepsilon > 0$, by A_{ε} we denote the ε -neighborhood of A, that is, the set of all points having Euclidean distance from A less than ε . This set is often called the Minkowski saussage of radius ε around A.

2. Main results.

Theorem 1. Let $1 , <math>\Omega \subseteq \mathbf{R}^N$, be an open subset, A a bounded set in \mathbf{R}^N be such that $\overline{A_{\varepsilon}} \subset \Omega$, and assume that γ satisfies

(5)
$$p \le \gamma < \min \left\{ 1 + \frac{N}{p'}, N - \overline{\dim}_B A \right\}.$$

Assume that $F \in L^1_{loc}(\Omega)$ and F has singularity at least of order γ on A, that is,

(6)
$$F(x) \ge C \cdot d(x, A)^{-\gamma} \quad \text{for almost every } x \in A_{\varepsilon},$$

where ε and C are positive constants, and $\overline{A_{\varepsilon}} \subset \Omega$. Then for any supersolution $u \in W^{1,p}(\Omega)$ of

(7)
$$-\Delta_p u = F(x) \quad in \ \mathcal{D}'(\Omega)$$

such that $u \geq 0$ on Ω , we have for almost every $x \in A_{\varepsilon}$,

$$\begin{cases} u(x) \geq \\ \left(C/(N-\gamma) \right)^{p'-1} (p-1)/(\gamma-p) \left(d(x,A)^{-(\gamma-p)/(p-1)} - \varepsilon^{-(\gamma-p)/(p-1)} \right) \\ for \ \gamma > p, \\ \left(C/(N-p) \right)^{p'-1} \log(\varepsilon/d(x,A)) \\ for \ \gamma = p. \end{cases}$$

In particular, if $\gamma > p$, then u has singularity at least of order $(\gamma - p)/(p-1)$ on A. The lower bound of u(x) on A_{ε} is sharp.

Proof. Assume that $\gamma > p$. Let us fix $a \in A$. Using the Harvey-Polking lemma, see [7, Lemma 1], from $\gamma < N - \overline{\dim}_B A$ we conclude that the function $F(x) = Cd(x,A)^{-\gamma}$ is in $L^1(A_{\varepsilon})$. Hence, since $F(x) \geq C|x-a|^{-\gamma}$ for any $a \in A$, we can apply [5, Theorem 3] to obtain (3). From this the desired estimate (8) follows by taking the infimum in (3) over all $a \in A$. The remaining case of $\gamma = p$ is treated similarly. \square

Theorem 2. Let 1 and <math>pp' < N. Ω is a bounded subset of \mathbf{R}^N . Denote by X(N,p) the set of all functions $u \in W_0^{1,p}(\Omega)$ such that there exists $F \in L^{p'}(\Omega)$ satisfying the distribution equation (1).

(a) Then

(9) s-dim
$$X(N, p) \ge N - pp'$$
.

(b) For the ordinary Laplace operator, that is, when p=2, we have the precise result:

(10) s-dim
$$X(N,2) = \begin{cases} N-4 & \text{for } N \geq 5\\ 0 & \text{for } N \leq 4. \end{cases}$$

Moreover, there exist explicit functions $F \in L^2(\Omega)$ such that the corresponding weak solution $u \in H^1_0(\Omega)$ of problem $-\Delta u = F(x)$ in $\mathcal{D}'(\Omega)$ is maximally singular, that is, $\dim_H(\operatorname{Sing} u) = N - 4$.

Proof. (a) Let A be a compact set in Ω . Let us define $F(x) := d(x,A)^{-\gamma}$ on A_{ε} and F(x) := 0 on $\Omega \setminus A_{\varepsilon}$, with A and γ to be specified below. We have that $F \in L^{p'}(\Omega)$ provided $p'\mathbf{C} < N - d$, where $d := \overline{\dim}_B A$, see [7, Lemma 1]. The condition $p < \gamma < 1 + (N/p')$ in Theorem 1 is meaningful since p < 1 + (N/p') is equivalent with p < N, and this follows from pp' < N. Hence, in order to be able to apply Theorem 1, we need to see that the inequality $p < \gamma < (N - d)/p'$ is possible for some γ . Such a γ exists provided p < (N - d)/p', that is, when d < N - pp'. Let us fix any number $\delta < N - pp'$, which can be arbitrarily close to N - pp'.

We may assume without loss of generality that Ω contains the unit cube $[0,1]^N$, since otherwise the set A introduced below can be scaled and translated into Ω . We construct a compact set of the form of the Cantor grill $A:=C^{(\alpha)}\times [0,1]^k$, with k defined as follows. If N-pp' is a noninteger we take $k:=\lfloor N-pp'\rfloor$, that is, the largest integer part of N-pp' (if k=0 we let $A:=C^{(\alpha)}$). If N-pp' is a positive integer we take k=N-pp'-1. Here $C^{(\alpha)}$ is the generalized, uniform Cantor set with parameter $\alpha\in(0,(1/2))$, see Falconer [1]. Since

$$\dim_B A = \dim_H A = \frac{2}{\log(1/\alpha)} + k,$$

see [1, Corollary 7.4 and product formula 7.5], we can choose α so that

$$d = \dim_B A \in (\delta, N - pp').$$

The function F(x) generated by A then satisfies conditions of Theorem 1, case $\gamma > p$. Hence, for the weak solution u of the corresponding p-Laplace equation we have that $A \subseteq \operatorname{Sing} u$. Since $\delta \leq \dim_H A \leq$

 $\dim_H(\operatorname{Sing} u) \leq \operatorname{s-dim} X(N,p)$, we can let $\delta \to N - pp'$ to conclude that s-dim $X(N,p) \geq N - pp'$.

(b) Assume that N>4. Let $A_k,\ k\geq 1,$ be a sequence of subsets of Ω such that

(11)
$$\overline{\dim}_B A_k < N - 4, \quad \lim_{k \to \infty} (\dim_H A_k) = N - 4,$$

and there exists an $\varepsilon_k > 0$ such that $\overline{(A_k)_{\varepsilon_k}} \subset \Omega$. As we saw in step (a), such sets can be constructed using generalized Cantor sets. Let us choose numbers γ_k such that

$$(12) 2 < \gamma_k < \frac{N - \overline{\dim}_B A_k}{2}.$$

Now define the sequence of functions

(13)
$$F_k(x) := \begin{cases} d(x, A_k)^{-\gamma_k} & \text{for } x \in (A_k)_{\varepsilon_k} \\ 0 & \text{for } x \in \Omega \setminus (A_k)_{\varepsilon_k}. \end{cases}$$

As in step (a) we see that all of them are in $L^2(\Omega)$. For any k the corresponding weak solution $u_k \in H_0^1(\Omega)$ of $-\Delta u_k = F_k(x)$ is positive and such that $A_k \subseteq \operatorname{Sing} u_k$, see (a). The function

(14)
$$F(x) := \sum_{k=1}^{\infty} c_k \frac{F_k(x)}{\|F_k\|_{L^2}}$$

is in $L^2(\Omega)$ provided c_k are positive and $\sum_k c_k < \infty$. For the corresponding weak solution $u \in H^1_0(\Omega)$ of $-\Delta u = F(x)$, we have

$$u(x) = \sum_{k=1}^{\infty} c_k \frac{u_k(x)}{\|F_k\|_{L^2}}.$$

From Theorem 1 we conclude that $\bigcup_k A_k \subseteq \operatorname{Sing} u$. Using countable stability of the Hausdorff dimension (see Falconer [1, page 29]) we obtain

$$\dim_H(\operatorname{Sing} u) \ge \dim_H\left(\bigcup_k A_k\right) = \sup_k(\dim_H A_k) = \lim_k d_k = N - 4.$$

On the other hand, from regularity theory of elliptic equations we know that $u \in H^2(\Omega) := W^{2,2}(\Omega)$ (see, e.g., Gilbarg and Trudinger [2]), therefore, using (2) we obtain the converse inequality:

$$\dim_H(\operatorname{Sing} u) \leq \operatorname{s-dim} H^2(\Omega) = N - 4.$$

This proves that $\dim_H(\operatorname{Sing} u) = N-4$, that is, u is maximally singular.

For N=4 all solutions are in $H^2(\Omega)$, and since s-dim $H^2(\Omega)=0$, we have

s-dim
$$X(4,2) \leq$$
 s-dim $H^2(\Omega) = 0$,

that is, s-dim X(4, 2) = 0.

For $N \leq 3$ the Sobolev space $H^2(\Omega)$ is imbedded into a space of continuous functions (see, e.g., [2]), so that the extended singular set of u is empty in these cases. In particular, s-dim X(N,2)=0 for $N\leq 3$.

Remark 1. We do not know if the bound N - pp' in Theorem 2 (a) is optimal for $p \neq 2$. For p = 2 and N = 4 we may have e-Sing $u \neq \emptyset$ for some $u \in X(4,2)$, although $\dim_H(\text{e-Sing }u) = 0$ in this case.

Remark 2. In the proof of Theorem 2 (b) we have constructed a class of maximally singular weak solutions of (1) possessing singular sets of the form $\bigcup_k A_k$, satisfying conditions (11) and (12). It would be interesting to know if every maximally singular weak solution of (1) has a singular set representable in this form.

Acknowledgments. I express my gratitude to the referee for his help.

REFERENCES

- 1. K.J. Falconer, Fractal geometry, John Wiley and Sons, Chichester, 1990.
- 2. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1983.
- 3. L. Horvat and D. Žubrinić, Maximally singular Sobolev functions, J. Math. Anal. Appl. 304 (2005), 531-541.
- 4. P. Tolksdorf, On the Dirichelt problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations 8 (1983), 773–817.

- $\bf 5.~D.~\check{Z}ubrini\acute{c},~Generating~singularities~of~solutions~of~quasilinear~elliptic~equations,~J.~Math.~Anal.~Appl.~\bf 244~(2000),~10–16.$
- 6. ———, Singular sets of Sobolev functions, C.R. Acad. Sci., Analyse Mathématique, Paris, 334 (2002), 539–544.
- 7. ——, Singular sets of Lebesgue integrable functions, Chaos, Solitons Fractals 21 (2004), 1281–1287.
- 8. —, Maximally singular functions in Besov spaces, Archiv der Mathematik 87 (2006), 154–162.

Faculty of Electrical Engineering and Computing, Department of Applied Mathematics, Unska 3, 10000 Zagreb, Croatia

Email address: darko_zubrinic@yahoo.com