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GENERATING SINGULARITIES OF WEAK SOLUTIONS
OF p-LAPLACE EQUATIONS ON FRACTAL SETS

DARKO ZUBRINIC

ABSTRACT. We study p-Laplace equations —Apu = F(z)
possessing weak solutions in the Sobolev space Wol’p(ﬂ)7 QC

RY, that are singular on prescribed fractal sets having large
Hausdorff dimension. With an appropriate choice of F' &

r' (£2), the Hausdorff dimension of a singular set of the weak
solution can be made arbitrarily close to N — pp' if pp’ < N.
For p = 2, that is, for the classical Laplace equation, the
bound N —4 is optimal, provided N > 4. Moreover, there exist
maximally singular solutions, that is, such that the bound is
achieved. The proof is obtained via an explicit lower a priori
bound of supersolutions corresponding to special choice of
righthand sides that are singular near a fractal set.

1. Introduction. Let Q be an open set in RY and 1 < p < oo.
Throughout this paper we assume that p < IV, so that functions from
the Sobolev space W1P(Q2) may have discontinuities. It is well known
that, for any function F € L¥’ (), where p’ = p/(p—1) is the conjugate
exponent, there exists a unique weak solution u of the boundary value
problem involving the p-Laplace equation:

(1) —Apu=F(z) inD'(Q), ueW, Q).

We are interested in how large the Hausdorff dimension of the singular
set of solutions of this equation can be, generated by righthand sides
from LP (2). Let us recall the definition of the singular set Sing .

We say that a € Q is a singular point of a measurable function
u: {0 — R if there exist positive constants ~y, ¢, C' such that

u(z) > C |z —a|”” for almost every x € Be(a),

where B.(a) is the open ball of radius € around a.
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The set of all singular points of a measurable function u: Q@ — R is
denoted by Sing u, and we call it the singular set of u. If there exists a
set Ain Q and C > 0 such that u(xz) > C-d(z, A)~" almost everywhere
in a neighborhood of A, where d(z, A) is the Euclidean distance from
the point z to A, we say that v has an order of singularity v on A. We
shall also need the notion of an extended singular set of u, denoted by
e-Sing u, containing all a € (2, such that

lim sup LN u(y) dy = +o0.
r—0 T B, (a)
It is easy to see that Singu C e-Singu. The extended singular set also
contains weaker types of singularities, like logarithmic singularities a,
that is, u(z) > Clogl/|z — a| in a neighborhood of a, and iterated
logarithmic singularities.

Let X be a given space (or just a nonempty set) of measurable
functions from 2 to R. We define the lower and upper singular
dimension of X by

s-dim X := sup{dimpg(Singu): v € X},
s-dim X := sup{dimg(e-Singu): u € X}.

Clearly, s-dim X < s-dim X. If both values coincide, the common value
is denoted by s-dim X which we call the singular dimension of X. These
dimensions have been introduced and studied in [6]. We say that a
function u € X is mazimally singular in X if dimpy (Singu) = s-dim X.
Such functions have been studied in [3, 7, 8].

We are interested in finding fractal sets A in €2 possessing Hausdorff’s
dimension as large as possible, such that there exists a righthand side
F(z) € LP () for which the corresponding weak solution u of p-Laplace
equation (1) is singular on A.

Let X(N,p) be the set of weak solutions of (1) generated by all
F e L¥(Q). First we would like to estimate s-dim X (N,p) from
below. We show that s-dim X (N,p) > N — pp’. It is known that
s-dim X (N,p) < N —psince X(N,p) C WLP(Q) and s-dim W1?(Q) =
N — p, see [6]. Namely, it can be shown that, for the Sobolev space
WkP(Q), kp < N, we have

(2) s-dim WFP(Q) = N — kp,
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and moreover, there exist maximally singular Sobolev functions u, that
is, such that dimpy (Singu) = N — kp, see [3].

When p = 2, that is, in the case of the usual Laplace equation, we
have the optimal result s-dim X(N,2) = N — 4 when N > 4, see
Theorem 2. On the other hand, s-dim X (N,2) = 0 for N < 3 since all
solutions are continuous in this case.

The question of generating singularities when A is a single point
set has been solved in [5, Theorem 3] using Tolksdorf’s comparison
principle [4]. There it was shown that if F(z) has singularity of order
~ > pin a point a in €, then the weak solution u of (1) has singularity
at a of order (y — p)/(p — 1). More precisely, if F(z) > Clz —a| ™7
for almost every € B.(a) and v € (p,1 + N/p’), then we have the
following lower estimate for any positive weak solution of (1):

(3)

c \" -1 (v=2)/ (1) _ .—(r—p)/(p—1)
> yF— - _ql=(r=p)/(p-1) _ —~(v—p)/(p—
u<w>_(N_7) w— (le-a : ),

for almost every = € Bc(a). A similar estimate can be obtained in the
case of v = p, see [5, Theorem 3:

c \"!
(4) u(z) > <N —p> log h, for almost every = € B.(a).
It can formally be obtained from (3) by passing to the limit as v — p.

For a subset A C RN and € > 0, by A. we denote the e-neighborhood
of A, that is, the set of all points having Euclidean distance from A
less than €. This set is often called the Minkowski saussage of radius ¢
around A.

2. Main results.

Theorem 1. Let 1 < p < oo,  C RY, be an open subset, A a
bounded set in RY be such that A. C , and assume that v satisfies

N -
(5) pS’y<min{1+F,N—dimBA}.
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Assume that F € L}, () and F has singularity at least of order y on
A, that is,

(6) F(z)>C-d(z,A)”™" for almost every x € A.,

where € and C are positive constants, and A, C Q. Then for any
supersolution u € WHP(Q) of

(7) —Apu=F(z) inD'(Q)

such that u > 0 on Q, we have for almost every © € A,

(8) u(z)>
(C/(N =) o~ 1)/(y — p)d(, A)~ 0P/ _e=(r-p)/@e-1)
for v >p,
(C/(N = )" " log(e/d(z, A))
for v =np.

In particular, if v > p, then u has singularity at least of order
(v—p)/(p—1) on A. The lower bound of u(x) on A, is sharp.

Proof. Assume that v > p. Let us fix a € A. Using the Harvey-
Polking lemma, see [7, Lemma 1], from v < N — dimgA we conclude
that the function F(z) = Cd(x,A)™" is in L'(A.). Hence, since
F(z) > Clz — a|™" for any a € A, we can apply [5, Theorem 3] to
obtain (3). From this the desired estimate (8) follows by taking the
infimum in (3) over all a € A. The remaining case of v = p is treated
similarly. ]

Theorem 2. Let 1 < p < oo and pp’ < N. Q is a bounded subset of
RY. Denote by X(N,p) the set of all functions u € W&’p(Q) such that
there exists F € LV () satisfying the distribution equation (1).

(a) Then

(9) s-dim X (N,p) > N —pp'.
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(b) For the ordinary Laplace operator, that is, when p = 2, we have
the precise result:

N —4 forN>5
10 -dim X (N,2) = =
(10) s-dim X(N,2) {0 for N < 4.
Moreover, there exist explicit functions F € L2?(Q) such that the
corresponding weak solution u € H(Q) of problem —Au = F(z) in
D'(R) is mazimally singular, that is, dimpy (Singu) = N — 4.

Proof. (a) Let A be a compact set in Q. Let us define F(z) :=
d(z,A)™7 on A, and F(z) := 0 on 2\ A, with A and ~ to be specified
below. We have that F € LP'(Q) provided p'C < N — d, where
d := dimpA, see [7, Lemma 1]. The condition p < v < 1 + (N/p')
in Theorem 1 is meaningful since p < 1+ (N/p') is equivalent with
p < N, and this follows from pp’ < N. Hence, in order to be able to
apply Theorem 1, we need to see that the inequality p < v < (N — d)/p’
is possible for some 7. Such a 7 exists provided p < (N —d)/p’, that
is, when d < N — pp'. Let us fix any number § < N — pp/, which can
be arbitrarily close to N — pp’.

We may assume without loss of generality that {2 contains the unit
cube [0, 1]V, since otherwise the set A introduced below can be scaled
and translated into 2. We construct a compact set of the form of the
Cantor grill A := C® x [0,1])*, with k defined as follows. If N — pp/
is a noninteger we take k := [N — pp’|, that is, the largest integer part
of N —pp’ (if k =0 we let A:= C(®). If N — pp' is a positive integer
we take k = N — pp’ — 1. Here C'(@) is the generalized, uniform Cantor
set with parameter o € (0, (1/2)), see Falconer [1]. Since

2
log(1/a)

see [1, Corollary 7.4 and product formula 7.5], we can choose « so that

dimp A=dimg A = + k,

d=dimp A € (6, N — pp').

The function F(z) generated by A then satisfies conditions of Theo-
rem 1, case 7 > p. Hence, for the weak solution u of the corresponding
p-Laplace equation we have that A C Singu. Since § < dimg A <
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dimpg (Singu) < s-dim X (V,p), we can let § — N — pp’ to conclude
that s-dim X(N,p) > N — pp'.

(b) Assume that N > 4. Let A, k > 1, be a sequence of subsets of
Q such that

(11) dimpA; < N — 4, klim (dimg A) = N — 4,
—00

and there exists an ¢, > 0 such that (Ak)sk C Q. As we saw in step
(a), such sets can be constructed using generalized Cantor sets. Let us
choose numbers 7, such that

N —dimp A

(12) 2< < 2

Now define the sequence of functions

d(z, Ag)™ " for x € (Ak)e,

(13) Fe(z) == {0 for z € Q\ (Ax)e,

As in step (a) we see that all of them are in L?(§2). For any k the
corresponding weak solution u, € H}(Q) of —Auy, = Fi(z) is positive
and such that Ay C Singug, see (a). The function

(14) F(z):=) e Fi(z)

k=1

is in L?(2) provided ¢y are positive and >, cx < oo. For the
corresponding weak solution u € HE(Q2) of —Au = F(z), we have

(& are————
Z ||Fk||L2

From Theorem 1 we conclude that UyAr C Singu. Using countable
stability of the Hausdorff dimension (see Falconer [1, page 29]) we
obtain

dimg (Singu) > dimpy <UAk> = sup(dimgy Ag) = liéndk =N —4.
k k
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On the other hand, from regularity theory of elliptic equations we know
that u € H2(Q) := W?22(Q) (see, e.g., Gilbarg and Trudinger [2]),
therefore, using (2) we obtain the converse inequality:

dimg (Sing u) < s-dim H*(Q) = N — 4.

This proves that dim g (Singu) = N —4, that is, u is maximally singular.

For N = 4 all solutions are in H?(f2), and since s-dim H2(Q2) = 0, we
have
s-dim X (4,2) < s-dim H?*(Q) =0,

that is, s-dim X (4,2) = 0.

For N < 3 the Sobolev space H?(Q) is imbedded into a space of
continuous functions (see, e.g., [2]), so that the extended singular set
of u is empty in these cases. In particular, s-dim X (N,2) = 0 for
N < 3. O

Remark 1. We do not know if the bound N — pp’ in Theorem 2 (a)
is optimal for p # 2. For p = 2 and N = 4 we may have e-Singu # &
for some u € X(4,2), although dimpg (e-Singu) = 0 in this case.

Remark 2. In the proof of Theorem 2 (b) we have constructed a
class of maximally singular weak solutions of (1) possessing singular
sets of the form UyAy, satisfying conditions (11) and (12). It would
be interesting to know if every maximally singular weak solution of (1)
has a singular set representable in this form.

Acknowledgments. I express my gratitude to the referee for his
help.
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