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Dedicated to Luigi Salce on his 60th birthday.

ABSTRACT. We generalize Hill’s lemma in order to ob-
tain a large family of C-filtered submodules from a single C-
filtration of a module. We use this to prove the following
generalization of Kaplansky’s structure theorem for projective
modules: for any ring R, a cotorsion pair (A, B) in Mod-R
is of countable type if and only if every module M € A is
A= _filtered. We also prove rank versions of these results for
torsion-free modules over commutative domains.

As an application, we solve a problem of Bazzoni and Salce
[8] by showing that strongly flat modules over any valuation
domain coincide with the extensions of free modules by divis-
ible torsion-free modules. Another application yields a short
proof of the structure of Matlis localizations of commutative
rings.

1. Introduction. In [11], Hill invented an ingenious method of
constructing a large family of subgroups from a single infinite contin-
uous chain of abelian p-groups. Later on, Fuchs and Lee extended the
method to the general setting of arbitrary modules over arbitrary rings
(including a rank version for torsion-free modules over commutative
domains), [7], [9, XVI.Section 8]. Similar constructions were used in
connection with Shelah’s singular compactness theorem in [4, 5].

More recently, Saroch and the second author [14] noticed an extra
property of the Hill method, see property (H3) below. In Theorems
6 and 7 of Section 1, we discover an additional feature: the family is
always a complete sublattice of the submodule lattice.

Hill’s method provides a powerful tool for extending structure theory
of various classes of modules from the countable (rank) case to the
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arbitrary one. It is applied either directly or in conjunction with
Shelah’s singular compactness theorem, see e.g., [7], [9, XVI.Section 8],
[14].

Here, we first apply Hill’s method to extend a theorem of Kaplansky
on projective modules to the setting of cotorsion pairs. Kaplansky’s
theorem says that any projective module is a direct sum of countably
generated modules. Considering the cotorsion pair (Proj-R,Mod-R)
cogenerated by R, we can rephrase the theorem by saying that each
module M € Proj-R is (Proj-R)<“-filtered (see below for unexplained
terminology).

Theorem 10 in Section 2 shows that the same holds for an arbitrary
cotorsion pair (A4, B) in Mod-R cogenerated by a set of < k presented
modules (where k is a regular uncountable cardinal): each module
M ¢ A is A<*-filtered. We also prove a rank version of this result
in Lemma 16.

Section 3 deals with applications to strongly flat modules over valu-
ation domains. Bazzoni and Salce [3] proved that any countable rank
strongly flat module M has the following property: M contains a free
submodule F such that M/F is torsion-free divisible. Theorem 17
shows that the property characterizes arbitrary strongly flat modules.
This answers in the positive a question raised in [3]. (The property was
known to hold by [3, Theorem 3.15] for any valuation domain, but re-
stricted to strongly flat modules M of rank < ¥; and, by [10, Theorem
3.3], for all strongly flat modules M, but restricted to Matlis valuation
domains.)

The application in Section 4 yields a short proof of the fact that the
localization, @ = RS™!, of a commutative ring R in a set S of regular
elements is a Matlis localization if and only if Q/R decomposes (as
an R-module) into a direct sum of countably presented modules. This
result, first proved in [1], extends Lee’s characterization of Matlis do-
mains [12] as well as its generalization to localizations of commutative

domains by Fuchs and Salce [8].

Let R be a (unital associative) ring. Denote by Mod-R the category
of all (right R-) modules, and by Proj-R the full subcategory of all
projective modules.

A filtration is a continuous well-ordered chain of modules (M, |
a < o) with My = 0. A filtration is called a C-filtration for a class
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of modules C if in addition Myy1/M, is isomorphic to an element of
C for each a < 0. A module M is C-filtered if there is a C-filtration
(M, | @ < o) such that M = M,,.

For an infinite cardinal x and a class of modules A, denote by A<* and
AS* the subclass of all < k-presented, and < k-presented, respectively,
modules from A.

A pair of classes of modules € = (A, B) is a cotorsion pair provided
that A and B are orthogonal with respect to the Ext'-functor, and
they are maximal with this property, that is, A = {A € Mod-R |
Exth(A,B) =0 for all B € B} and B = {B € Mod-R | ExtL (A4, B) =
0 for all A € A}. Cotorsion pairs were introduced by Salce in his
pioneering work [13].

A cotorsion pair € is cogenerated by a class of modules C provided
that B = {B € Mod-R | Ext5(C, B) = 0 for all C € C}. Moreover, €
is of countable type if € is cogenerated by a set of countably presented
modules.

1. Generalized Hill lemma. We start by recalling Hill’s notion of
a closed subset with respect to a filtration.

Definition 1. Let M be a filtration (M, | @ < o) together with a
family of modules (4, | @ < o) such that My ; = M, + A, for each
a < 0. A subset S of o is closed if every 8 € S satisfies

Mg N Ag - Z A,.
a€S
a<f

The height, ht (z), of an element = € M,, is defined as the least ordinal
a < o such that x € M,,1. For any subset S of o, we define

M(S) =" Aq.

a€S

For each ordinal a < o, we have My =} 5_, Ag,s0 a (= {8 <o |
B < a}) is a closed subset of o. The following lemma is inspired by the
proof of [14, Lemma 1.4]:
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Lemma 2. Let M be as in Definition 1, let S be a closed subset of
oand x € M(S). Let ' ={a € S|a<ht(z)}. Then z € M(S").

Proof. Let x € M(S). Then ¢ = 1 + - -+ + @, where z; € A,, for
some o; € S, 1 < ¢ < k. Without loss of generality, a; < --- < ayg, and
ay, is the least possible.

If o > ht(z), then z, = x — 21 — -+ — @1 € My, N Ay, C
> ocS,a<ay, Ao since S is closed, in contradiction with the minimality
of . O

As an immediate consequence, we get

Corollary 3. Let M be as in Definition 1, let S be a closed subset
of o and x € M(S). Then ht(z) € S.

An important implication is the following lemma.

Lemma 4. Let M be as in Definition 1, and let S;, i € I, be a
family of closed subsets of o. Then

M( N Si> = (" M(S)).

i€l i€l

Proof. Let T = N;c1S;. Clearly, M(T) C NM;erM(S;). Suppose there
is an ¢ € NierM(S;) such that ¢ M(T), and choose such an z of
minimal height. Then x = y + 2 for some y € Ay (,) and 2z € My ()-
By Corollary 3, ht (z) € S; for all ¢ € I, so ht (z) € T, and y € M(T).
Then z € NierM(S;), z ¢ M(T) and ht (2) < ht (z), in contradiction
with the minimality. a

Now, we can prove the additional property of closed subsets men-
tioned in the introduction.

Proposition 5. Let M be as in Definition 1, and let S;, i € I, be a
family of closed subsets of o. Then both the union and the intersection
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of this family are again closed in o. That is, closed subsets of o form
a complete sublattice of 2.

Proof. As for the union, if 8 € S = U;crS;, then 8 € S; for some
1 €I, and MB n A,g - Zaesi,a<[3’ A, C Zaes,a<ﬂ A,.

For the intersection, let 8 € T' = N;crS;. Then MgNAg C M(S;NS)
for each ¢ € I. Therefore, Lemma 4 implies that

Mg Ag C () M(SinB) = M(TNp)
i€l

which says exactly that T is closed. a
The following is the main result of this section.

Theorem 6 (Generalized Hill lemma). Let R be a ring, £ an infinite
reqular cardinal and C a set of < k-presented modules. Let M be a
union of a C-filtration

0=MyCM; CMC---CM,C---CM,=M

for some ordinal o. Then there is a family F of submodules of M such
that:

(H1) M, € Fforall a < 0.

(H2) F is closed under arbitrary sums and intersections (that is, F
is a complete sublattice of the lattice of submodules of M).

(H3) Let N,P € F be such that N C P. Then there exists a C-
filtration (P | v < 1) of the module P = P/N such that 7 < o, and
for eachy < T thereis a B < o with P,1/P. isomorphic to M1 /Mg.

(H4) Let N € F and X be a subset of M of cardinality < k. Then
there is a P € F such that NU X C P and P/N is < k-presented.

Proof. Let M denote the filtration (M, | a < o) together with an
arbitrary family of < k-generated modules (4, | @ < o) such that, for
each a < o:

MaJrl = Ma + Aaa

as in Definition 1. We claim that
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F={M(S)|S a closed subset of o}
is the desired family F.

Property (HL1) is clear, since each ordinal o < o is a closed subset of
o. Property (H2) follows by Proposition 5 and Lemma 4.

Property (H3) is proved as in [14]: we have N = M(S) and
P = M(T) for some closed subsets S,7. Since S UT is closed, we
can assume that S C T. For each 8 < o, put

Fg=N+ Y A,=M(SU(T'NP)) and Fg=Fp/N.

a€T\S
a<f

Clearly, (Fg | 8 < o) is a filtration of P = P/N such that Fg;, =
Fg + (Ag + N)/N for § € T\ S and Fy1 = Fp otherwise. Let
Be€T\S. Then,

Fpy1/Fp = Fa1/Fg = Ag/(Fp N Ap),

and

FgﬂAﬁ D) ( E Aa) ﬂABZMgﬂAg.
a€eT
a<f

On the other hand, if x € Fg N Ag then ht (z) < 8, so x € M(T") by
Lemma 2, where 7" = {a € SU (T'NB) | @ < B3}. By Proposition 5,
we get & € Mg because § ¢ S. Hence, Fg N Ag = Mg N Ag and
Fﬂ+1/?ﬁ = AB/(MB ﬂAlg) = MB+1/M,3' The filtration (F’Y | v < 7')
is obtained from (Fjs | 8 < o) by removing possible repetitions and
(H3) follows. Denote by 7' the ordinal type of the well-ordered set
(T'\ S,<). Notice that the length 7 of the filtration can be taken as
1+ 7' (the ordinal sum, hence 7 = 7’ for 7’ infinite).

For property (H4), we first prove that every subset of o of cardinality
< K is contained in a closed subset of cardinality < k. Because x is
an infinite regular cardinal, by Proposition 5, it is enough to prove this
only for one-element subsets of o. That is, to prove that every 8 < o
is contained in a closed subset of cardinality < x. We induct on 3. For
B < K, just take S = 4 1. Otherwise, the short exact sequence

0—)M5ﬂA5—)A5—)M5+1/M5—)0
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shows that Mg N Ag is <  generated. Thus, Mg N Ag C > o Aa
for a subset Sy C 3 of cardinality < k. Moreover, we can assume that
So is closed in o by inductive premise, and put S = Sy U {8}. To
show that S is closed, it suffices to check the definition for 5. But
Mﬂ N A/B - M(So) = ZaeS,a<B A,.

Finally, let N = M(S) where S is closed in o, and let X be a subset
of M of cardinality < k. Then X C ZaeT A, for a subset T of o of
cardinality < k. By the preceding paragraph, we can assume that 7" is
closed in 0. Let P = M(SUT). Then P/N is C-filtered by property
(H3), and the filtration can be chosen indexed by 1+ the ordinal type of
T\ S, which is less than . In particular, P/N is < k-presented. o

Remark (cf. [7, Remark 2.2]). The proof of property (H3) for the
family F in Theorem 6 yields the following additional property: if for
B €T\ S, Ag can be chosen as a complement to Mp in Mgi1, then
(Ag + N)/N will be a complement of P, in P,; in the filtration of

P. This follows from the fact that in this case (in the proof of (H3))
FﬁﬂAﬂ ZMgﬂAlg =0, so Fﬂ/Nﬂ(Aﬁ—i-N)/N:G.

We will also need a rank version of the generalized Hill lemma for
torsion-free modules over commutative domains.

Let R be a commutative domain and M a torsion-free module. We
define the rank, rk X, of a subset X C M as the torsion-free rank of
the submodule (X) of M generated by X. Note that rk X < card (X).

Theorem 7 (Rank version of the generalized Hill lemma). Let R
be a commutative domain, K an infinite reqular cardinal and C a set of
torsion-free R-modules. Let M be a union of a C-filtration

0=MyCM CMyC---CMyC---CM, =M

for some ordinal o. Assume, moreover, that for each o < o there is a
submodule A, of M of rank < k such that M,y1 = M, + A,. Then
there is a family F of submodules of M such that the properties (H1),
(H2) and (H3) from Theorem 6 hold true. Moreover, the following rank
version of property (H4) holds:

(H4*) Let N € F and X be a subset of M with tk X < k. Then there
are P € F and a submodule A C M of rank < k such that NUX C P
and P= N + A.
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Proof. Denote by M the filtration (M, | a < o) together with the
family (A, | & < o) as in Definition 1. Put

F ={M(S)| S a closed subset of o}.

The properties (H1), (H2) and (H3) are proved exactly as in Theo-
rem 6. For (H4*), consider N € F and X C M with rk X < k. Note
first that we can without loss of generality assume that the cardinality
of X is < k. To see this, take a maximal R-independent subset B
of (X). Then B has cardinality < x and (B) is an essential submod-
ule of (X). Then, for a module P € F containing B, the inclusion
(X) — M induces a map f : (X)/(B) — M/P. Then f = 0 since
(X)/(B) is torsion, but M/P is torsion-free by property (H3). Hence,
also, X C P.

Now, we continue as in the proof of property (H4) in Theorem 6. We
prove that every subset of o of cardinality < k is contained in a closed
subset of cardinality < k. It is again enough to prove that every 5 < o
is contained in a closed subset T' of cardinality < k. We induct on f.
For B < k, we take T'= 8+ 1. Otherwise, AgN Mg has rank < &, so we
can find by inductive premise a closed subset 7' C 3 of cardinality < k
such that Mg N Ag C M(T"). Then it suffices to take T =T" U {§}.

Finally, if N = M(S) and X C M(T) where S,T are closed and T
is of cardinality < k, we put A = M (T \ S) and P = N + A. Clearly,
P=M(SUT) and A satisfy the claim of (H4*). O

Remark 8. Notice the following difference between the assumptions
of the two versions of the generalized Hill lemma. The assumption of C
consisting of < k-presented modules in Theorem 6 already guarantees
existence of a family of < k-generated modules A = (4, | a < 0)
such that M,y = M, + A, for each o < o (in fact, in the proof of
Theorem 6, and in its applications, the particular choice of A does not
really matter).

On the other hand, if we just assume that M, 1/M, has rank < & for
each a < ¢ in Theorem 7, there need not exist any family of modules
A= (A, | @ < o) such that M,+1 = M, + A, and A, has rank < &
for each a < 0.
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Indeed, assume that x > R and the minimal number of R-generators
of @ is A\ > k. So there is an exact sequence 0 - K C FF — Q — 0
where F' is free of rank A. Since K is torsion-free, there is a filtration
(M, | o < o) of K such that M, 1/M, is torsion-free of rank 1 for
each a < 0. Define M, = F.

Assume that A, C F has rank < A. Then A, is contained in a free
direct summand G of F of rank < A, so (4, + K)/K C (G+ K)/K G
F/K because @ = F/K is not < A-generated. So certainly there is no
A, of rank < k such that M, = M, + A,.

2. Kaplansky theorem for cotorsion pairs. Let R be a ring and
¢ = (A, B) a cotorsion pair in Mod-R cogenerated by a set C containing
R. Then A coincides with the class of all direct summands of C-filtered
modules, cf. [16, Theorem 2.2]. Our goal is to remove the term ‘direct
summands’ in this characterization of A on account of replacing the
set C by a suitable small subset of A.

The following application of Theorem 6 is crucial:

Lemma 9. Let k be an uncountable regular cardinal and C a set of
< k-presented modules. Denote by A the class of all direct summands
of C-filtered modules. Then every module in A is A<"-filtered.

Proof. Let K € A, so there is a C-filtered module M such that
M =KL for some L C M. Denoteby ngg : M — K andnp : M — L
the corresponding projections. Let F be the family of submodules of
M as in Theorem 6. We proceed in two steps:

Step 1. By induction, we construct a filtration (N, | @ < 7) of M
such that

(1) Ny € F,
(2) Ny = 71'K(-Z\[oc) + 71'L(-Naz)a and
(3) No+t1/Nq is < k-presented for all a < .
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First, Ny = 0, and Ng = Uqa<gN, for all limit ordinals 8 < 7.
Suppose we have N, ; M and we wish to construct N,y;. Take
x € M\ N,; by property (H4), there is a Qy € F such that
N, U{z} C Qo and Qo/N, is < k-presented. Let X, be a subset
of Qo of cardinality < k such that the set {z + N, | z € X} generates
Qo/Na. Put ZO = ’TI'K(Q()) @b FL(Q()). Clearly, QO/Na Q Zo/Na. Since
Tk (Na), 7L (Ng) C Ny, the module Zy/N, is generated by the set

{x+ Ny |z € mg(Xo)Umr(Xo)}-

Thus, we can find Q; € F such that Zy C @1 and Q1/Ny is < k-
presented. Similarly, we infer that Z;/N, is < k-generated for Z; =
WK(Ql) @ﬂ'L(Ql) and find Q2 € F with Z; C @5 and QQ/Na a < K-
presented module. In this way, we obtain a chain @y C @ C

such that for all i < w: Q; € F, Q;/N, is < k-presented, and

T (Qi) + 7(Qi) C Qita. It is easy to see that Noj1 = UicwQi
satisfies properties (1)—(3).

Step I1. By condition (2), we have
Tk (Nat1) + No = T (Nat1) © 7 (Na)
and similarly for L. Hence,

(mk (Nat1) + No) N (7L (Nat1) + Na)
=(mr ( Noy1) @ L (Na)) N (7L (Nat1) ® Tk (Na))
= (& (Nat1) N (72 (Nat1) ® 7 (Na))) ® 72(Na)
=7k (Na) ® 7 (Na) = No
and
Not1/Na = (Tr (Nat1) + Na)/Na @ (7L.(Nat1) + Na)/Na-
By condition (1), Nyy1/N, is C-filtered. Since

(”K(Na+1) + Na)/Na = 71'K(-Noﬂrl)/7"1((]\711)a

Tk (Na+1)/7K (Ng) is isomorphic to a direct summand of a C-filtered
module, so g (No+1)/7x(No) € A. By condition (3), mx(No+1)/
7k (Ny) is < k-presented. We conclude that (7x (Ng+1) | @ < 7) is the
desired A<"-filtration of K = mg(N;). O
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Now, we can easily prove the main result of this section:

Theorem 10. Let R be a ring, k an uncountable reqular cardinal,
and € = (A,B) a cotorsion pair of R-modules. Then the following
statements are equivalent:

(1) € is cogenerated by a class of < k-presented modules.
(2) Every module in A is A<"-filtered.

Proof. (1) = (2). Let C be a class of < k-presented modules
cogenerating €. Without loss of generality, C is a set, and R € C. Then,
by [16, Theorem 2.2], A consists of all direct summands of C-filtered
modules. So statement (2) follows by Lemma 9.

(2) = (1). It is well known that every A-filtered module is again in
A, see e.g., [6, Lemma 1]. Thus, (2) implies that ¢ is cogenerated by
the class A<F, o

In particular, for Kk = Ny, we get

Corollary 11. Let R be a ring. A cotorsion pair (A,B) is of
countable type if and only if every module M € A is AS¥-filtered.

As another immediate corollary, for the cotorsion pair (Proj-R,
Mod-R) cogenerated by R, we obtain the Kaplansky theorem on the
structure of projective modules:

Corollary 12. FEvery projective module over an arbitrary ring is a
direct sum of countably generated projective modules.

Remark. In general, it is not possible to extend the results in this
section to Kk = Ny, since there are rings which admit countably gener-
ated projective modules that are not direct sums of finitely generated
projective modules.

3. Strongly flat modules. In this section, R is a commutative
domain with the quotient field Q. We denote by (SF, MC) the
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cotorsion pair in Mod-R cogenerated by ). The modules in SF are
called strongly flat. They are flat (since @ is flat), hence torsion-free.

A (torsion-free) module M is called free-by-divisible provided there
exist cardinals k, A and an exact sequence 0 — R"®) — M — QW) — 0.
In [16, Proposition 2.8], strongly flat modules were characterized as the
direct summands of free-by-divisible modules. Our goal is to remove
the term ‘direct summand’ in this characterization in the case when R
is a valuation domain.

First, we need a characterization of free-by-divisible modules:

Lemma 13. Let R be a domain and M a module. Then M is
free-by-divisible if and only if M is {R, Q}-filtered.

Proof. The only if-part is clear. For the if-part, let (M, | « < o) be
an {R, Q}-filtration of M.

By induction on o < o, we define ordinals u, and v,, and a well-
ordered direct system of exact sequences 0 — R(#=) & pr, T3 Qve) —
0 and embeddings (fa, ga, ha) (@ < o), as follows. First, ug = vp = 0.

If Moi1/My = R, then M1 = M,®z4R where Anng(z,) = 0, and
we take potr1 = fa + 1, Vat1 = Va, letting f, : R(a) —y R(ka+1) and
Jga : My — My41 be the inclusions, i,41 the extension of i, mapping
the extra free generator to =, and putting h, = idQ(,,a).

If Moy1/My =2 Q, we consider the pushout of the embedding g, :
M, — My and of 7, (see the following commutative diagram).

Since Ext}%(Q,Q(”“)) = 0, the righthand column splits, so without
loss of generality X = Q(”a“), and we take po11 = fay Vat1 = Vo + 1.

If « is a limit ordinal, we take the direct limit of the direct system of
exact sequences 0 — R(#5) @) Mg — Q#) — 0 with the embeddings
(f5,98,hp), B < a, 50 piq = supg_, pip and v, = SUPz_, Vg-

Finally, the sequence 0 — R(#~) e M, I3 Q¥-) — 0 shows that
M = M, is free-by-divisible. ]
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0 0
0 R(ka) o M, Ta QW) — 0
fa Yo ha
0 R(ka) lat1 Mot Ta+1 X 0
Q Q
0 0

Lemma 13 does not guarantee the validity of the rank version as-
sumptions of the generalized Hill lemma, see Remark 8. However, in
our particular setting, we have:

Lemma 14. Let R be a valuation domain, and let P be a free-by-
divisible module. Then there are an {R, Q}-filtration P = (P | @ < 0)
of P and a sequence of submodules (A, | @ < o) of P, such that A,
has countable rank and Pyy1 = Py + Ay for each a < o.

Proof. We will prove the lemma in three steps:

. . c
Step 1. By assumption, there is an exact sequence 0 — R =

P — QW — 0 for some cardinals k and \. We put 0 = k + A
(the ordinal sum). By induction on «, we will construct the sequence
(An | @ < o) together with the filtration P, the latter simply by taking
P, = Zﬁ<a Ag. This is easy in the cases where k = 0 or A = 0, so we
will assume that £ > 0 and A > 0.

For a < k, we take A, as the ath copy of R in the canonical direct
sum decomposition of R*). For oo > k, we need some preparation first.

Step II. Take any submodule R C N C P such that N/R(”) >~ Q.
We claim that there is a countable rank submodule A C N such that
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R" 4+ A = N. Consider the pushout of the inclusions i : R*®) — N
and j : R < Q(9):

0 R i NP I N 0 0
N
0 oW _S ,x_P g 0

Since Ext}z(Q,Q(“)) = 0, the second row splits. Let k : Q — X be
the splitting monomorphism with pk = idg. Let Y = Im (k). Then
X=QWagY.

If Q is countably generated, we take any countable subset S of IV
such that R*) + (S) = N and put A = (S).

If @ is not countably generated, then (since R is a valuation domain)

there are a regular uncountable cardinal p and a set {ry | v < p} C R
with the following two properties:

(1) {7"7_1 | ¥ < p} generates Q as an R-module, and
(2) r is divisible by rs, but 7, does not divide rs, for each § < .

That is, (ryR | v < p) is a strictly descending chain of principal right
ideals with zero intersection.

For each v < p, let n, € N C X be such that p(n,) = r;'. Then

n, € X decomposes as n, = ¢y + k(r;l) where ¢, € Q") = Ker (p).
By property (1), R*) + (ny | v < p) =N. Since R¥) C Ker(p | N),
we can without loss of generality assume that

(%) all the (finitely many) nonzero components of g, in the direct sum
Q™) belong to Q \ R.

Denote by I, (C &) the support of g,. By property (2), for each ¢ < 7,
there is a (noninvertible) element 7,5 € R such that r.s -7, = st
and hence 7,59y —¢s € Ker(p | N) = R, By (), it follows that
I;C I,

We claim that there is a finite set I C k such that I, C I for all
~v < p. If not, there is a countably infinite set {z, | n < w} C & such
that for each n < w there is a v, < p with z,, € I,,. Since p is regular
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and uncountable, there exists a v < p such that ~,, <~ for all n < w.
But then I, D Up<y, I, 2 {z, | n < w} is infinite, a contradiction.

This proves that n, € QU @Y for each v < p. Let A = (ny | ¥ < p)-
Then A is a submodule of N of finite rank, and R + A = N.

Step I11. We enumerate the copies of Q in QW) = P/R(”) by ordinals
< A. Then for each 7 < A, there is a unique module N, such that
R¥) C N, C P and N,/R" is the rth copy of Q in P/R"). The
modules A, (7 < A) are defined by induction on 7 < A as follows.

First, for 7 = 0, we take N = Ny, construct A as in Step II for this
choice of N, and put A, = A. Then R + A,, = N,.

If @ = k 4+ 7 for an ordinal 0 < 7 < A then, by induction, we already
have an exact sequence 0 — R(® — P, — Q7 — 0 where P, =
Zﬁ<a Ag. Moreover, N;NP, = R, We take N = N, construct A as
in Step II for this choice of N, and put A, = A. Then R"") + A, = N,
and Pyy1 = Py + N;. So Pyy1 /P, = N/(NNP,) = N/R™ = Q, and
we have the exact sequence 0 — R(®) — P, ., — QU"t1) — 0.

Finally, by construction, P = Uy<y Py- o
The following result was proved in [3, Theorem 3.13]:

Lemma 15. Let R be a valuation domain and M a module of
countable rank. Then M is strongly flat if and only if M is free-by-
divisible.

Before characterizing strongly flat modules of any rank over valuation
domains, we will apply the rank version of the generalized Hill lemma
in order to obtain a rank version of Lemma 9:

Lemma 16. Let R be a commutative domain, k an uncountable
reqular cardinal and C a set of torsion-free R-modules. Denote by A
the class of all direct summands of the modules M satisfying:

(1) there is a C-filtration (M, | o < o) of M and a family of modules
(Aq | @ < o) of rank < k such that M1 = M, + A for each a < o.

Then every module in A is filtered by modules from A of rank < &.
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Proof. The proof is very similar to the one for Lemma 9. Let K € A,
that is, there is a module M = K @ L with a C-filtration (M, | o < o)
and a family of modules (A, | & < o) as above. Denote by mg : M — K
and 7y, : M — L the projections.

Let F be a family of submodules of M given by Theorem 7. By
induction, we will construct a filtration (N, | @ < 7) of M such that
(1) Ny € F,
(2) Ny = mx (Ny) + 7 (Ng), and
(3) No+t1/Ng has rank <
for all & < ; the rest of the proof then follows as in Step II of Lemma 9.

By definition, Ny = 0 and N3 = Uq<gN, for limit ordinals 3.
Suppose we have constructed N, ;_ M for some «, and let z € M\ N,,.
Let A9 € M be a submodule of rank < x such that Ay € F and
x € Ap. Then the module wx (Ap) +7L(Ap) also has rank < &, so there
is a module A; € F of rank < & such that mx(Ay) + 7 (4o) C A;.
Iterating this process, we obtain a chain

r €A CA CAC -

of submodules of M with rank < & such that mx (A;) +70(4;) C Aiyq
for i < w. Put A = U;<,A;. Then clearly A has rank < k and
A = wg(A) + m(A). Hence, Noy1 = N, + A has the required
properties. O

Now, we can extend Lemma 15 to modules of arbitrary rank, giving
a positive answer to the problem of Bazzoni and Salce.

Theorem 17. Let R be a valuation ring and M a module. Then M
is strongly flat if and only if M is free-by-divisible.

Proof. The if-part is clear since both R and ) are strongly flat,
and strongly flat modules are closed under arbitrary direct sums and
extensions.

For the only-if part, let M be strongly flat. By [16, Proposition 2.8],
M is a direct summand in a free-by-divisible module P. By Lemma 14,
strongly flat modules form a class A as in Lemma 16 for C = {R, Q} and
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k = 1. Thus, M is filtered by countable rank strongly flat modules.
But such modules are {R, Q}-filtered by Lemma 15. Hence, M is free-
by-divisible by Lemma 13. a

4. Matlis localizations of commutative rings. In this section, R
denotes a commutative ring, S a multiplicative subset in R consisting
of regular elements (that is, not zero divisors) and @ the localization
RS~

Q is a Matlis localization provided that @ has projective dimension
<1 (as an R-module). For example, if R is a domain and S = R\ {0},
then the quotient field Q = RS~! is a Matlis localization if and only if
R is a Matlis domain in the sense of [9, IV.Section 4].

Our goal here is to apply the generalized Hill lemma to a simple proof
of a characterization of Matlis localizations given in [1].

We will first need some preliminary definitions and results. We start
with Hamsher’s notion of a restriction, and Griffith’s of a G(R¢)-family:

A submodule N of a module M is a restriction if, for each prime
(equivalently, maximal) ideal p of R, the localization N, of N at p
satisfies [N, = 0 or N, = M,,.

A family S of submodules of a module M is a G(Ry)-family provided
that 0, M € S, S is closed under unions of chains, and if N € S and
X is a countable subset of M then there exists an N’ € S such that
NUX C N’ and N'/N are countably generated.

Lemma 18. Let R be a commutative ring, S a multiplicative subset
in R consisting of reqular elements and Q = RS™'.

(1) The set S of all restrictions of the R-module Q/R is a G(No)-
family of submodules of Q/R.

(2) If N is a restriction of Q/R such that (Q/R)/N has projective
dimension < 1, then N is a direct summand in Q/R.

Proof. (1) is proved in [1, page 543] and (2) in [1, Proposition
3.10]. O

Another ingredient is the notion of an (infinitely generated) tilting
module. Recall that an R-module T is tilting provided that
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(T1) T has projective dimension < 1,
(T2) Extk(T,7)) = 0 for all cardinals , and

(T3) there is an exact sequence 0 — R — Ty — T7 — 0 such that Ty

and T; are direct summands in (possibly infinite) direct sums of copies
of T.

We arrive at the main result of this section:

Theorem 19 [1, Theorem 1.1]. Let R be a commutative ring, S a
multiplicative subset in R consisting of regular elements and Q = RS™L.
Then the following conditions are equivalent:

(1) Q is a Matlis localization.
(2) T =Q ® Q/R is a tilting R-module.

(3) Q/R decomposes into a direct sum of countably presented R-
submodules.

Proof. Assume (1). We will verify conditions (T1)—(T3) for T.
First, the projective dimension of @, @Q/R, and hence of T, is < 1
by the assumption, so (T1) holds. (T3) holds since there is the exact
sequence 0 - R — Q@ — Q/R — 0. In order to prove (T2), in
view of (T1), it suffices to show that ExtkL(Q/R,Q")) = 0 for each
cardinal x. However, Exth(Q, Q")) = Extg (Q, Q™) =0 since Q is a
localization of R. So in order to prove that Ext}z(Q/R,Q(N)) =0,
it suffices to show that any f € Hompg(R,Q(")) extends to some
g € Hompg(Q,Q") = Homg(Q,Q")). But we can simply define
9(q) = f(1)q for all ¢ € Q.

Assume (2). Consider the cotorsion pair (A, B) cogenerated by T.
By [2, Theorem 15], each module in A is AS“-filtered. In particular,
this holds for Q/R € A. Let F be a family corresponding to a AS“-
filtration of @/R by Theorem 6 (for kK = R;). Let G = F NS where S
is the G(Np)-family of restrictions of @/R coming from Lemma 18 (1).

We claim that there is a filtration (G | @ < ) of Q/R such that
Gy € G for all @ < 0 and G441/G4 is countably presented. Indeed,
let Go = 0 and G = Ug<oGp for limit ordinals a. Assume G, € G
is defined and there is an z € Q/R\ G,. Let Fy = Sy = G4. By
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Theorem 6, there is an Fy € F such that Fy U {z} C Fy, and Fy/F} is
countably presented. Clearly, Sy C F;. Let C; be a countable subset
of Fy such that Fy + (C1) = Fj. Since S is a G(Np)-family, there is an
S € S such that SoUC, C Sy, and Sy /Sy is countably generated. Then
Fy C S1. Let Dy be a countable subset of Sy such that So+ (D) = 5.
Then there is an F5 € F such that F{UD; C Fy, and F5/F} is countably
presented. Then S; C F5. Proceeding in this way, we obtain a chain

Go=Fy=5CFHnCSCrRc---CS CF41CS8,41C---.

We define Go11 = Up<wFrn = Un<wSn. Then G,y1 € G and, since
F,1/F, is countably presented for each n < w, so is G441/Gq. This
proves the claim.

Now, each G, is a restriction of )/ R = G,, such that (Q/R)/Gqs € A,
so (Q/R)/G, has projective dimension < 1. By Lemma 18 (2), G, is a
direct summand in @Q/R, and hence in G, for each o < o. This yields
a decomposition of Q/R into a direct sum of copies of the countably
presented modules G, 4+1/Gq, a < 0.

The implication (3) = (1) is well known, cf. [1, Proposition 7.1]. O
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