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FOUR BIVARIATE DISTRIBUTIONS
WITH GAMMA TYPE MARGINALS

SARALEES NADARAJAH AND SAMUEL KOTZ

ABSTRACT. Four new bivariate distributions with gamma
type marginals are introduced. Various representations are de-
rived for their joint densities, product moments, conditional
densities and conditional moments. Some of these represen-
tations involve special functions such as the complementary
incomplete gamma and Whittaker functions. Construction of
multivariate generalizations is discussed. Finally, an applica-
tion to rainfall data from Florida is provided.

1. Introduction. There have only been a few bivariate gamma
distributions proposed in the statistics literature, see Chapter 48 in
Kotz et al. [6] for a good review (see also Gupta [3] and Gupta and
Wong [4]). These distributions have attracted useful applications in
several areas; for example, in the modeling of rainfall at two nearby
rain gauges [5]|, data obtained from rainmaking experiments [8, 9],
the dependence between annual streamflow and areal precipitation [1],
wind gust data [11] and the dependence between rainfall and runoff [7].
s They have also attracted applications in reliability theory, renewal
processes and stochastic routing problems.

The aim of this paper is to construct four new bivariate distributions
with gamma type marginals and to study their properties. We derive
various representations for the joint densities, product moments, condi-
tional densities and conditional moments associated with each bivariate
distribution. We provide an application to rainfall data from Florida
and discuss ways to construct multivariate generalizations.

The calculations of this paper make use of several special functions,
including the incomplete gamma function defined by

~v(a,z) = / t*exp (—t) dt,
0
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the complementary incomplete gamma function defined by

[(a,z) = / t*exp (—t) dt,

the Whittaker function defined by

put+1/2 —a/2 °
s )/ ATV (L 4 1) A2 exp(—at) dt,

W) =TTy Uy

the confluent hypergeometric function of one variable defined by
oo k
), T
V(o5 ra) = Y

the confluent hypergeometric function of two variables defined by

[o <IN o]
-‘rk k
® (o, 8,7, 2,y) = ZZ ] 'y
j=0k

=0 7 J-I—kj

the Gauss hypergeometric function defined by
oo k
e x
2y (o, B 752) = ) (@) Bz

and the generalized hypergeometric function defined by

(o]

_ ak Bkm
2F2(O{ /83’77(517 _Z 7 k_'v

k

where (¢)y = ¢(c+1)---(c+ k — 1) denotes the ascending factorial.
The properties of these special functions can be found in Prudnikov
[10] and Gradshteyn and Ryzhik [2].

2. Construction I. The basis for the construction of the first two
bivariate distributions is the following characterization of gamma and
beta distributions due to Yeo and Milne [12].



FOUR BIVARIATE DISTRIBUTIONS 233

Lemma 1 [12]. Suppose that U and V are independent, absolutely
continuous and nonnegative random variables such that U has bounded
support. Then, for any a > 0 and b > 0, any two of the following three
conditions imply the third:

(i) UV is gamma distributed with shape parameter a and scale
parameter 1/u, where 0 < p < 003

(ii) U is beta distributed with shape parameters a and b;

(iii) V is gamma distributed with shape parameter a + b and scale
parameter 1/pu.

An obvious way to generate a bivariate gamma from this lemma is to
consider the joint distribution of X = UV and V. The joint pdf of U
and V is:

uafl(l _ u)bfl Uaerfl exp(fv/u)
B(a,b) pettTa+b) 7

f(u,v) =

and thus the joint pdf of X and V becomes:

297 (v — z)’~Lexp(—v/p)

. Je ) = @)

for z < v and v > 0. Unfortunately, the pdf (1) corresponds to a known
bivariate gamma distribution-McKay’s bivariate gamma distribution,
see [6, Section 48.2.1] for details.

Take U, V and W to be independent, absolutely continuous and
nonnegative random variables. Then two new bivariate gamma distri-
butions can be constructed as follows:

1. Assume that W is beta distributed with shape parameters a and
b. Assume further that U and V are gamma distributed with common
shape parameter ¢ and scale parameters 1/p; and 1/u2, respectively,
where ¢ = a + b. Define

(2) X=UW, Y=VW.

Then, by Lemma 1, X and Y will be gamma distributed with common
shape parameter a and scale parameters 1/u; and 1/us, respectively.
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However, they will be correlated so that (X,Y) will have a bivariate
gamma distribution over (0, 00) x (0, o).

2. Assume that U and V are beta distributed with shape parameters
(a1,b1) and (ag,b2), respectively, where ay + by = az + ba = ¢, say.
Assume further that W is gamma distributed with shape parameter ¢
and scale parameter 1/u. Define

(3) X=UW, Y=VW.

Then, by Lemma 1, X and Y will be gamma distributed with common
scale parameter 1/u and shape parameters a; and as, respectively.
However, they will be correlated so that (X,Y) will again have a
bivariate gamma distribution over (0, co0) x (0, 00).

Theorem 1 states that the joint pdf of (X,Y) for the first construct
can be expressed in terms of Whittaker function.

Theorem 1. Let U, V and W be independent random variables with
W beta distributed with shape parameters a and b and U and V' gamma
distributed with common shape parameter ¢ and scale parameters 1/uy
and 1/ps9, respectively, where ¢ = a+b. Let X and Y be as in (2).
Then the joint pdf of X and Y is given by

(a—1/2)—c
_ =1 % Y
f(z,y) = CT(b)(xy) <_u1 + u2>

1/ = Yy x y>
X ex — | —+ = Wc— —a c—(a —+ —
p{ 2(N1 N2>} b+(1-a/2),e—( /2)<,u,1 L1

for £ >0 and y > 0, where the constant C' is given by

(4)

& = (mp) TET @)

Proof. The joint pdf of U, V and W is:

o) =ttt - e (24 2}
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from which the joint pdf of X, Y and W becomes:
1
Faw) = Clap w21 - w e {1 (24 L)),
wA\pH1 M2
Integrating over 0 < w < 1, one obtains
(5) f(z,y) = Clay)* (z,y),

where I(z,y) denotes the integral

6) Iz,y) = /01 w2 (1 — w) Lexp {—é <% + %)} duw.

Substituting v = 1/w — 1 and then using the definition of Whittaker
function, one can write

(7)

z y (a—1/2)—c
Haw—r@(a+pﬁ

(o)) ()
xexps —=( — 4+ =) t We pit1-a/2)e(a/)| —+ = ).
p{ B <#1 12 bt(1=a/2)e—(a/D\ | T
The result in (4) follows by substituting (7) into (5). O

Figure 1 illustrates the shape of the joint pdf (4) for selected values
of (a,b) with pg = a2 = 1.
In the particular case b = 1, (4) can be simplified to an expression

involving the complementary incomplete gamma function, as stated by
the following corollary.

Corollary 1. If b =1, then the joint pdf (4) reduces to the simpler
form:

a—2c
f(xay)ZC(wy)c‘1<£+l> F<2c—a,£+i>.
K1 H2 B1o pe

Proof. Note the integral I(z,y) in (6) can be expressed in terms of
the complementary incomplete gamma function if b = 1. ]



236

SARALEES NADARAJAH AND SAMUEL KOTZ

(a) (b)
o g o g
© — © -
©o - ©
< <
e .
o o
T T T T T
0 2 4 6 8 10 8 10
X X
(c) (d)
o g o g
© o -
© © -
> >
Y o
o o 4
T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
X X

FIGURE 1. Contours of the joint pdf (4) with (a,b) = (2,2) for (a), (a,b) = (3,3)
for (b), (a,b) = (4,4) for (c) and (a,b) = (5,5) for (d). It is assumed throughout
that pu; = p2 = 1.

Theorem 2 states that the joint pdf of (X,Y) for the second construct
(3) can be expressed as an infinite sum of the Whittaker functions.

Theorem 2. Let U, V and W be independent random variables
with W gamma distributed with shape parameter ¢ and scale parameter
1/p and U and V beta distributed with shape parameters (ay,b1) and
(az,bs), respectively, where ay + by = az +ba = ¢, say. Let X and Y
be as in (3). Then the joint pdf of X and Y is given by

F(@,3) = OT (b1) T (by) ur e o)/ 2g(entba8) 21

(8) X exp (_ %)

o~ (1) (ua) 9727
8 Z 3T (b2 — j)

X
Wiby—b1—c—j—1)/2,(b1+b2—c—j) /2 <—>
=0 o
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for x >y > 0, where the constant C is given by

1
6 = HCF(C)B (al, bl) B (ag, bg) .

The corresponding expression for 0 < z < y can be obtained from (8)
by symmetry, i.e., interchange x with y, a1 with ay and by with bsy.

Proof. The joint pdf of U, V and W is:
f(u,v,w) _ Cua1—1va2—1(l _ u)b1—1(1 . v)b2—1wc—1 exp (_ %)
from which the joint pdf of X, Y and W becomes:
(9) F(,yw) = Cr™ "ty t = (w — )~ (w — )"+ exp (‘ %)

for w > max(z,y). The integration of (9) over max(z,y) < w < oo is
not easy. However, using the series representation

(a+1) zj
l =
+2)" ]ZFa—j—l— !

one can write

(10)  fl@y) =CT (bm)a" "y 12 =

2*]

for £ > y > 0, where I;(x) denotes the integral

Ii(z) = / w2~ (w — z)" " Lexp < %) dw.

Substituting u = w/z—1 and then using the definition of the Whittaker
function, one can express

I](.’If) =T (bl) M(bp‘,—bg—c—j+1)/2m(b1+b2—c—j—1)/2

(11) x z
X exp "o Wi(by—by—c—j—1)/2,(by+bs—c—17)/2 u)

The result in (8) follows by substituting (11) into (10). O
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Figure 2 illustrates the shape of the joint pdf (8) for selected values
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(@)

of (a1, az,c) with = 1.

Corollary 2. If by =1, then the joint pdf (8) reduces to the simpler

<_

form:

f(z,y) = CT (be) uk“?x

= (W
g Z::O JIT (b2 — )

(llfl azfl

Y
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(b)

Contours of the joint pdf (8) with (a1,a2,¢) = (4,1,8) for (a),
(a1,az,¢c) = (4,3,8) for (b), (a1,a2,¢c) = (4,5,8) for (c) and (a1,a2,c) = (4,7,8)
for (d). It is assumed throughout that pu = 1.

J
) F<1+b2—c—j,f>.
n

On the other hand, if by = 1, then (8) reduces to

F(z,y) = CT (b)) ™ T 2Wia ey /2,(1-ar) 2 <_>

x gla/D=1yaz=l ey (— i)
2p

x
I
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If both by = 1 and by = 1, then (8) reduces to

flz,y) = C/fcx“lly““F(? —c, E)

Proof. As in Corollary 1. O

Remark 1. The product moments of the two distributions intro-
duced above can be expressed in terms of elementary functions. Since
E(X™Y") = E(UW)™(VW)") = E(U™)E(V")E(W™*") from (2),
the product moments of (4) are given by

~ pPpsT(c+m)T(c+n)B(a+m+n,b)

(12)  E(X™Y™) T(a)T(b)L(c)

for m > 1 and n > 1. In particular,

p1p2ab
X,y) = K290
Cov (X,Y) P

and
(13) Corr (X,Y) = L
T a4b+1]

Since E(X™Y"™) = E((UW)™(VW)") = EU™)EV™)E(W™™)
from (3), the product moments of (8) are given by

p™tT(m +n+ ¢)B(m+ a1,b1) B (n+ az,bs)
F(C)B (al, bl) B (az, b2)

(14) E(X™Y") =

for m > 1 and n > 1. In particular,

2
Cov(X,Y):m
c

and

(15) Corr (X,Y) = ~ @192

C
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Remark 2. The conditional distributions corresponding to (4) and
(8) can be easily calculated. For the pdf (4), the conditional pdf of YV’
given X = x is given by

(0*1/2)7c
fly ] z) = CusT(a)T(b)zy~? (i n i)
B M2

1/ = Yy x y>
xexpd =L = IV W umeiarm [+ L),
p{2 <N1 M2>} e/ m(m iz

The corresponding pdf of X given Y = y is obtained by interchanging
x with y and gy with ps. For the pdf (8), the conditional pdf of YV
given X = z is given by

(16)

f(y|2) = CT (a1) T (b1) T (bo) pler ot/ 2g (b2 mtman) 2y 0a =1

&\ o~ (1) (pa) T2y
XeXp<2u>Z JT (b2 — )

Jj=0

x
X W(b2—b1—c—j—l)/2,(b1+b2—c—j)/2 (;)
for x > y > 0, and by
(17)
Pl | @) = OutiT (ar) T (by) T (by) e 2ot/

(1) ()20 v
XZ T (b1 — ) Wibs—b1—c—j—1)/2,(b1+bs—c—j) /2 u

for y > x > 0. The corresponding pdf of X given ¥ = y is
obtained by interchanging = with y, a; with a2 and b; with bs.
The conditional moments can be obtained by integrating the above
pdfs by using equation (2.19.5.10) in Prudnikov [10]. The resulting
forms are complicated and involve multiple sums of the generalized
hypergeometric function.

It is natural to ask how the pdfs (1), (4) and (8) can be generalized
to the multivariate case. Lemma 1 can be applied in several ways to
generate multivariate gamma distributions. Some of these are:
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1. Assume that W is a beta distributed random variable with shape
parameters a and b. Assume further that U;, j = 1,2,... ,p are gamma
distributed independent random variables (and independent of W) with
common shape parameter ¢ and scale parameters 1/, j =1,2,... ,p,
where ¢ =a + b.

2. Assume that U;, j = 1,2,...,p are beta distributed random
variables with shape parameters (a;, b;), j = 1,2, ... ,p, where a;+b; =
¢ (say) for j = 1,2,...,p. Assume further that W is a gamma
distributed random variable (independent of U;, j = 1,2,...,p) with
shape parameter ¢ and scale parameter 1/p.

In both these cases, by Lemma 1, (U1W,UsW,... ,U,W) will have a
p-variate gamma distribution over (0, c0)P.

The following generalization of Lemma 1 provided by Yeo and Milne
[12] provides other ways to generate multivariate gammas.

Lemma 2 [12]. Suppose for a fized integer p > 2 that X1, Xs,... , X,
are independent and identically distributed (iid) nonnegative random
variables which are independent of another nonnegative random vari-
able X with bounded support, and that

Y=X(X1+Xo+--+Xp).

Then the two following conditions are equivalent.

(i) Y has the same distribution as each of X1,Xo,...,X, and
belongs to the class of distributions whose characteristic function is
of the form

o(t) =1 — Alt|{1 +o(t)}
ast — 0, where A is a real constant.

(ii) X is beta distributed with shape parameters 1 and p — 1.

One can generate several multivariate gammas by taking Xy, Xo, ..
X, to be iid gamma distributed.

s

3. Construction II. Here, we construct the first bivariate dis-
tribution which has gamma and beta distributions as its marginals.
The basis for this construction is the well-known characterization that
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a beta random variable with parameters (a,b) can be represented as
X/(X+Y), where X and Y are independent gamma random variables
with parameters (a,1/\) and (b, 1/)), respectively. We define random
variables U and V by

X
V= .
X+Y

(18) U= X,

Then, U will be gamma distributed with parameters (a,1/)\) and V
will be beta distributed with parameters (a,b). However, they will
be correlated so that (U, V) will have a bivariate distribution over
(0,00) x (0,1) with gamma and beta marginals.

Remark 3. Let X and Y be independent gamma random variables
with parameters (a,1/A) and (b,1/A), respectively. If U and V are as
in (18), then the joint pdf of (U, V) is

ut b1y~ (148 (1 — 4)o~Lexp {—u/(\v)}
Aet+eT (a) T (b)

(19) fu,v) =
for0O<u<occand 0 <v<1.

If a = 1, then (19) reduces to a bivariate pdf with exponential and
beta marginals. If, on the other hand, b = 1, then (19) reduces to a
bivariate pdf with gamma and power function marginals.

The first derivatives of (19) with respect to u and v are

Ologf a+b-1 1

ou u Av

and
Ologf 1-b 1+b u

ov  1-vw v + Av2’
respectively. Thus, if a > 2 and b > 1, then it follows that (19) has a
single mode at

(a+b—1)(a—2)A a-—2 >

(“0’”0)_< a+b-3 a+b-3
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On the other hand, if a <2 or b < 1, then

1
Olog / >0<=u<(a+b-—1)l\v
ou
and
Olog f 50y > Av(l+b— 2v)
ov 1-vw

Some particular values of (19) can be computed as

(a+b—-1)a—2)A a-—2
f( a+b-3 ’a+b—3)
C(a—2)272b— 1) Ha+b— 1) Lexp(l —a—b)
N Aa + b — 3)atb=3T(a)L'(b) ’

(@a+b— 1)t 1ya"2(1 —y)> lexp(l —a — b)

flla+b—1)Av,v) = (T () ,

and

f()\v(1+b—2v)’v>

1—vw

472 (1+b—20) T Lexp {(2v — 1 —-b)/(1 —v)}
(1~ )AL ()T (0) '

Figure 3 illustrates the shape of (19) for some selected values of (a,b)
and A = 1. It can be seen how changing (a,b) makes the dependence
between U and V inflated or asymmetric.

Theorem 3 provides the joint cdf of (U, V) for the construct (18).

Theorem 3. The joint cdf of U and V corresponding to (19) is
given by

1
(a+b)I'(a)

(=DM (u/(A0))" ™"

(20) Flu,v) = T(1+b— k)

M]3

bl
I

0

><2F2<b—k,a+b;a+b+1,b—k+1;_%>,
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Proof. One can write

F(u,v)

1 “re a+b—1 —(1 —1
= m/o/o g t? 1!/ (+b)(1—y)b exp{-z/(\y)} dydz.

By setting z = x/(\y) and using the definition of the incomplete gamma
function, the above can be reduced to:

1

T [ v 0 e b))

(21)  F(u,v) = T(a)
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This integral is difficult to calculate. However, using the series repre-

sentation
o0

I'(a+1) 27
1 =
+2)° ]ZF (@—j+1) 4"
(21) can be expanded as

1 & (—1)Fr
(22) Flu,v) =555 2 1(“(b )— kk)

k=0

where I, denotes the integral

(23) I = / "y (a4 bu/ (M) dy

By an application of equation (2.10.2.2) in Prudnikov et al. [10], (23)
can be evaluated as
(24)

uaer

I = 2
"7 (a4 b)(k — b)Aatbyb=F>"?

(bk,a+b;a+b+1,bk+1; i).
Av
The result in (20) follows by combining (22) and (24). O

Remark 4. The product moments of (19) can be expressed in terms
of elementary functions. Standard double integration shows that
A"T(m+a+b)I(m+n+a)

P(a)'(m+n+a+d)

(25) EU™V") =

for m > 1 and n > 1. In particular,

Aab
Cov UV) = GimirasD)
and Y
b
Corr (U, V) = ——t .
o (G:V) l+a+b

Remark 5. The conditional pdfs and cdfs of (19) follow easily. For
the pdf (19), the conditional pdf of V given U = w is given by



246 SARALEES NADARAJAH AND SAMUEL KOTZ

~ wPexp(u/A)v= (1 — v)P~Lexp {—u/(\v)}

for 0 < v < 1. The conditional pdf of U given V = v is given by

u?™ texp {—u/(\v)}
(Av)@+tT (a + b)

(27) flu]v) =

for 0 < u < o©. The corresponding conditional cdfs are

(28) Flv|u) = F(lb)r<b’ “(; “)>
and
(29) Flu|v) = ﬁv(a b, %)

Remark 6. The moments of the conditional distributions are as
follows. For the pdf (19), using equation (3.383.5) in [2], the nth
conditional moment of V' given U = u can be expressed as

(30) E(V" |u) = G)b\p (b,b—i—l—n,;)

for n > 1. Some particular values of (30) are

E(V |u) = G)b\y(bb;)
Var (V | u) = <;>b{\ll<b,b 1%) - (%)bqﬂ (bb%)}

For the pdf (19), using standard integration, the mth conditional
moment of U given V = v can be expressed as

and
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(A)™T (a + b+ m)
I'(a+0b)

(31) E@U™|v) =

for m > 1. Some particular values of (31) are

and

3 b+2
Kurtosis (U | v) = %.

4. Construction III. If U is a chi-squared random variable with
degrees of freedom v, then the positive square root V = /U is said to
have the chi distribution with degrees of freedom v. Its pdf is given by

v’ Lexp (—v?/2)
21T (1 2)

(32) flv) =

forv > 0 and v > 0. Here, we construct a new bivariate chi distribution.
The basis for this construction is the well-known reproductive property
of the chi-squared random variables given by the following lemma.

Lemma 3. If U and V are independent chi-squared random variables
with degrees of freedom o and (3, respectively, then the sum U 4+ V is
also a chi-squared random variable with degrees of freedom a + 3.

Take U, V and W to be independent chi-squared random variables
with degrees of freedom a, b and ¢, respectively. Then the new bivariate
chi distribution can be constructed as follows:

(33) X=VU+W, Y=VV+W
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By Lemma 3, X and Y will be chi distributed with degrees of freedom
a + c and b + ¢, respectively. However, they will be correlated so that
(X,Y) will have a bivariate chi distribution over (0, 00) x (0, 00).

Theorem 4 provides expressions for the joint pdf of (X,Y) in terms
of the confluent hypergeometric functions in one and two variables.

Theorem 4. Let U, V and W be independent chi-squared random
variables with degrees of freedom a, b and c, respectively. Let X and Y
be as in (33). Then, the joint pdf of X andY is given by
(34)

Crzotelyb=lexp(—2? +42/2) ifr<y

x®((c/2),1 - (b/2), (a +c/2), (a?/y?), (2?/2)),
Coz@ lybtelexp(—2? +42%/2) ifz >y

©((c/2),1 = (a/2), (b+¢/2), (v*/2%), (4*/2)),

where the constants C1 and Cy are given by

f(z,y) =

1 b a+c
i 2(a+b+c/2)—2r 2\r
(35) Cy 2 2
and
1 a b+c
I 2(a+b+c/2)—2F 2\r
(36) G 5 5 )

respectively. An alternative form for (34) is

(Crotelyd=lexp(—2? +4%/2) Y, ifz<y
((=1)*T((¢/2) + k) /(T((a + c/2) + k))) (z*/y*)*
x1F1((c/2) + k; (a+¢/2) + k; (22 /2)),
Cao tybtelexp(—a? +42/2) 32, fz>y
(=D)*T((c/2) + k) /T((b+ ¢/2) + k) (y?/2*)*
x1F1((c/2) + ks (b + ¢/2) + ks (y°/2)),

37) f(z,y) =

where the constant C is given by

1 c
i 2(a+b+c/2)—2r e
C 2
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Proof. The joint pdf of U, V and W in (33) is:

u(@/2) =1y (b/2) =14y (/=L exp(—u + v + w/2)
2(atb+e/2)T (g /2)T(b/2)T(c/2)

f(u7 U’ w) =
from which it follows that the joint pdf of (X,Y, W) is:
(38) flz,y,w)

_ my(mQ _ w)(a/2)—1(y2 _ w)(b/2)—1w(c/2)—1 exp(—x2 + y2 _ w/2)
B 2(a+b+¢/2)-21(q /2)I'(b/2)I(c/2)

The joint pdf f(z,y) is the integral of (38) over possible values of w,
i.e.,

zyl(z,y)
2(atb+¢/2)-2T (q/2)T'(b/2)[(c/2)’

(39) fla,y) =

where I(z,y) denotes the integral

min(z?,y?)
I(ZL‘,y) _ / (ZL‘Q _ w)(a/2)—1(y2 _ w)(b/2)—1w(c/2)—1
0

2 2 _
xexp(—%)dw.

(40)

If < y, then, setting t = w/x?, (40) reduces to
(41)
(b/2)—1

1 2
— t
I(z,y) =w““*2y”72/ (1—p)le2t <1 - $_2> (e/2)-1
0 Y

2t
X exp (%) dt.

Using equation (3.385) in [2], (41) can be expressed in terms of the
confluent hypergeometric function of two variables as:

b a+c 2% z?
42) T = gote=2,b-2p (& Chg(Cy 2 ATC T T )
(42) I(z,y) == Y 5 eI
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The first result in (34) follows by substituting (42) into (39). The
second result in (34) can be derived similarly. Now let us prove (37).
Using the series expansion

2 T(a+1) 27
(1+2)* = ,
JXZ:OF (@—j+1)3!

the integral (41) can be expanded as

N (=1)FT(b/2) F
_ _atc—2 b 2
43) Iy == > o L (%) .
where J(k) denotes the integral

1 2
S e 1e T L e ey AL DY
@ Iy = [ e e e (2
0

Using equation (3.383.1) in [2], (44) can be expressed in terms of the
confluent hypergeometric function as:

a ¢ a-+c z?
(45) J(k)_B<22+k> <2+k 5 +k,7>.

The first result in (37) follows by combining (43) and (45) and substitut-
ing into (39). The second result in (37) can be derived similarly. O

Figure 4 illustrates the shape of the joint pdf (34) for selected values
of (a,b,c). It can be seen how changing the parameter values makes
the dependence between X and Y inflated or asymmetric.

Remark 7. Using the definition of the confluent hypergeometric
function of two variables and equation (6.455.1) in [2], the product
moments of (34) can be expressed as

E(X™Y™) =2C16(a,b,m,n) + 2C26(b, a,n, m)
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a=2,b=2,c=2 a=10,b=10,c=10
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FIGURE 4. Contours of the joint pdf (34) for selected values of (a,b,c).

for m > 1 and n > 1, where Cy and C5 are given by (35) and (36),
respectively, and §(a, b, m,n) takes the form

bontam) = 330 e/ uneL= (/2

ot (a+¢/2)j1ki ki (m+a+c+j)
XF<m+n+a+b+c+j+k>

2
b i+ k
><2F1<1,m+"+“+ +ec+j+ ;
2
mta+tct+j+2 1
2 "2)

Remark 8. The conditional pdfs and moments follow easily from those
given above. For the pdf (34), the conditional pdf of Y given X = z is
given by
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(46) f(y|=)
D1y*~*exp(—y?/2)
x®((c/2),1 = (b/2), (a+¢/2), (2?/y?), (2°/2)) ifz <y,
Doz~cybte—lexp(—y?/2)
®((c/2),1 - (a/2),(b+c/2),(y*/2?), (¥?/2))  ifz>y,
where the constants D; and Ds are given by
”» L gwn(})
and
1 202710 (a/2)T (b + ¢/2)
Dy I(a+c/2) ’

(48)

respectively. The corresponding conditional pdf of X given ¥ = y
can be obtained by interchanging x with y, a with b and m with n.
Using the definitions of the confluent hypergeometric function of two
variables and the complementary incomplete gamma function, the nth
conditional moment of Y given X = x can be expressed as

E(Y" | X =x) = D1E| + DyEs,

where Dy and Dj are given by (47) and (48), respectively, and E; and
E are given by

N (/25 (= (B/2))k o (nb—2i2/- i+
B, = 2(n+b 21—25-2/2),.2(i+j5)
=20 T ), R *

and

N (c/2)j+k(1 — (a/2))k (n+b+ct2i—2/2),  —(2i+c)
E — 2n C 13 1T+C
2= D (b+ ¢/2);41jk! v
<n+b+c+2i+2j :c2>
Xy 2 7? )
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respectively. The corresponding mth conditional moment of X given
Y = y can be obtained by interchanging x with y, a with b and m with
n.

Lemma 3 can be applied in several ways to generate multivariate
chi distributions. If U;, 7 = 1,2,...,p are chi-squared distributed
independent random variables with degrees of freedom a;, then the
following will have p-variate chi distributions over (0, 00)P:

1. (\/Ul +Us+ -+ Up, VU1, VU2, ..., VUi—1, A/ Uig1, -5 /Up)
fori=1,...,p—1.
2. (VUL VUL + Uz, ..., \JU + -+ Up).

3. WUL+W, VU, +W, ..., \/U,+ W), where W is a chi-squared
random variable with degrees of freedom b and is independent of Uj,

i=12,...,p.

The ideas presented here will be the subject of a future investigation.

TABLE 1. Locations of the stations.

Location Station No. | Years of Data | Latitude | Longitude
Clermont 83 1901-2002 28° 32/ N | 81° 46’ W
Brooksville 89 1901-2002 28° 33' N | 82° 23’ W
Orlando 91 1901-2001 28° 32" N | 81° 22/ W
Bartow 142 1901-2003 27° 53' N | 81° 50' W
Avon Park 146 1902-2002 27° 35' N | 81° 30' W
Arcadia 148 1907-2002 27° 12' N | 81° 51’ W
Kissimmee 160 1901-2002 28° 17" N | 81° 24’ W
Inverness 164 1901-2002 28° 50’ N | 82° 19’ W
Plant City 259 1901-2003 28° 01’ N | 82° 06’ W
Tarpon Springs 298 1901-2002 28° 08’ N | 82° 45' W
Tampa Intl. Airport 299 1901-2003 27° 58" N | 82° 31’ W
St. Leo 306 1902-2003 28° 20’ N | 82° 15’ W
Gainesville 310 1901-2000 29° 39’ N | 82° 19 W
Ocala 333 1901-2002 29° 11’ N | 82° 08’ W

5. Application. In this section, we illustrate an application of the
results above to extreme rainfall data. The data consists of annual
maximum daily rainfall for the years from 1901 to 2003 for 14 locations
in west central Florida. The data were obtained from the Department of
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Meteorology in Tallahassee, Florida. Table 1 gives the station number,
years of data, latitude and the longitude for the 14 locations.

It is of interest to know how the extreme rainfall at anyone of these
stations relates to the others. This can be studied by looking at the
joint distribution of (X,Y) when X and Y denote the extreme rainfall
at the respective stations.

There are 7 x 13 = 91 pairs of stations. We fitted (8) to describe
the joint distribution of extreme rainfall for each pair. We chose (8)
in preference to (4), (19) and (34) because of the highest number
of parameters. The data for each pair were taken to be the annual
maximum daily rainfall values for the years common to the two stations.

The fitting of (8) was performed by the method of moments. Estima-
tion by the method of maximum likelihood appears intractable because
of the presence of the Whittaker functions in (8). Given the simplicity
of the product moments in Remark 1, the method of moments is the
obvious choice for estimation. Suppose {(z;,v:),i = 1,2,...,n} is a
random sample with sample means (Z,7), sample variances (si,si)
and sample correlation coefficient r. Consider the transformation
(Zi, i) = (Zws/s2,yys/s2) so that its marginals could be assumed to be
gamma distributed with unit scale parameters, i.e., u = 1. If the sam-
ple {(Z;,9:)} arises from (8), then the method of moments estimators

of ay, as and c are

2 —2
~_ Y
’ a2 =

L Vaiaz
2 and ¢= mat

y
respectively. Table 2 gives the fitted parameter estimates for the 91
pairs of stations. Using the fitted parameter estimates, we plotted
the contours of the joint pdf (8) for each pair—to examine the relative

change of extreme rainfall among the 14 stations.

]

~

a; =

V)
8N

TABLE 2. Parameter estimates of (8) for each pair of stations.

Station (X) | Station (Y) a1 as ¢
Clermont Brooksville | 3.218846 | 2.834433 | 4.040199
Clermont Orlando 3.242782 | 3.301213 | 4.738214
Clermont Bartow 3.668596 | 3.730267 | 5.6373
Clermont Avon-Park | 3.041417 | 3.228340 | 6.323879
Clermont Arcadia 3.093167 | 2.827528 | 6.855383
Clermont Kissimmee | 2.852649 | 2.902481 | 4.72639
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TABLE 2. (Continued).

Station (X) | Station (Y') a1 da ¢
Clermont Inverness 4.35823 | 2.512238 | 8.623658
Clermont Plant-City 3.574229 | 3.503682 | 6.71207
Clermont Tarpon-Springs 3.200771 | 3.032279 | 5.384406
Clermont Tampa-Intl-Airport | 3.210878 | 3.105294 | 6.709737
Clermont St-Leo 3.210878 | 2.674914 | 4.582917
Clermont Gainesville 3.200771 | 7.820751 | 32.83452
Clermont Ocala 3.105414 | 4.288232 | 7.32462
Brooksville | Orlando 2.558395 | 3.085072 | 3.884535
Brooksville | Bartow 2.730809 | 2.265939 | 3.514642
Brooksville | Avon-Park 2.726731 | 3.212586 | 5.731151
Brooksville | Arcadia 2.548018 | 2.544151 | 4.472605
Brooksville | Kissimmee 2.434280 | 2.811075 | 4.743419
Brooksville | Inverness 3.385246 | 2.507584 | 6.543513
Brooksville | Plant-City 2.719422 | 3.2042 4.79122
Brooksville | Tarpon-Springs 2.584794 | 2.907684 | 4.242484
Brooksville | Tampa-Intl-Airport | 2.573945 | 2.268199 | 3.777553
Brooksville | St-Leo 2.573945 | 2.433441 | 3.415164
Brooksville | Gainesville 2.584794 | 8.054324 | 27.24378
Brooksville | Ocala 2.834384 | 4.266868 | 6.694927
Orlando Bartow 3.853775 | 2.219964 | 3.681571
Orlando Avon-Park 3.294072 | 3.211248 | 4.858484
Orlando Arcadia 3.004763 | 2.531245 | 4.27543
Orlando Kissimmee 2.846413 | 2.762606 | 4.377054
Orlando Inverness 3.448624 | 2.520210 | 6.114125
Orlando Plant-City 3.917996 | 3.197551 | 6.1983
Orlando Tarpon-Springs 3.058132 | 2.826874 | 4.180394
Orlando Tampa-Intl-Airport | 3.10071 | 2.243076 | 3.650189
Orlando St-Leo 3.10071 | 2.342843 | 3.913142
Orlando Gainesville 3.058132 | 7.928737 | 30.76442
Orlando Ocala 3.505751 | 4.236783 | 7.01554
Bartow Avon-Park 3.489156 | 3.776601 | 6.409493
Bartow Arcadia 2.204778 | 2.634857 | 4.100867
Bartow Kissimmee 2.037106 | 2.9251 | 4.051984
Bartow Inverness 2.479450 | 2.625725 | 6.668833
Bartow Plant-City 2.240396 | 3.167257 | 4.070862
Bartow Tarpon-Springs 2.255005 | 2.957736 | 4.012826
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TABLE 2. (Continued).

Station (X) | Station (Y') a1 da ¢

Bartow Tampa-Intl-Airport | 2.265939 | 2.287860 | 3.007684
Bartow St-Leo 2.265939 | 2.535290 | 3.419411
Bartow Gainesville 2.255005 | 7.888075 | 111.9936
Bartow Ocala 4.116757 | 4.729147 | 10.67784
Avon-Park | Arcadia 3.211288 | 2.762028 | 6.104219
Avon-Park | Kissimmee 3.231778 | 2.881294 | 6.454619
Avon-Park | Inverness 3.734841 | 2.641319 | 9.147827
Avon-Park | Plant-City 3.793597 | 3.602429 | 15.09799
Avon-Park | Tarpon-Springs 3.256159 | 2.928265 | 5.515781
Avon-Park | Tampa-Intl-Airport | 3.256159 | 2.945651 | 5.872365
Avon-Park | St-Leo 3.256159 | 2.653244 | 5.204906
Avon-Park | Gainesville 3.256159 | 8.097768 | 39.91536
Avon-Park | Ocala 3.302372 | 4.044312 | 7.459265
Arcadia Kissimmee 2.446936 | 2.701772 | 4.887486
Arcadia Inverness 2.59692 | 2.514762 | 9.529713
Arcadia Plant-City 2.684088 | 3.248164 | 5.291207
Arcadia Tarpon-Springs 2.520882 | 2.868216 | 5.916902
Arcadia Tampa-Intl-Airport | 2.520882 | 2.205464 | 3.804544
Arcadia St-Leo 2.520882 | 2.46637 | 4.605786
Arcadia Gainesville 2.520882 | 7.768185 | 55.68855
Arcadia Ocala 2.952989 | 4.272891 | 10.61715
Kissimmee | Inverness 2.926808 | 2.898133 | 6.00001
Kissimmee | Plant-City 2.981039 | 3.296744 | 6.712081
Kissimmee | Tarpon-Springs 2.801933 | 2.733992 | 5.72304
Kissimmee | Tampa-Intl-Airport | 2.825697 | 2.152856 | 4.910383
Kissimmee | St-Leo 2.825697 | 2.321331 | 3.982177
Kissimmee | Gainesville 2.801933 | 7.391583 | 43.41384
Kissimmee | Ocala 2.961115 | 3.896707 | 7.132644
Inverness Plant-City 2.685083 | 3.352062 | 18.19546
Inverness Tarpon-Springs 2.507584 | 3.238387 | 8.939196
Inverness Tampa-Intl-Airport | 2.507584 | 2.380957 | 6.201889
Inverness St-Leo 2.507584 | 2.523381 | 5.645889
Inverness Gainesville 2.507584 | 7.9631 | 91.93246
Inverness Ocala 2.44509 | 4.542143 | 10.64130
Plant-City Tarpon-Springs 3.217778 | 2.955461 | 6.149223
Plant-City | Tampa-Intl-Airport | 3.2042 | 2.276896 | 4.72709
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Station (X) Station (Y') a1 as ¢

Plant-City St-Leo 3.2042 | 2.499223 | 4.533339
Plant-City Gainesville 3.217778 | 7.777853 | 30.44846
Plant-City Ocala 3.71176 | 4.69162 | 21.69946
Tarpon-Springs Tampa-Intl-Airport | 2.888101 | 2.273758 | 3.790318
Tarpon-Springs St-Leo 2.888101 | 2.411552 | 3.854949
Tarpon-Springs Gainesville 2.888101 | 7.930197 | 33.20254
Tarpon-Springs Ocala 3.183238 | 4.195801 | 8.470409
Tampa-Intl-Airport | St-Leo 2.288052 | 2.407778 | 3.14861
Tampa-Intl-Airport | Gainesville 2.273758 | 7.930197 | 35.10345
Tampa-Intl-Airport | Ocala 3.185001 | 4.255038 | 10.81237
St-Leo Gainesville 2.411552 | 7.930197 | 26.19865
St-Leo Ocala 2.77196 | 4.255038 | 7.331554
Gainesville Ocala 8.478297 | 4.195801 | 33.17598

For illustrative purposes, we discuss here the results for just 2 of
the 91 pairs: Clermont and Plant City (Pair 1) and Clermont and
Gainesville (Pair 2). The fitted joint contours of (8) for these two pairs
are shown in Figure 5. It is evident from the fitted joint contours that
the quality of the fits for both pairs is reasonable. The plot for pair 1
appears asymmetric with the thicker tail on the left and that for pair 2
appears asymmetric with the thicker tail on the right. This suggests
that Plant City receives relatively more extreme rainfall compared to
Clermont and that Clermont receives relatively more extreme rainfall
compared to Gainesville.

Transformed Plant City Rainfall

Transformed Gainesville Rainfall

Transformed Clermont Rainfall

FIGURE 5. Contour plots of the fitted pdf (8) for data from Pair 1 (left) and data

from Pair 2 (right).

Transformed Clermont Rainfall



258 SARALEES NADARAJAH AND SAMUEL KOTZ

Acknowledgments. The authors would like to thank the referee
and the editor for carefully reading the paper and for their great help
in improving the paper.

REFERENCES

1. R.T. Clarke, Bivariate gamma distributions for extending annal stream flow
records from precipitation, Water Resources Res. 16 (1980), 863-870.

2. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, sixth
edition, Academic Press, San Diego, CA, 2000.

3. A.K. Gupta, On the expansion of bivariate gamma distribution, Professor
Huzurbazar felicitation volume, J. Indian Stat. Assoc. 17 (1979), 41-50.

4. A.K. Gupta and C.F. Wong, On a Morgenstern-type bivariate gamma distri-
bution, Metrika 31 (1984), 327-332.

5. T. Izawa, 2 or multi-dimensional gamma-type distribution and its application
to rainfall data, Papers Meteor. Geophysics 15 (1965), 167.

6. S. Kotz, N. Balakrishnan and N.L. Johnson, Continuous multivariate distri-
butions, volume 1: Models and applications, second edition, John Wiley and Sons,
New York, 2000.

7. A.M. Mathai and P.G. Moschopoulos, On a multivariate gamma, J. Multivari-
ate Anal. 39 (1991), 135-153.

8. P.A.P. Moran, Statistical inference with bivariate gamma distributions, Bio-
metrika 54 (1969), 385-394.

9. , The methodology of rain making experiments, Rev. Intern. Stat.
Institute 38 (1970), 105-115.

10. A.P. Prudnikov, Y.A. Brychkov and O.I. Marichev, Integrals and series
(volumes 1, 2 and 3), Gordon and Breach Science Publishers, Amsterdam, 1986.

11. O.E. Smith and S.I. Adelfang, Gust model based on the bivariate gamma
distribution, J. Spacecraft 18 (1981), 545-549.

12. G.F. Yeo and R.K. Milne, (1991). On characterizations of beta and gamma
distributions, Stat. Probab. Lett. 11 (1991), 239-242.

SCHOOL OF MATHEMATICS, UNIVERSITY OF MANCHESTER, MANCHESTER MG60
1QD, UK
Email address: saralees.nadarajah@manchester.ac.uk

DEPARTMENT OF ENGINEERING MANAGEMENT AND SYSTEMS ENGINEERING,
GEORGE WASHINGTON UNIVERSITY, WASHINGTON, DC 20052
Email address: kotz@Qgwu.edu




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


