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ON THE DIOPHANTINE EQUATION
(@ + k) (" + k) = (2" + k)

MACIEJ ULAS

ABSTRACT. In this paper we show that if Kk € Z can
be represented in the form k = +(a? — 2b?), then there
exists an infinite family of three-term geometric progressions
of numbers of the form x2 + k. Furthermore, we prove that
the set of k € Z, such that there exists a four-term geometric
progression of numbers of the form z2 + k is infinite.

1. Introduction. Schinzel and Sierpinski in [1] showed that all
solutions of the equation

1) (wzl)(y21>=((x2y)21)2

in positive integers z, y, * < y, are of the form =z = z,,, y = z,41,
n=0,1,..., where xg = 1, 1 = 3 and generally z,, = 6x,_1 — T,—2-

Szymiczek in [2] generalized the above by showing that all solutions
t, z, y, x < y of the equation

0w (5) )

in distinct positive integers are of the form

t=|m?—2n%s, x=(m?>+2n%s, y=(3m?+8mn+6n?)s,

where m, n, s are integers.

Let us point out that (1) and (2) are particular cases of the equation
(3) (2% + k) (y* + k) = (22 + k).

The question about integer solutions of the equation (3) with fixed
k € Z is equivalent to the question whether there exists a geometric
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progression of the length three created with values of the polynomial
22 + k.

The fundamental question which arises here is how big can a set
K C Z be, such that for & € K the equation (3) has infinitely
many solutions in integers? By examining the particular Pell-type
equation we show that if £ € Z can be represented in the form
k = £(a® — 2b?), then the diophantine equation (3) has infinitely many
solutions (Theorem 2.1). Next, we prove that the set of k € Z, such
that there exists a four-term geometric progression of numbers of the
form 2% + k is infinite (Theorem 3.2). The solutions are obtained from
the integer points on a particular quartic surface.

2. The equation (2> +k)(y%>+ k) = (22 + k). Let fi(z) := 2> +k,
k(a, b) := a® — 2b? and K = {+k(a,b): a, b € Z}.

Then we have

Theorem 2.1. For each k € K the equation (3) has infinitely many
solutions in integers.

Proof. Since k is representable by —p? + 2¢? if and only if k is
representable by p? — 2¢?, it is sufficient to prove the theorem when
k =a? — 2b%. Put z = (y — z)/2 and then, as in [1, 2], we have

el)w) e (157) = gl 8k -+ 6y ),

Therefore it is enough to show that for h(z, y) := x? — 6zy + y° the
equation h(z, y) = 8k has infinitely many solutions in integers z, y.
But this equation represents the Pell equation (z — 3y)? — 8y? = 8k,
where we know an initial solution (z, y) = (a + 2b, —a + 2b);
consequently, there are infinitely many solutions in integers. ]

Now taking a = —3, b = 2, we know that for £k = 1 the equation (3)
has infinitely many solutions and in this case the sequence of solutions is
the same as the one mentioned in the reference to the work by Schinzel
and Sierpiniski. Next, the solution proposed by Szymiczek is obtained
by solving the equation a?—2b? = ¢2. This equation has integer solution
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a =1, b=0,t =1, which can be used for the parametrization of
solutions of (2).

3. Geometric progressions of length 4. The aim of this
paragraph is to show that the set of £k € Z such that there exists a
geometric progression of length four containing numbers of the form
x2 + k is infinite. We are interested in solving in integers z, y, z and ¢
the following system of equations

firly) _ fi(z) _ fi(d)
(@) frly)  fu(z)

It is clear that, with a fixed k, the above system has a solution in
integers if and only if the system of equations

(4)

2 +k=A,

2

Yy +k:Aq7
(5) 2 A2

22+ k= Aq,

2+ k= A,

has a solution in integers z, y, 2, t, A and q. Solving the first three
equations of the system (5) with respect to k, A and ¢, we have

k= (y* - a?2%)/ (2 - 297 + 2%),
A=(z* —22%y" +y*)/(«® — 2¢% + %),
q=(y* —2%)/(2* — y?).

Substituting the calculated values into the last equation in (5) we obtain
the equation

(6) (2 —y?) + 2 (y* — 2°) + 22 (2% —2?) = 0.

We can see that every solution of the equation (6) in integers z,
y, z and t corresponds to a certain solution of the system (5) with
k= (y*—2%2?)/(2? —2y*+2?%). A solution in integers z, y, z and ¢ of
(6) will be called trivial if y* —x? 22 = 0 or 22 —2y%+2% = 0. It is clear
that the equation (6) has infinitely many trivial solutions. Indeed, for
p, q¢ € Z the solution x = z = p, y =t = q is trivial. However, we are
interested in nontrivial integer solutions of (6). Now we will show the
following
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Theorem 3.1. The equation (6) has infinitely many nontrivial
solutions in integers.

Proof. Let E be the surface in P3(Q) given by the equation (6). It is
worth noting that the set S of singular points of £ consists of points of
the form (£1, £1, +1, 4+1) and points (1, 0, 0, 0), (0, 0, 0, 1). Let
P = (p, q, p, q), and let us consider a line passing through P. The
parametric equation of this line is

(7) r=aT+p, y=bT+q, z=cT+p, t=dT+gq.

Substituting z, y, z and ¢ from (7) into the equation of F, we obtain
the equation

(8) T (gAi(a, b, c,d) T"> =0,

where
Ag(a,b,c,d) = =2(p — q)(p + q)(ap — cp + bg — dq),
Ai(a,b,c,d) = —a’p? — b?p? — dacp® + 5c*p? + d*p? — dbepg + dadpq
+a2q2 +5b2q2 _ 62q2 _4bdq2 _ d2 2,
As(a,b,c,d) = —2(a’cp + b%cp + ac’p — 2¢3p — ad®p — 2b%q + bc?q)
— 2(—a?dq + b?dq + bd?q),
As(a,byc,d) = b* — a?c® — b2 + ¢t + a?d* — b2 d>.
From the system of equations
Ap(a,b,c,d) =0,
Ai(a,b,c,d) =0,
we obtain
¢ = (2bpg(p® — ¢%) + a(p® + ¢%)*)/(p* + 4p*¢* — ¢*),
(9) 2_ 2 4 2.2, 4 4 22 4
d = (2apq(p® — ¢*) — b(p* — 6p°¢° + ¢))/(p* + 4p*q* — ¢*).

Putting (9) into A, and Ag, we see that the equation (8) has a triple
root at zero and rational root

dpq(p® + ¢*) (p* + 4p°¢* — ¢*)

T=-— :
aq (3p°® + 11p*q® + p?¢* + ¢°) + bp (p° + 9p*¢® + 11p°¢* — 5¢°)
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Putting the calculated quantities ¢, d and T into (7) we obtain a
parametric family of rational points on E. Reducing and simplifying
the denominators, we get a polynomial family of solutions

p (p® + 9pq® + 11p*¢* — 5¢°),

y(p, q) = q(3p® + 11p*¢® + p*¢* + ¢°),
p(
q

8
—
=
S
Il

p® +pi¢® + 11p%¢* + 3¢%),
(_5p6 + 11p4q2 +9p2q4 +q6)

Direct examination shows that if p, ¢ € Z \ {0} and p + ¢ # 0, then
the corresponding point P(p, q) = (z(p, q), y(p, q), 2(p, q), t(p, q))
on F is nontrivial. O

The value of k corresponding to the parametrization from Theorem 2
is a rational function of variables p, ¢. In order to obtain k € Q|p, ¢],
we take the parametrization

X(p, @) =p(@* — ) (° + 9p*¢® + 11p*¢* — 5¢°),
Y(p, ) = q(p* — ¢*) 3p°® + 11p*¢* + p*¢* + ¢°),
Z(p, ) =p(@* — ¢*) ° + p*¢® + 11p°¢* + 3¢°),
T(p, q) = ¢ (* — ¢°) (—=5p° + 11p*¢* + 9p*¢* + ¢°).

For such X, Y, Z and T we obtain

1
k(p, q) = —5(1)2 +¢*)(p* +6p°¢> + ¢*) x

x (0° = 3p*q® — 13p%¢" — ¢°)(° + 13p¢® + 3p°¢" — ¢°).
Therefore, we have shown

Theorem 3.2. Letp, ¢ € Z\ {0} and p+q # 0. For k = k(p, q),
the system of equations

fely)  fr(z)  fe(t)

fe@)  fe(y)  fe(2)

has a nontrivial solution in integers.
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Unfortunately the number k(p, ¢) rises very quickly with the growth
of p, ¢. One can therefore ask what is the smallest possible k such that
the system (4) has a nontrivial solution? We have carried out a search
to find solutions of (4) with the use of a computer. For max{z,y, z} <
1000, |k| < 100 the only square-free integers k allowing nontrivial
solution of the system (4) are k = —91, —89, —34, 11, 39, 95.
Certainly, the list may not be complete. In the table below we list
solutions corresponding to those numbers.

k' |lxz |y z t

91|19 |11 1 19
-89 | 13 | 43 | 197 | 923
-34 |1 10 | 32 | 122 | 472
11 (3|7 13 | 23
39 | 3 |21 69 | 219
39 | 5 |11] 19 | 31
95 |16 |29 | 49 | 81

It is worth noting that, as P. Fermat proved, no four squares exist
forming an arithmetic progression, and hence there is no polynomial of
degree two whose four values form an arithmetic progression. As we
can see, in the case of geometric progression the situation is different.
A question arises to determine the maximal number n, for which there
exists a nontrivial solution of the system of equations

fr(ze) _ fi(zs) _  _ felwna) _ fr(en)
fe(z1)  fr(z2) fe(@n-2)  fr(zn-1)
in integers. The search done in the case n = 5 suggests that for this

(and also bigger) values of n our problem does not have any nontrivial
solutions. This leads us to the following

(10)

Conjecture 3.3. Let k € Z\{0}. Forn > 4 the system of equations
(10) does not have any nontrivial solutions in integer numbers.

Professor A. Schinzel informed me that the problem concerning the
solvability in integers of the diophantine equation (z2 + k)(y? + k) =
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(2% + k)2, where k = p* — 2¢? was proposed by J.A.H. Hunter as
an advanced problem in American Mathematical Monthly (Problem
5020, April 1962, page 316). Essentially the same result as our
Theorem 2.1 was obtained by Hunter and Venkatchalam Iyer (American
Mathematical Monthly, May 1963, page 574).
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