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INTEGRALS AND PHASE PORTRAITS OF
PLANAR QUADRATIC DIFFERENTIAL SYSTEMS
WITH INVARIANT LINES OF
AT LEAST FIVE TOTAL MULTIPLICITY

DANA SCHLOMIUK AND NICOLAE VULPE

ABSTRACT. In this article we prove that all real quadratic
differential systems dz/dt = p(z,y), dy/dt = q(z,y), with
ged(p, g) = 1, having invariant lines of total multiplicity at
least five and a finite set of singularities at infinity, are Dar-
boux integrable having integrating factors whose inverses are
polynomials over R. We also classify these systems under two
equivalence relations: 1) topological equivalence and 2) equiv-
alence of their associated cubic projective differential equa-
tions when the cubic projective differential equations are acted
upon by the group PGL (3,R). For each one of the 28 topo-
logical classes obtained, we give necessary and sufficient con-
ditions for a quadratic system to belong to this class, in terms
of its coefficients in R12.

1. Introduction. We consider here real planar differential systems
of the form

(1.1) 5)  S=pay. Y=gy

where p, ¢ € Rlz,y], i.e., p, ¢ are polynomials in z, y over R, their
associated vector fields

0 0
(1.2) D —p(x,y)% +q(9«",y)3—y

and differential equations

(1.3) q(z,y) dz — p(z,y) dy = 0.

We call the degree of a system (1.1) (or of a vector field (1.2) or of a
differential equation (1.3)) the integer n = deg (S) = max(degp, degq).
In particular we call quadratic a differential system (1.1) with n = 2.
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There are several hard open problems on the class of all quadratic
differential systems (1.1). Among them the most famous one is the
second part of Hilbert’s 16th problem which asks for the determination
of the so-called Hilbert number H(n) for this class, i.e., for n = 2 where

H(n) = max{LC (S) |deg (S) = n}

and LC (S) is the number of limit cycles of (5).

In [3] the authors studied the class of all quadratic systems possessing
a second order weak focus. In the bifurcation diagram drawn in [3] the
maximum number of limit cycles (two limit cycles) which one sees for
this class occurs in perturbations of an integrable quadratic system with
a rational first integral which foliates the plane into conic curves. This
shows the deep connection existing between perturbations of integrable
quadratic systems (even with a rational first integral) and the second
part of Hilbert’s 16th problem and adds to the motivation for studying
the class of integrable quadratic systems having invariant algebraic
curves, see Definition 1.4. This study is interesting for its own sake as
it is at the crossroads of differential equations and algebraic geometry.

Each differential system (1.1) generates a complex differential system
when the variables range over C. In [11] Darboux gave a beautiful ge-
ometric method of integration of planar complex differential equations
(1.3) using algebraic curves which are invariant for the equations, see
Definition 1.4.

Poincaré was enthusiastic about the work of Darboux [11], which he
called “admirable” in [17]. This method of integration was applied to
give unified proofs of integrability for several families of systems (1.1).
For example, in [22] it was applied to show in a unified way (unlike
previous proofs which used ad hoc methods) the integrability of planar
quadratic systems possessing a center.

A brief and easily accessible exposition of the method of Darboux can
be found in the survey article [21].

The topic of Darboux’s paper [11] is best treated using the language
of differential algebra, subject which started to be developed in the
work of Ritt (1893-1951), long after Darboux wrote his paper [11]. The
term Differential Algebra was introduced by Ellis Kolchin, who was a
student of Ritt and who, as Buium and Cassidy said in [5], “deepened
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and modernized differential algebra and developed differential algebraic
geometry and differential algebraic groups.”

Differential algebra began to be developed in the 1930s, e.g., [19],
as a result of the influence of Emmy Noether’s work of the 1920s in
algebra. In his book [20], Ritt paid this tribute to Noether: “the form
in which the results of differential algebra are presented has been deeply
influenced by her teachings.”

As in this paper we are concerned with questions regarding integra-
bility in the sense of Darboux, we shall use here (in a minimal way) the
language of differential algebra. In the present article we are concerned
with questions regarding Darboux integrability for a specific class of
quadratic systems (1.1), namely, the class of systems (1.1) possessing
invariant straight lines of total multiplicity at least five. We work with
the notion of multiplicity of an invariant line introduced by us in [23].

The goal of this article is to present a full study of this class by:

e proving that all systems in this class are integrable via the method
of Darboux yielding integrating factors whose inverses are polynomials
in z, y over R and elementary first integrals of Darboux type, see
Definition 1.7 below;

e constructing all the topologically distinct phase portraits of the
systems in this class (we have 28 such phase portraits);

e giving necessary and sufficient conditions, invariant under the action
of the affine group and time rescaling, in terms of the twelve coefficients
of the systems, for which a specific phase portrait is realized;

e determining the representatives of the orbits of their associated
projective differential equations under the action of the real projective
group PGL (3,R).

To do this, we first need to recall some basic notions. Whenever a
definition below is given for a system (1.1) or equivalently for a vector
field (1.2), this definition could also be given for an equation (1.3) and
vice versa. For brevity we sometimes state only one of the possibilities.

As we are here concerned with real differential systems (S) we first
recall below the notion of first integral, integrability and integrating
factor for such systems.
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Definition 1.1. Let F : U — R, U C R? a C"! function on an
open set U. If F is constant on all solution curves (z(t),y(t)) in U of a
system (.S), we say that F is a first integral on U of (S). If there exists
such an F' which is nonconstant on any open subset of U we say that
this system is integrable on U.

Remark 1.1. We note that such a C! function F : U — R is a first
integral on U of (1.1) if and only if for all solutions (z(t),y(¢)) with
values in U of (1.1) defined when ¢ is in an open interval of R, we have
(dF(x(t),y(t)))/dt = 0 for all ¢ in this interval, or equivalently,

~ OF OF
(1.4) DF = p(, y)% + Q(w,y)a—y =0

onU.

Definition 1.2. An integrating factor of an equation (1.3) on an
open subset U of R? is a C'! function R(z,y) # 0 such that the 1-form

w = Rq(z,y)dz — Rp(z,y) dy
is exact, i.e., there exists a C* function F : U — K on U such that

(1.5) w = dF.

Remark 1.2. We observe that if R is an integrating factor on U of
(1.3) then the function F' such that w = Rgdx — Rpdy = dF is a first
integral of the equation w = 0 (or a system (1.1)). In this case we
necessarily have on U:

(1.6) 3(;?1) _ 73(61117)

and, developing the above equality, we obtain (O0R/0x)p+ (O0R/0y)q =
—R((0p/0z) + (8q/dy)) or equivalently,

(1.7) DR = —Rdiv D.
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In view of Poincaré’s lemma, see for example [26], if R(z,y) is a
C! function on a star-shaped open set U of R?, then R(z,y) is an
integrating factor of (1.3) if and only if (1.6), or equivalently (1.7),
holds on U.

In this work we shall apply to our real quadratic system (1.10) the
method of integration of Darboux which was developed for complex
differential equations (1.3). This method uses multiple-valued complex
functions of the form:

F = eG(w,y)fl(%y)/\l T fS(x7y)/\S’

(L.8)
GGC(LE,y), fiec[xay]a )‘i EC,

G = G1/Gsy, G; € Clz,y], f; irreducible over C. It is clear that in
general an expression (1.8) makes sense only for G5 # 0 and for points

(a:,y) € C? \ ({GQ(may) = 0} U{fl(may) = 0} U---u {fs(way) = 0})

The above expression (1.8) yields a multiple-valued function on
U=C*\ ({Ga(z,y) = 0} U{fi(z,y) = 0} U--- U{fs(z,y) = 0}).

To continue our discussion, we introduce at this point a bit of
differential algebra.

The function F in (1.8) belongs to a differential field extension
of (C(z,y),(0/0z),(0/0y)) obtained by adjoining to C(x,y) a finite
number of algebraic and of transcendental elements over C(z,y). For
example f(z,y)/? is an expression of the form (1.8), when f € C[z, ]\
{0}. This function belongs to the algebraic differential field extension
(C(z,y)[ul, (8/92), (8/8y)) of (C(z,y),(8/0x),(9/dy)) obtained by
adjoining to C(z,y) a root of the equation u? — f(z,y) = 0. In general,
the expression (1.8) belongs to a differential field extension which is
not necessarily algebraic. Indeed, for example, this occurs if G(z,y) is
not a constant.

Definition 1.3. A function F in a differential field extension K of
(C(z,y),(0/dz),(0/0y)) which is finite over C(z,y), is a first integral
(integrating factor, respectively inverse integrating factor) of a complex
differential system (1.1) or a vector field (1.2) or a differential equation
(1.3) if DF = 0 (DF = —F div D, respectively DF = F div D).
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In 1878 Darboux introduced the notion of the invariant algebraic
curve for differential equations on the complex projective plane. This
notion can be adapted for equations (1.3) on C? or equivalently for
systems (1.1) or vector fields (1.2).

Definition 1.4 (Darboux [11]). An affine algebraic curve f(z,y) =
0, f € Clz,y], deg f > 1 is invariant for an equation (1.3) or for a
system (1.1) if and only if f | Df in Clz,y], ie., k= (l~)f/f) € Clz, y].
In this case k is called the cofactor of f.

Definition 1.5 [11]. An algebraic solution of an equation (1.3)
(respectively (1.1), (1.2)) is an invariant algebraic curve f(z,y) = 0,
f € Clz,y] (deg f > 1) with f an irreducible polynomial over C.

Darboux showed that if an equation (1.3) or (1.1) or (1.2) possesses
a sufficient number of such invariant algebraic solutions f;(z,y) = 0,
fi € Clz,yl,i=1,2,...,s, then the equation has a first integral of the
form (1.8).

Definition 1.6. An expression of the form F = @) G(z,y) €
C(z,y), ie., G is rational over C, is an exponential factor! (see
Endnotes) for a system (1.1) or an equation (1.3) if and only if
k = (DF/F) € Clz,y]. In this case k is called the cofactor of the
exponential factor F.

Proposition 1.1 (Christopher [9]). If an equation (1.3) admits
an exponential factor eF@Y) where G(z,y) = (G1(x,y)/Ga(z,y)),
G1,G2 € Clz,y] then Go(z,y) = 0 is an invariant algebraic curve

of (1.3).

Definition 1.7. We say that a system (1.1) or an equation (1.3)
has a Darboux first integral, respectively Darboux integrating factor,
if it admits a first integral, respectively integrating factor, of the
form e¢@¥) [T_, fi(z,y)*, where G(z,y) € C(z,y) and f; € [z,v],
deg f; >1,i=1,2,...,s, f; irreducible over C and \; € C.
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Proposition 1.2 [11]. If an equation (1.3) (or (1.1), or (1.2)) has
an integrating factor, or first integral, of the form F =T];_, fl)‘, then
for all i € {1,...,s}, fi = 0 is an algebraic invariant curve of (1.3)

((L.1), (1.2)).

In [11] Darboux proved the following remarkable theorem of integra-
bility using invariant algebraic solutions of differential equation (1.3):

Theorem 1.1 [11]. Consider a differential equation (1.3) with
p,q € Clz,y]. Let us assume that m = max(degp, degq) and that
the equation admits s algebraic solutions fi(z,y) =0, i = 1,2,...,s
(deg f; > 1). Then we have:

L. If s = m(m +1)/2, then there exists A = (A1,...,As) € C*\ {0}
such that R = T];_, fi(z,y) is an integrating factor of (1.3).

IL. If s > m(m+1)/241, then there exists A = (A1,...,As) € C*\{0}
such that F =T[;_, fi(z,y)* is a first integral of (1.3).

Remark 1.3. We stated the theorem for the equation (1.3) but clearly
we could have stated it for the vector field D (1.2) or for the polynomial
differential system (1.1). We point out that Darboux’s work was done
for differential equations in the complex projective plane. The above
formulation is an adaptation of his theorem for the complex affine plane.

In [14] Jouanolou proved the following theorem which improves
part II of Darboux’s theorem.

Theorem 1.2 [14]. Consider a polynomial differential equation (1.3)
over C and assume that it has s algebraic solutions f;(x,y) = 0,
i=1,2,...,s (deg fi > 1). Suppose that s > m(m +1)/2 + 2. Then
there exists (n1,...,ns) € Z°\ {0} such that F = T[;_, fi(z,y)™ is
a first integral of (1.3). In this case F € C(z,y), i.e., F is a rational
function over C.

The above-mentioned theorem of Darboux gives us sufficient condi-
tions for integrability via the method of Darboux using algebraic solu-
tions of systems (1.1). However, these conditions are not necessary as
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can be seen from the following example. The system

dx dy

Y- T oy, =atay
has two invariant algebraic curves: the invariant line 1 +y = 0
and a conic invariant curve f = 6x? + 3y%> + 2y — 1 = 0. This

system is integrable having as first integral F = (1 + y)2f but here
s=2<3=m(m+1)/2.

Sufficient conditions for Darboux integrability were obtained by
Christopher and Kooij in [15] and Zoladek in [27]. Their theorems say
that if a system has s invariant algebraic solutions in “generic position”
(with “generic” as defined in the work) such that > ;_ deg fi=m+1
then the system has as an inverse integrating factor of the form [;_, f;.
But their theorem does not cover the above case as the two curves are
not in “generic position.” Indeed, the line 1 + y = 0 is tangent to the
curve f = 0 at (0, —1). For similar reasons the above example is not
covered by the more general result: Theorem 7.1 in [10]. Other suffi-
cient conditions for integrability covering the example above were given
in [8]. However, to this day, we do not have necessary and sufficient
conditions for Darboux integrability and the search is on for finding
such conditions.

Problem resulting from the work [11] of Darboux.  Give
necessary and sufficient conditions for a polynomial system (1.1) to
have: (i) a polynomial inverse integrating factor; (ii) an integrating
factor of the form [[;_, fi(z,y)*; (iii) a Darboux integrating factor
(or a Darboux first integral); (iv) a rational first integral.

The last problem (iv), above, appeared as the problem of algebraic
integrability in 1891 in the articles [17, 18] of Poincaré. In recent years
there has been much activity in this area of research, e.g., [6, 7].

The goal of this work is to provide us with specific data to be used
along with similar material for higher degree curves, for the purpose of
dealing with questions regarding Darboux and algebraic integrability.
We collect here in a systematic way information starting with quadratic
systems having invariant lines of total multiplicity at least five. This
material may also be used in studying quadratic systems which are
small perturbations of integrable ones. As Arnold said in [1, page
405], “...these integrable cases allow us to collect a large amount of
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information about the motion in more important systems....” In fact,
as we have already indicated at the beginning of this introduction, the
maximum number of limit cycles of some subclasses of the quadratic
class can be obtained by perturbing integrable systems even having a
rational first integral.

Definition 1.8. We call configuration of invariant lines of a system
(1.1) the set of all its (complex) invariant lines (which could have real
coefficients), each endowed with its own multiplicity [23] and together
with all the real singular points of this system located on these lines,
each one endowed with its own multiplicity.

One of the results in this article is that all quadratic differential
systems which have invariant lines of at least five total multiplicity
are integrable via the method of Darboux, having polynomial inverse
integrating factors.

This article is organized as follows:

In Section 2, we associate to each real quadratic system (1.1) pos-
sessing invariant lines with corresponding multiplicities, a divisor on
the complex projective plane which encodes this information. We also
define several integer-valued affine invariants of such systems using di-
visors on the line at infinity or zero-cycles on P3(C) defined in [23] and
[24], which encode the multiplicities of the singularities of the systems.

In Section 3, respectively Section 4, we classify in Theorem 3.1,
respectively Theorem 4.1, all quadratic systems having invariant lines
of total multiplicity six, respectively five, modulo the action of the
group Aff (2,R) x R* of real affine transformation and time rescaling
(R* = R\{0}). In Table 1, respectively Table 2, we give representatives
of the orbits under this action. All these systems have Darboux first
integrals listed in Tables 1 and 2 and polynomial inverse integrating
factors.

Using the integer-valued invariants constructed in Section 2, we define
a multi integer-valued invariant which distinguishes the configurations
of all quadratic systems (1.1) having invariant lines of total multiplicity
at least five. We also construct the corresponding phase portraits of
such systems. The classifications of the systems are stated in Theorems
3.2 and 4.2 using Diagrams 1 and 3 which sum up the information.
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In Theorem 3.3, respectively Theorem 4.3, we give the classifications
of all quadratic systems with invariant lines of total multiplicity six,
respectively five, modulo the action of the group PGL (3,R) of pro-
jective transformations of their associated differential equations on the
real projective plane. This classification yields only 6, respectively 16,
classes, while the classification modulo Aff (2,R) x R* in [23] yields
11, respectively 30, classes.

In Theorem 5.2 we give necessary and sufficient conditions for
quadratic systems with invariant lines of total multiplicity at least five
to topologically distinguish the 28 possible phase portraits for this class.
These conditions are formulated only in terms of algebraic invariants
and comitants, see [25], depending upon the coefficients of the systems:
ac R!2

2. Divisors associated to invariant lines configurations.
Consider real differential systems of the form:

dx/dt = po + pi(z,y) + p2(z,y) = p(z,y),
@n ® { dy/dt = o + qu(e,y) + 2(,y) = a(z,9)

with
Po = aopo, p1(z,y) = awz + aory,
pa(z,y) = azz® + 2a112y + ag2y?,
g0 = boo, q1(x,y) = biox + bory,
g2(z,y) = baoz”® + 2b112y + bo2y”.

Let a = (aoo,a10, 01, @20, 11, Go2, boo, b1o, bo1, b2o, b11, bo2) be the 12-
tuple of the coefficients of system (2.1), and denote

Rla, z,y] = Rlaoo, @10, @01, @20, @11, @02, boo, b10, bo1, b20, b11, bo2, Z, y].

Notation 2.1. Whenever we consider a concrete point in R'? we
shall denote it in boldface: a = (agg, a1 ... ,bp2) € R2.

Notation 2.2. Let

P(X7KZ) :po(a)Z2 +p1(a7X7Y)Z+ pQ(avay) =0,
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Q(X,Y,Z) = q(a)Z? + q1(a, X,Y)Z + ¢2(a, X,Y) = 0.
We denote o(P,Q) = {w € P2(C) | P(w) = Q(w) = 0}.

Definition 2.1. We consider formal expressions D = Y n(w)w
where n(w) is an integer and only a finite number of n(w) are nonzero.
Such an expression is called: i) a zero-cycle of P»(C) if all w appearing
in D are points of P5(C); ii) a divisor of P5(C) if all w appearing in D
are irreducible algebraic curves of Py(C); iii) a divisor of an irreducible
algebraic curve € in P2(C) if all w in D belong to the curve €. We
call degree of the expression D the integer deg (D) = Y n(w). We
call support of D the set Supp (D) of all w appearing in D such that

Definition 2.2. We say that an invariant affine straight line
L(z,y) = uz + vy + w = 0, respectively the line at infinity Z = 0,
for a quadratic vector field D has multiplicity m if there exists a se-
quence of real quadratic vector fields Dy converging to D, such that
each Dy has m, respectively m — 1, distinct invariant affine straight

lines £ = wlz + vly +w! = 0, (ul,v]) # (0,0), (ul,v!,w!) € C?,

converging to £ = 0 as k — oo (with the topology of their coefficients),
and this does not occur for m + 1, respectively m.

Notation 2.3. Let us denote by

(S) is a real system (1.1) such that
QS =4 (5)| sged(p(z,y),q(x,y)) =1 and ;
max (deg (p(z, y)), deg (a(z, y))) = 2
(S) possesses at least one invariant affine
QSL = ¢ (S) € QS | line or the line at infinity has multiplicity
at least two

In this section we shall assume that systems (2.1) belong to QS.

We define below the geometrical objects (divisors or zero-cycles)
which play an important role in constructing the invariants of the
systems.
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Definition 2.3.

Ds(P,Q) = I (P,Q)w
weo(P,Q)
Ds(P,Q;Z)= Y. L(PQw;
we{Z=0}
Ds(P,Q,2)= Y. (Lu(C.2), 1,(P,Q))w;
we{Z=0}
Ds(C,2)= Y L,(C,Z)w if Z{C(X,Y,2),
we{Z=0}

where C(X,Y,Z2) =YP(X,Y,Z2)- XQ(X,Y, Z), I,(F, G) is the inter-
section number (see [12]) of the curves defined by homogeneous poly-
nomials F, G € C[X,Y, Z], deg (F),deg (G) > 1 and {Z =0} = {[X :
Y:0]| (X,Y) e C?\(0,0)}

Notation 2.4.
(2.2) ng = #{w € SuppDg(C, Z) | w € P2(R)}.

A complex projective line uX + vY + wZ = 0 is invariant for the
system (S) if either it coincides with Z = 0 or it is the projective
completion of an invariant affine line ux + vy + w = 0.

Notation 2.5. Let S € QSL. Let us denote

l is a line in P2(C) such

IL(S)={! that [ is invariant for (S)

i

M (I) = the multiplicity of the invariant line [ of (S).

Remark 2.6. We note that the line I, : Z = 0 is included in IL (S)
for any (S) € QS.

Let I; : fi(z,y) = 0,7 =1,...,k, be all the distinct invariant affine
lines (real or complex) of a system (S) € QSL. Let I} : (X,Y,Z) =0
be the complex projective completion of [;.
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Notation 2.7. We denote

Q:HE’(X,Y,Z)Z:O;

SingG = {w € G | w is a singular point of G};
v(w) = the multiplicity of the point w, as a point of G.

Definition 2.4.
Di(S)= Y, M@, ()€ QSL;
1€IL (S)
Supp Dy, (S) = {l |l e IL(S)}.

Notation 2.8.

My, = deg D1, (S5);

Ne¢ = #Supp Dir;

Nr = #{l € Supp D11 |l € P2(R)};
ng o = #{w € Supp Ds(P, Q)|w € G|r2};
dR,a = Z 1,(P, Q);

wEG Rz

mg = max{v(w) | w € SingGjc2};

mg = max{v(w) | w € Sing Gr2}-

3. The class of quadratic systems with My, = 6.

Definition 3.1 (Poincaré [18]). Let F = F/F,, where F1,F» €
C[z,y], be a fist integral of a system (1.1). We call remarkable values
in C for F, constants K € C for which F; — K F5 are reducible. If K
is such a remarkable value for F' and F; — KFy = u{"u3? - - - ug* where
u; € C[z,y] are irreducible over C and not all integers «;’s are 1, then
such a K is called a critical value for F'.

An easy corollary from [2] is the following proposition:
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Invariant lines and

z+1+1y(1), =(1)

Orbit . Lo Inverse integrating factor R;
. their multiplicities
representative Respective cofactors First integral F;
){iz_lﬂa z£1(1), y£1(1), @ —y(1) Ri=(z—1)(e—y)(y+1)
1
, \ @+ D-1
= -1 = —
Y +vy zcFl, yFl x4y 1 (e +1)
1y e £i(1), y£i(l), = —y(1) Ry = (22 +1)(y* +1)
T = z°,
2){ @+ DR +1)
o 2 T Fi, i, @+ 2= —————— or (esy +1)/(z —y)
y=1+y Fuu¥ Y (z — y)2?
z+i(y —1)(1),
( )(1) Rg = [22 - 1)2] [22 Fw+ 1)2}
){i:Zzy, @ iy +1)(1), =(1)
3
. 2 2
=y - -1 fs:’72[2z2(y2+1)+z4+(y2—1)2}
y+1Fiw, y—1Fx, y
or (z2 +y2 —-1)/z
z —1+4y(1),
I

yFi(z+1), yFi(x-1), y

(z-1)2+4°

T

Fq =

z(2), y(2), = —y(1)

R5 =2y’ or wy(z — y)

-1, -1

Ty, Tty Fs=(z—y)a"y
6){ & = 2azy, z £ 1y(2), z(1) Re = (12 + yZ)2 or 1(22 +y2)
L2, 2 _
y=-z"+y yFiz,z —y Fe==z 1(22+y2)
7){55:_14.22, @ +1(1), y(1), @ —1(2) Ry = (a2 — 1)y
o (z+ 1)y
V=2 c—1,2, ¢+1 7=
z—1
) i:z271, =z +1(2),y(1) 'R7=(12—1)y or (12—1)2
8
iy = 2zy +z -1, -2z Fr= (2?2 1)y~ !
: =142, z +14(2),y(1) Rg = (12 + 1)y or (z2 + 1)2
9
§ = 2zy —zti, -2z Fg = (1:2 + 1)y71
z(3) Rlozzz
10) 4 =z ,y=1
z Fro=(zy+ 1)zt
=z, x(3 R = 2
u){ ®) 2 =2
y=y-2° 1 Fip=(2? +y)z!
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(
N.=6
_— Picture ()
1\7?‘:2
mt=
” =3 Pu ture 6.9
ny=1
V -
mg = Picture 6.4
v - —_—
\7 Pulurr 6.5
mo=3 ‘>
Picture 6.6
(z 2)
N.=
N, 4 Picture o 7
1
- A
“) Putme 6.8
mg=2
@2
.m - %
(2.4)
n==¢
% o Picture .10
N.=2
ny=1
(r= Putun 6.11

@

DIAGRAM 1. (Mg, = 6).
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Proposition 3.1. The maximum number of invariant lines, includ-
ing the line at infinity and including multiplicities, which a quadratic
system could have is six.

Notation 3.1. We denote by QSLg the class of all real quadratic
differential systems (2.1) with p and g relatively prime, i.e., gcdg(p, q)
=1, Z 1 C, and possessing a configuration of invariant straight lines of
total multiplicity Myp, = 6 including the line at infinity and including
possible multiplicities of the lines.

3.1 Darboux integrating factors and first integrals.

Theorem 3.1. Consider a quadratic system (2.1) in QSLg. Then
this system has a polynomial inverse integrating factor which splits into
linear factors over C and it has a rational first integral, foliating the
plane into conic curves. Furthermore, under the action of the affine
group and time rescaling, a system (2.1) in QSLg is equivalent to
one of the eleven systems indicated in Table 1 which form a system
of representatives of the orbits. This table also lists the corresponding
cofactors of the lines as well as the inverse integrating factors and first
integrals of the systems.

Proof. Orbit representatives and invariant affine lines with their mul-
tiplicities which are listed here in the second columns of Table 1 were
determined in [23]. The corresponding co-factors, Darboux integrating
factors and first integrals from Table 1 are obtained via straightfor-
ward computations. We observe that the first integrals computed via
the method of Darboux and which are listed in the last column of Ta-
ble 1 yield foliations by conics of the plane in all cases. We note that
in the cases 2) and 3) we first obtain first integrals with higher degree
polynomials. To obtain the second first integral listed for the cases 2)
and 3) in the last column of Table 1 we observe that K = 1 is a critical
value for the first integral F = (22 + 1)(y? + 1)/(z — y)?. Indeed, we
have (22 4+ 1)(y?+ 1) — (x —y)? = (zy + 1)2 = 0. Hence, zy +1 =0
is an invariant conic of the system and by Darboux’s theory we obtain
the first integral G = (zy +1)/(z — y).



PLANAR QUADRATIC DIFFERENTIAL SYSTEMS 2031

In case 3) we obtain that K = 4 is a critical value for the first integral

ot + 222 (y? + 1) + (y* — 1)

F = >

Indeed, we have z* +2z2(y? + 1)+ (y* —1)? —42? = (22 +y> - 1)2 = 0.
Then by the theory of Darboux we obtain the first integral G =
(#? + y* — 1)/ and hence in case 3) we also have a foliation of the
plane by conics.

3.2 Phase portraits. In order to construct the phase portraits
corresponding to quadratic systems given by Tables 1 and 2 we use the
configurations of invariant straight lines already established in [23].

Theorem 3.2. (Consider the action of the group of real affine
transformations and time rescaling on the class QSLg. The orbits
of QSLg under this action are classified by the multi integer-valued
nvariant (Nc,mg,NR,nORO,M(loo),mg). The full classification of
these orbits is given in Diagram 1 according to the possible values of this
inwvariant. Diagram 1 also contains all the types of the configurations

of the lines and all the corresponding phase portraits of such systems.

Proof. We shall examine step by step each orbit representative given
by Table 1. For each representative, we place below its configuration of
invariant lines and next to it, its phase portrait and the types of finite
singularities. We have drawn the phase curves so as to suggest the type
of conics they are part of (hyperbolas, parabolas, ellipses or reducible
conics).

1) & = —1+22 g = —1+y?% M 2(F1,+1) are saddles; M3 4(F1, F1)
are nodes;

Config. 6.1 Picture 6.1
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2) & =1+ 2%, § = 1 + y?; there are no real singular points

[€))
) (1)
[23]= -

Config. 6.2 Picture 6.2

3) & =2zy, y = —1 — 2% + y%; M1 2(0,£1) are nodes

Config. 6.3 Picture 6.3

4) & =2zy, y =1 — 2? + y*; My 2(+£1,0) are centers

Config. 6.4 Picture 6.4

5) & = a2, § = y%; My(0,0) of multiplicity four

- F - @

Config. 6.5 Picture 6.5
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6) & = 2y, §y = —x2 + y%; Mo(0,0) of multiplicity four

Config. 6.6 Picture 6.6

7) & = —1+2?% ¢ = 2y; My(—1,0) is a saddle and M;(1,0) is a node
(2.2)

SOR

Config. 6.7 Picture 6.7

8) & =1z% — 1, y = 2zy; M;2(+1,0) are nodes

- @

Config. 6.8 Picture 6.8

9) & = z2 + 1, 9 = 2zy; there are no real singular points

22

-2

Config. 6.9 Picture 6.9
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10) & = a2, § = 1; there are no real singular points

Config. 6.10 Picture 6.10

11) & =z, y = y — %, M1(0,0) is a node

(3.3)

Config.6.11 Picture 6.11

As all the cases from Table 1 have been examined, Theorem 3.2 is
proved. a

As a byproduct of Diagram 1, we also obtain the following

Corollary 3.2. a) The total multiplicity siz yields configurations
corresponding to partitions of the number 6 into individual multiplicities
as follows: (1,1,1,1,1,1), (2,2,1,1), (3, 3).

b) The remaining partitions of the number 6
(2,1,1,1,1), (3,1,1,1), (2,2,2), (3,2,1), (4,1,1), (4,2), (5,1), (6)

cannot be realized in configurations of distinct invariant straight line of
quadratic systems possessing invariant lines whose total multiplicity is
SiT.

Comment. It would be nice to have a direct geometrical reason
explaining the above corollary.

3.3 The projective classification in P2(C) of the invariant
lines configurations of systems in QSLg. To a system (1.1)
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we can associate the equation (1.3) defined by the l-form w; =
q(z,y)dx — p(z,y) dy. We consider the map j : C*\ {Z = 0} —
C2, given by j(X,Y,Z) = (X/Z,Y/Z) = (z,y) and suppose that
max(deg (p),deg(q)) = m > 0. Since v = X/Z and y = Y/Z we
have: dz = (ZdX — XdZ)/Z?, dy = (ZdY —YdZ)/Z?, the pull-back
form j*(wi) has poles at Z = 0 and its associated equation j*(w;) =0
can be written as

7*(w1) = a(X/2,Y/Z)(ZdX - XdZ)/Z*
p(X/2,Y/Z)(ZdY —YdZ)|Z* = 0.
Then the 1-form w = Z™%25*(w;) in C*\ {Z = 0} has homogeneous
polynomial coefficients of degree m + 1, and for Z # 0 the equations

w = 0 and j*(w;) = 0 have the same solutions. Therefore, the
differential equation w = 0 can be written as

(3.1) AdX + BdY + CdZ =0

where

AX,Y,2) = ZQ(X,Y, Z) = Z""q(X/2,Y/Z),
B(X,Y,Z):—ZP(X,}/,Z):—Zm+1p(X/Z,Y/Z),
C(X,Y,Z2)=YP(X,Y,Z) - XQ(X,Y,Z)

and P(X,Y,Z) = Zmp(X/Z,Y/Z), Q(XaKZ) = qu(X/Z,Y/Z).

Clearly A, B and C are homogeneous polynomials of degree m + 1
satisfying AX + BY +CZ = 0.

The equation (3.1) becomes in this case

(3.2) (Bo)  QZdX — PZdY + (YP — XQ)dZ = 0.

Notation 3.3. We consider the set EQ of all real differential
equations
(E) AdX + BdY +CdZ =0

where A, B and C are cubic homogeneous polynomials in X, Y and Z
over R subject to the identity

AX+BY +CZ =0.
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On EQ acts the group PGL(3,R) of projective transformations of
P2(R).

We consider the set Eq of all equations (E) in EQ of the form (Ej)
obtained from equations (1.3).

Notation 3.4. We denote by Eqlg the class of all equations in Eq of
the form (Ey) obtained from equations (1.3) and possessing invariant
lines of total multiplicity six.

On Eq (and Eqlg) acts Aff(2,R). As Aff(2,R) is a subgroup
of PGL (3,R), we may have two distinct orbits under the action of
Aff(2,R) of systems in Eq contained in a single orbit of EQ under
the action of the bigger group PGL (3,R). As we show in Theorem 3.3
below this indeed occurs.

Definition 3.2. We define a projective invariant for equation in
Eqlg as follows:

max (#{w €l | w e SingG N PQ(R)}).

R
ma: =
Sing = i1, Nr}

Theorem 3.3. We consider the systems in QSLg and their asso-
ciated real equations in Eqlg. We consider the action of the group
PGL(3,R) of real projective transformations of the plane on the class
EQ.

i) Two systems (S1) and (S2) in QSLg located on distinct orbits
under the action of the real affine group and time rescaling could yield
equations (E1) and (E2) located on the same orbit under the action of
PGL (3,R) on EQ.

ii) The classification of the orbits of equations (Ey) in EQ associated
to systems (S) in QSLg, under the action of PGL (3,R) on EQ is
given in Diagram 2.

Proof. i) Consider the systems

. — 1+ 27
{;: - ;2 and (S2) {

T = 2zy,

(51) =y -2 -1



Eqlg
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2
&

(1)

g
>

Config. 6.5

[0

.4)
3 3
[a=)

Config.6.10

22)

Config. 6.7

(2.2)

Config. 6.9

(3.3)

Config.6.11

DIAGRAM 2.

(1)

1

Config. 6.3

Config. 6.4

Config. 6.8

) (l)

2037
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Their corresponding invariant line configurations are: Configuration 6.2
and Configuration 6.3 which are not equivalent under the group of real
affine transformations and time rescaling.

Consider now their associated differential equations (3.2) in P2(R):
Z(Y2 + 22)dX — Z(X2 + Z2)dY +
(E1) [ (X —Y)XY — 2%)dZ =0 and
() |20 - X2= 22)dX —2XYZdY+
2 X(X?+Y?+27%dzZ =0.

It can easily be checked that the real projective transformation of
P>(R)

X 01 1 X,
Y|=({01 -1 Y
VA 1 0 O Al

transform (E1) into (Es).

ii) We consider the 11 representatives of the orbits of QSLg under
the action of the affine group and time rescaling and their respective
configurations in Diagram 2. In i) we showed that the equations as-
sociated to systems with the distinct configurations Configuration 6.2
and Configuration 6.3 in Diagram 2, lie on the same orbit under the
action of PGL (3,R) on EQ. We also show below that the equations
associated to systems with Configuration 6.i, i = 5,7,8 (respectively
Configuration 6.j, j = 6,9, or Configuration 6.j, j = 10,11) are also
located on the same orbit. The proofs are obtained in analogous way
to the cases in i) and we only list below the corresponding transforma-
tions (the respective equations can be easily computed directly having
canonical systems and the equation (3.2).

_ 0 0 2 [ Config. 6.7 :
1) f;g&g-yﬁj H: 100 1 |=|é=-11a|;
. ’ 0 4 0 | y=2y
_ 1 0 1 [ Config. 6.8 : ]
2) iC:or;ig.yﬁ.j 3.12}: 1 1 |=|i=22-1, |;
. ’ 01 0 | y=2zy |
[ Config. 6.6 : 0 0 1 [ Config. 6.9 : ]
3) T = 2zy, 1 0 0]|=|2z=1+22 |;
|y = —a® +y? 0 -1 0 § = 2y
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0 01 Config. 6.11 :
01 0| = =z, ;
1 00

4) [Conﬁg. 6.10 :] .
y=y-—a’

t=2% g=1

4. The class of quadratic systems with My, = 5.

Notation 4.1. We denote by QSLjy the class of all real quadratic
differential systems (2.1) with p and g relatively prime ((p,q) = 1),
Z t C, and possessing a configuration of invariant straight lines of
total multiplicity Myr, = 5 including the line at infinity and including
possible multiplicities of the lines.

4.1 Darboux integrating factors and first integrals.

Theorem 4.1. Consider a quadratic system (2.1) in QSLy. Then
this system has a polynomial inverse integrating factor which splits into
linear factors over C, and it has a Darboux first integral. Furthermore,
the quotient set under the action of the affine group and time rescaling

on QSLjy is formed by:
(i) a set of 19 orbits;

(ii) a set of 11 one-parameter families of orbits. A system of
representatives of the quotient is given in Table 2. This table also lists
the corresponding cofactors of the lines as well as the integrating factors
and first integrals of the systems.

Corollary 4.2. All the systems in QSLy have elementary real first
integrals. We only list in Table 3 all real first integrals which correspond
to those in the last column of Table 2 which are given there in complex
form.

4.2 Phase portraits. In order to construct the phase portraits
corresponding to quadratic systems given by Table 2 we use the config-
urations of invariant straight lines already established in [23]. In order
to determine the phase portraits in the vicinity of infinity, we shall
also use the following C'T-comitants constructed in [24] (for detailed
definitions of the notions involved see [24]):
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TABLE 2 (M, = 5).
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Orbit

representative

Invariant lines and

their multiplicities

Inverse integrating

factor R;

Respective cofactors

First integral F;

&= (z+1)(gz+1),

§=(9-Day+y°,

z+1(1), gz +1(1),
e —y+1(1), y(1)

Ri1=y(gz+1)(x —y+1)

gr+1, g(z+1), gr+y+1,

2 F1=9y%(gz +1)x
glg" ~1#0 (9-Dz+y (@—y+1)77
.’i:g($274),g760 yti(x —2) + g(1), Ra = (z+2)x

D o) @ +2(1) [(@-2%+ @ +9)7)
(g% + 4z + g2y Fy = (2 +2)°x

(9 xi)z—y+gF 2,
g(zF2)

li(z — 2) +y + 4]
[i(2 - z) +y + g]%9

d::—1+z2,
. 9

y=g(y" - 1),
9(g® =1 #0

z £ 1(1), y £1(1)

Ry =(z> - 1)(" - 1)

zF1, glyF1)

(z+19%(y 1)

eI

z £1(1), y£i(l)

zF1, g(yFi)

i =1+2” g #0,1

§=g(" +1)

z £i(l), y £i(1)

Rs = (2> +1)(y° +1)

zFi, g(yFi)

(e +i)9(y —1)

SCED IS

=1+ 2zy,

. 2, 2
y=g—z"+y°,
g=c -1/

I = o+ et iy - 1/20)1),
Il =z—cti(y+1/(2))(1)

Rg=1I) xI_ x I x1I"

Fi(z —c) + (y + 1/(20)),
Fi(e +¢) +(y - 1/(2¢))

(I;)2CZ+1'(I/_)2C2 —i

Fo = (Ii)262+i(15)20271‘

z+1(1), y(1), = —y+1(1)

Rr=y(z—-y+1)

Ly—z, y+1

Fr=e "y MNe-y+1)

. 2
& =gz, |g| #0,1

§=(g-Lay+y°

2(2), z —y(1), y(1)

Rg = zy(v —y)

gz, gr+y, (9-Nz+y

Fg=ayl(w—y)" ¢

{

{

{
o
|

{

{

{

{

1+y+iz1), 2(1)

Rg =2’ +(y +1)°

1-—y+tiz, 2

eiz(l +y—iz)

Fo = -
1+y+iz
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TABLE 2 (M, = 5) (continued).
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Orbit

representative

Invariant lines and

their multiplicities

Inverse integrating

factor R;

Respective cofactors

First integral F;

2 2
—z" +gzy —y

. 2
z =gz, g#0
w){ g

z +iy(1), =(2)

2, 2
Rio = z(z” +y°)

a2 (iz + y)ig

§= e — =
(9F i)z -y, gz F10 iz — )9
. 2
11){’”=”” o 2(2), v+ 1(1), y(1) Ru =2y
. 2
y=y+y ety y y+1 Fuy = yelvtD/e

12) &= ~1+2%, §=y°

z £ 1(1), y(2)

2, 2
Riz =y"(z" - 1)

e2/Y (g
w:Fl, y ]_-12 . (w(+ 1)1)
¢ =g(a® - 1), £+ 1(1), y(1) Riz = y(a® = 1)
13){ ) TeEs
y=2yg(g°—1)#0 g F1), 2 Fis y( -
| &= (z+1)(gz+1), z+1(2), y(1), gt +1(1) | Rig =y(z +1)(gz+1)
14
. 2 - g
y=(9—-1zy, g(¢° —1)#0 o+ 1, (g 1)z, g(e+1) Fua = (g(mii;g
15) izg(w2+1)a y=2y, g#0 z £14(1), y(1) R15:y(z2+1)
B B yg(z—i)i
g(zFi), 2 Fi5 = (z+1)1
2

16)é=1+q7, j=4y°

z (1), y(2)

2/y( %
. € x+1)
) Fi6 = -
TFiy 16 @)
2
) X z(2), y(1 Ri7 =2y
M é=a?, g2 (2), y(1) 17 ;
T, 2 Fi7 = ye v
z+1(2),y(1) Rig = (z+ 1)y

18)i=1+z, g=—zy

1, —x Fig=ye(z+1)7"
2
. . z(2), y(2 Rig=x"y
19)6 = o + 2y, § = o2 (2), (2 v
Tty y Frg = ye¥
z+1(1) Rog =2° —1
200 =-1+22 =1
Z/y 1
1:F1 fzo:w

(z-1)
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TABLE 2 (M, = 5) (continued).

Invariant lines and

Inverse integrating

Orbit
their multiplicities factor R;
representative - .
Respective cofactors First integral F;
_ _1)\2
) 2 -1(2), 2 +1(1) Rat = (2 — 1)

2 +y+1
) = - Ty Ty
y=a+2y z+1, z-1 Far = (x—1) lexp|:79:71 i|

2 2
p—1-a? z+1(2) Raz = (2" — 1)

22) 5 .
. -
y=1-2zy fzzzeXP{ 2 y}

—rx4+1 xé—1

(@-1+1)"

a'v:—1+z2,
23) 9
y=-3+y-z" +ay

z—1(3), = +1(1)

Ras = (z +1)(z — 1)

-2
z+1, z-1 .7-_23=(z+1)exp|:y—1:|
-
z+i(1) Rog=a2 +1
24) g =1+22, g=1 :
. 1
. _ 2y 1—T
T F1 Foy =
: ()
. 2 2
z+i(2) Ros = (z° +1)
25) & =1+22, §=1+2zy
. F 4y — 2z (i+2)(— )
=ex it+z)(i—a
TFi 25 =€XP | “5
1 Rog =1
%) 4 = —a, § =y o2 z(1) 26
-1 Fag = a(z” — 3y)
z+1(2) Ror = (v +1)°
27)z':l+z,y:y—z2 1
-2 Yy -
1 For = 1
27 =(z +1) EXp{w+z+1}
z(3) Rgg:wz
2B)i=2, j=1+=z n
z Fog = ¢! exp |:y-|- —]
z
) z(4) ’R29=z4
29) & =z°, y=1+2zy 3ay 1
x Fag = 3
T
— Rzg =1

F30 = z° — 3y
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TABLE 3.
System First integral System First integral
2) | (e+2)expl2garctg2—2)/ | 4) |ml@+1)/(@— 1P
(g+yl} +2arctg (y)
i 712°2f;252 exp{2x
5) arctg (y) — g arctg (z) 6) arctg [(4dcz+8c3y)/

(4c?2? + 4c?y? — 4c* — 1]}

9) [za — (14 y)o]/[20 + (1 + y)al,

4 = cos(x/2),0 = sin(z/2) 10) In |z| + g arctg (y/x)
15) gln |y| — 2arctg (x) 16) 1/y + arctg (x)
24) y — arctg () 25) (2y —z)/(z? + 1)
—arctg (z)

F Fro = 4c?(2? + y?) £ 8c3z F 4ey + 4c* + 1.

(a,x,y) ypl(ﬂf y) qu(xay)a 1= 07 ]-a27
0 .
(a,x,y) O pl(a z y) a_qi(aaxay)a 1= 1727

M(a,z,y) = 2 Hess (Cg(a :v,y))
(4.1) n(a) = Discriminant (C2(a, z,y));
K(a,2,y) = Jacob (p2(2, y), ¢2(2,y));
po(a) = Resz(pz,QZ)/y = Discriminant (K(a T y))/lﬁ'
H(a,z,y) = — Discriminant (ap2(z, y) + Be2(%,Y)) {0y, =z} 5
L(a,z,y) =4K + 8H — M,
Ki(a,z,y) = p1(z,y)q2(2,y) — p2(z,y)qa (2, y).

Remark 4.3. We note that by Discriminant (C2) of the cubic form
Cz(a,z,y) we mean the expression given in Maple via the function
“discrim (Cy, x) /y°.”

In order to construct other necessary invariant polynomials let us
consider the differential operator £ = = - Ly —y - Ly acting on Ra, z, y|
constructed in [4], where

0 1 0 0 0 0

0
L1 =2ap07— —+= 2b b b
! @00 8(110 tao 6(120 + 2 ao1 6(111 + 00 8b10 +010 6()2 + L 9b,, 8b11
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0 0 1 0 0 0
Ly =2a990—— B 2b b
2 aoo Bao; +ap1 Batos + 2a10 BaLs 42000 Bboy + 001 by

—|—lb 0
) 2 1081)117

as well as the classical differential operator (f,¢)®*) acting on Rz, y]?
which is called transvectant of index k (see, for example, [13, 16]):

k

k) _ Y k> ok f kg
42 9™ =V () gy g

h=0

So, by using these operators and the G L-comitants pg(a), M(a,z,y),
K(a,z,y), Di(a,z,y) and C;(a,z,y) we construct the following poly-
nomials:

1 .
lu’i(aawvy) = J‘C(l)(uo)a i=1,... 747
K/(a) = (M7 K)(2)7 Hl(a) = (M7 Cl)(Q)a
(4.3)

Ky = 4 Jacob (Jo, &) 4 3 Jacob (Cy, £) Dy — £(16J; + 3J3 + 3D3?),
K3 = 2C2(2Jy — 3J3) + C2(3Co K — 2C1Jy) + 2K, (3K, — C1.Dy),
where L0 (1) = L(L57 (1)) and
J1 = Jacob (Cy, D), Jy = Jacob (Cy, C2),

Js = Discrim (C1), Jy = Jacob (C1, D),

¢=M - 2K.

Notation 4.4. J¢(S) = [I,,c, (p,q) tw Where iy, is the Poincaré index
of w.
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(1
W N
PL(tule 5.1
‘ P1rfm€ 5.2
N=5 A
Ne=5 (‘) (') Pirtun’ 5.3

(

@)
P7rtu7e 5.4

Pw‘tu re 5.6 @

4
Ml )=4 W Picture 5.26
3.3)
]W(lx): 3 | Picture 5.27
N.= 2 =
M)=2
b= = . ) Picture 5.28
3
2.4

M, (1)@ Picture 5.29 @

(3.4)

c= Picture 5.30
—

DIAGRAM 3. (Mg, = 5).
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(1)

) w N
M > & Picture 5.7
N=4 T
(1) 2 (1)

M()=1
- @ . Picture 5.8
jumi——
mg=3
=" 7, & Picture 5.9
—_—
Ql
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y ‘ Plrfme 5.1 @

d&rr: 2
- Picture 5.14/@
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DIAGRAM 3. (ML, = 5) (Continued).
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(2.2)

R
dij,a: 2

1) Picture 5.17
—

w @2
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g?”;, Pulun 5.18
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mg= 2
(2)
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&
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o)
M(.)=3 @(n Picture 5.20
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Picture 5.21
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(1)

Picture 5.22 @
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15
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Q

=
=
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~

(3.3)
®
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Mg=0 L’ \ Picture 5.23

(2.4)
J\'ﬂlm): 3 Picture 5.24
Vel T 9, Yo

N,=1

(2.2)

M \o Picture 5.25

DIAGRAM 3. (ML, = 5) (Continued).
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Theorem 4.2. Consider the systems of the form (2.1) in QSLy.
Then the action of the affine group and time rescaling yields a clas-
sification which corresponds to the distinct values of the invariant
(Nc,mg,NR,n;:,M(l ), ng U,nga,Jf( )).  This classification ap-
pears in Diagram 3 where all the types of configurations of the lines
and all the corresponding phase portraits of such systems are listed.

Proof. Using the results of [23, 24] we shall examine step by step each
orbit representative given by Table 2. From [23] we get the respective
configurations Configuration 5.1 of invariant lines and from [24] we get
the phase portraits Figures j in the neighborhood of infinity.

1) Configuration 5.1. & = (z + 1)(gz + 1), ¥ = (9 — V)xy + v?,
9(g> = 1) #0;

1.1. Finite singular points: M1(—1,0) is a node, Ma(g — 1,—1) is a
saddle; for g > 0 M3(—1/g,0) is a saddle, My((g —1)/g9,—1/g) is a
node; for g < 0 M3 is a node, My is a saddle;

1.2. Infinite singular points: n=1> 0, g = g> > 0

and @ then @

Conﬁq Figure 5 Picture 5.1

2) Configuration 5.2.

{9‘3—9(9«“2—4), g#0,
y=(9>—4)+ (¢° +4)z — 2* + gay — y*;

2.1. Finite singular points: M;(2, —g) is a node, M3(2, 3g) is a saddle;
2.2. Infinite singular points: n = —4 <0, pop = g> > 0

(1)
By [23, 24] = and then
—

Config. 5.2 Figure 30 Picture 5.2
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3) Configuration 5.3. # = —1+x?%, § = g(y? — 1), g # 0;

3.1. Finite singular points: M 2(£1,£1) are saddles for g < 0 and
nodes for g > 0; Ms 4(£1,F1) are nodes for ¢ < 0 and saddles for
9>0;

3.2. Infinite singular points: n = g* > 0, po = g2 > 0;

(1)
(1)

(1) (1)
o

Config. 5.3 Figure 5 Picture 5.3

By [23, 24] = and then
—

4) Configuration 5.4. & = —1+ 22, = g(y>+ 1), g # 0;
4.1. Finite singular points: there are no real singular points;

4.2. Infinite singular points: n = g> > 0, uo = g*> > 0;

(1)
[€3)
By [23, 24] =, and @ th:e>n

Config. 5.4 Figure 5 Picture 5.4

5) Configuration 5.5. # = 1+ 2%, § = g(y*> + 1), g(g®> — 1) # 0;
5.1. Finite singular points: there are no real singular points;

5.2. Infinite singular points: n = g* > 0, po = g> > 0;

@
), (1
By [23, 24] = and @ then
—

Config. 5.5 Figure 5 Picture 5.5
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6) Configuration 5.6. & = 1+ 2xy, § = g — x® + y%, g € R;
6.1. Finite singular points: Mj o(£(—2g+2+/g% +1)71/2, F(~g/2+

Vg2 +1/2)'/2) are foci;

6.2. Infinite singular points: 1= —4 <0, pp = —4 < 0;

then
—

Config. 5.6 Figure 34 Picture 5.6

7) Configuration 5.7. & =1+ z, § = —zy + y*;

7.1. Finite singular points: M;(—1,—1) is a saddle and M5(—1,0) is
a node;

7.2. Infinite singular points: n = 1 > 0, g = w1 = & = 0,
p2 =y(y —x) = L/8, paL > 0;

(1)

By [23, 24| ju and tgn

Config. 5.7 Figure 4 Picture 5.7

8) Configuration 5.8. & = gx?, y = (9 — V)ay + %, g(g®> — 1) £ 0;

8.1. Finite singular points: the systems are homogeneous and the
singular point M;(0,0) of multiplicity four has 2 parabolic and 2
hyperbolic sectors;

8.2. Infinite singular points: n=1> 0, ug = g> > 0;

By [23, 24] = () and @ tgn @

Config. 5.8 Figure 5 Picture 5.8
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9) Configuration 5.9. & =2z, §y =1 — x? — y?;

9.1. Finite singular points: M;(0,1) is a saddle and M5(0,—1) is a
(dicritical) node;

9.2. Infinite singular points: n = —4 < 0, pyo = p1 = k = 0,
po = 4(z* +y?) # 0;

(1)

By [23, 24] = and @ then @
E

Config. 5.9 Figure 30 Picture 5.9

10) Configuration 5.10. & = gx?, y=—ax® + gy —y%, g # 0;

10.1. Finite singular points: the systems are homogeneous and the
singular point Mj(0,0) of multiplicity four has 2 hyperbolic sectors;

10.2. Infinite singular points: n = —4 < 0, po = g% > 0;

@)
By [23, 24] = ‘ and @ then @
E

Config. 5.10 Figure 50 Picture 5.10

11) Configuration 5.11. & = 2% + 2y, ¥ = y + y%;

11.1. Finite singular points: M;(0,—1) is a node, My(1,—1) is a
saddle, M3(0,0) is a saddle-node;

11.2. Infinite singular points: 1 =0, M = —8z% #0, ug =1 > 0;

%N
By [23, 24] = o and th:e>n
P )=

Config. 5.11 Figure 18 Picture 5.11
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12) Configuration 5.12. # = —1+ 2%, § = y?;

12.1. Finite singular points: My(—1,0) and M2(1,0) are both saddle-
nodes;

12.2. Infinite singular points: n =1> 0, pg =1 > 0;

\Vl N

Config. 5.12 Figure 5 Picture 5.12

13) Configuration 5.13. & = g(z® — 1), § = 2y, g(g®> — 1) # 0;

13.1. Finite singular points: for ¢ > 0 M;(—1,0) is a saddle and
M>(1,0) is a node; for g < 0 My(—1,0) is a node and M»(1,0) is a
saddle;

13.2. Infinite singular points: n = 0, M = —8g%x? £ 0, po = p1 =
k=rky =0, L=28¢g%x? >0, uy = 4¢g%z? > 0, Ky = 384g*z? > 0;

By [23, 24] ‘” and then
U -

Config. 5.13 Figure 19 Picture 5.13

14) Configuration 5.14. & = (z + 1)(gz + 1), g = (9 — 1)y,
99> = 1) #0;

14.1. Finite singular points: M;(—1,0) is a node; M2(—1/g,0) is a
saddle for g > 0 and it is a node for g < 0;

14.2. Infinite singular points: n = 0, M = —8x2, g = 1 = K =
k1 =0, pe = g(g — 1)%22, L = 8gz?%, Ko = 48(g — 1)%(¢9® — g + 2)z2.
We shall consider two subcases: ¢ > 0 and g < 0.
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a)g>0:n=p=mpm=k=k1 =0, M#0, us >0, L >0, Ky >0;

By [23, 24] = m and @ then @

Config. 5.1 Figure 19 Picture 5.14@

b)g<0:n=py=p=k=r=0,M #0, us <0, L <0;

7N
By [23, 24] = » and then
y SR

Config. 5.14 Figure 29 Picture 5.140)

15) Configuration 5.15. & = g(x® + 1), § = 2y, g # 0;
15.1. Finite singular points: there are no real singular points;

15.2. Infinite singular points: n = 0, M = —8g%x? £ 0, po = p1 =
k=rky =0, L=_8¢g%x? >0, uy = 4¢9%z? > 0, Ky = —384g*z? < 0;

(2,2)

By [23, 24] = (1) and @ then @
./ B

CO”ﬁg. 5.15 Figu'/'e 8 Picture 5.15

16) Configuration 5.16. & = 2% + 1, § = y?;

16.1. Finite singular points: there are no real singular points;
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16.2. Infinite singular points: n =1> 0, pg =1 > 0;

(1)
By [23, 24] = o and @ then
N -

Config. 5.16 Figure 5 Picture 5.16

17) Configuration 5.17. & = 22, § = 2y;
17.1. Finite singular points: M;(0,0) is a saddle-node;

17.2. Infinite singular points: 1 =0, M = —822 £ 0, po = p1 = k =
k1 =0,L=82%>0, uy =422 >0, Ky =0;

(2,2)
By [23, 24] = m and @ then @
.

Config. 5.17 Figure 19 Picture 5.17

18) Configuration 5.18. & =1+ z, § = —zy;
18.1. Finite singular points: M;(—1,0) is a (dicritical) node;

18.2. Infinite singular points: 1 =0, M = —8x2 £ 0, 1o = p1 = o =
K=K1 = 07 L= 07 u3 = _1'2% Kl = _1'21% /"’3K1 > 03

(2,2)

By [23, 24| :><'w and @ then @
N/ b

Config. 5.18 Figure 21 Picture 5.18

19) Configuration 5.19. & = 2% + zy, ¥ = y%;

19.1.  Finite singular points: the systems are homogeneous and
the singular point Mj(0,0) of multiplicity four has 2 parabolic and
2 hyperbolic sectors;
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19.2. Infinite singular points: n = 0, M = —8x% # 0, uo =1 > 0;

By [23, 24] “> and then
BN -

Config. 5.19 Figure 18 Picture 5.19

20) Configuration 5.20. & = —1+ 22, § = 1;
20.1. Finate singular points: there are no singular points;

20.2. Infinite singular points: n = 0, M = —8z2 # 0, L = 822 > 0,

Po = M1 = fo = p3 = k = K = 0, ug = 2* > 0, K = 0,

K, = 38422 > 0;

(2.4)
By [23, 24] = @(n and @ then @
—

Config. 5.20 Figure 18 Picture 5.20

21) Configuration 5.21. & = —1+ 22, § = = + 2y;

21.1. Finite singular points: M1(—1,1/2) is a saddle and M5(1, —1/2)
is a node;

21.2. Infinite singular points: 1 =0, M = —8z% # 0, o = py = kK =
k1 =0, pg = 4z > 0, L = 822 > 0, Ky = 384z2 > 0;

Yo and @ then @
_—

Config. 5.21 Figure 19 Picture 5.21

22) Configuration 5.22. & =1 — 2%, § = 1 — 2zy;
22.1. Finite singular points: My(1,1/2) and My(—1,—1/2) are nodes;
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22.2. Infinite singular points: n =0, M = —8x% # 0, o = p1 = K =
k1 =0, pg = —42% < 0, L = —8z2 < 0;

1 and ‘ then @
—

Config. 5.22 Figure 29 Picture 5.22

23) Configuration 5.23. @ = —1+z2, 9= -3 +y — 2% + zy;
23.1. Finite singular points: M1(1,2) is a (dicritical) node;

23.2. Infinite singular points: 1 = 0, M = 0, pg = p1 = p2 = 0,
pz = —8z3, K = 222, K3 = 242°% > 0;

(3,3)
By [23, 24] = and Q then @
=

Config. 5.23 Figure 37 Picture 5.23

24) Configuration 5.24. & = 1+ 22, § = 1;
24.1. Finite singular points: there are no singular points;

24.2. Infinite singular points: n =0, M = —8x2 £ 0, pug = z* > 0,
Po = M1 = Mo = 3 = K = Kk = 0, K = 0, L = 82 > 0,
Ky = —38422% < 0;

(2.4)
By [23, 24] = | ] and then
_—

Config. 5.2/ Figfu//'e 8 Picture 5.2

25) Configuration 5.25. & = 1 + 22, y = 1 + 2zy;

25.1. Finite singular points: there are no singular points;
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25.2. Infinite singular points: n =0, M = —8x% # 0, o = p1 = K =
k1 =0, pg = 4z >0, L = —82% < 0;

(2,2)

Y
By [23, 24] = <1> and ‘ then
=

)

Config. 5.25 Figure 17 Picture 5.25
26) Configuration 5.26. & = —x, § = y — x%;
26.1. Finite singular points: M;(0,0) is a saddle;

26.2. Infinite singular points: n = 0, M = 0, Cy = 2> # 0,
/"’0:/"’1:/"’2:07 /'L3:_'T37é07K:07 K1:x37:u’3K1 <03

(3.3)
By [23, 24] = ! and @ then @
_—

Config. 5.26 Figure 33 Picture 5.26
27) Configuration 5.27. & =1+ z, § = y — x%;
27.1. Finite singular points: M;(—1,1) is a node;

27.2. Infinite singular points: n = 0, M = 0, Cy = x> # 0,
po =p1 = pz =0, K =0, psK; = 2% > 0, K3 = 62° > 0;

(3.3)

By [23, 24] = . and C) then @
.

Config. 5.27 Figure 31 Picture 5.27

28) Configuration 5.28. & = z2, j =1 + x;

28.1. Finite singular points: there are no singular points;
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28.2. Infinite singular points: n = 0, M = —8z% # 0, L = 822 > 0,
po=p1 =p2=p3=r=r1 =0, ug =2* >0, K =0 = Ky;

(2.4)

By [23, 24| #@m and @ then @
—

Config. 5.28 Figure 18 Picture 5.28

29) Configuration 5.29. & = 2, § = 1 + 2zy;
29.1. Finite singular points: there are no singular points;

29.2. Infinite singular points: 1 =0, M = —8x% # 0, o = p1 = fo =
ps=rk=+r1 =0, g =2* >0, L = -8z < 0;

2.4
Y
By [23, 24] = f } and then
0 -
0

Config. 5.29 Figure 17 Picture 5.29

30) Configuration 5.30. & =1, § = x?;
30.1. Finite singular points: there are no singular points;

30.2. Infinite singular pointss n = 0 = M, Co = —z2 # 0,
po = p1 = p2 = p3 = 0, pg = z* > 0, K3 = 0;

3.4)

By [23, 24] = O and @ then
=

Config. 5.30 Figure 30 Picture 5.30

As all the classes from Table 2 are examined, Theorem 4.2 is proved.

O



PLANAR QUADRATIC DIFFERENTIAL SYSTEMS 2059

4.3 The projective classification in P5(C) of the invariant
lines configurations of systems in QSL;. Using the same notations
introduced at the beginning of subsection 3.3 we add here the following
notation.

Notation 4.5. We denote by Eql; the class of all equations EQ
of the form (E)) obtained from an equation (1.3) possessing invariant
lines of total multiplicity five.

We also need an integer-valued projective invariant.

Notation 4.6. Let us denote ng is the number of the real
ing

invariant lines on which lie exactly mging real singularities of G.

Notation 4.7. We denote by N¢ the number of all distinct invariant
lines Iy,...,Ins of a system (2.1). We denote by 9; the multiplicity
of the line I; and by ngy, the number of the lines [;, j € {1,...,Nc}
with multiplicity 9%;. We denote 91 = max{9; |i =1,... ,Nc}.

Then we have:
Nc

Zgﬁi Non, = M[L.

i=1

Notation 4.8. Let us denote by mg the maximum of the multiplic-
ities of singularities of the system which are located on any one of the
lines and by nm, the number of the singularities of the system with
multiplicity mg.

Notation 4.9. We denote m§ = max{r(w) | w € SingG}.

Theorem 4.3. We consider the systems in QSLy and their asso-
ciated real equations in Eqly. We consider the action of the group
PGL(3,R) of real projective transformations of the plane on the class
EQ. The classification of the orbits of equations (Ey) in EQ associ-
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Config. 5.1 Config. 5.3 Q
N,=3 ’Q o
o N—7

Config. 5.2 @ Config. 5.4
), (1
R
Mging~ 3
N=1
Config. 5.5
R _
Mgy 1

Config. 5.6

O

Config. 5.7 e Config. 5.11
<

. IO

)

Config. 5.8 ,, : Config. 5.13 Config. 5.14
R
msmg: 3 uy
JVM:Q

Config. 5.9 T

Config. 5.16 —
R _g
Ming~ 2 ‘.)

S Config. 5.10 @9 Config. 5.15

R

A

R

12

=
(\Hﬁ
F
[

9

Config. 5.26 Config. 5.29
Mm=3 N

Config. 5.27 Config. 5.28

(2.4)
a

)

DIAGRAM 4 (Eqly).
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@

) m
£ Config. 5.18 ~ Config. 5.19

‘0’ y ‘ ®

Config. 5.22

@2 2
P

ms=2 ‘h ‘h

— . v = an ‘,

Config. 5.17
mE: 3
Ny=3
— Config. 5.21 5
Mm=3 N
Rt
N.=3
@2 n
Config. 5.20 Config. 5.23
Mm=2
)
Ne=1 e
Config. 5.25
=3 o
6.9
Config. 5.2/
N-=1
Config. 5.30

DIAGRAM 4 (Eqly) (Continued).
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ated to systems (S) in QSLyg, under the action of PGL(3,R) on EQ

1s given in Diagram 4.

Proof. The proofs are obtained in an analogous way to case ii) in
Theorem 3.3, and we only list below the corresponding transformations
(the respective equations in Eqly can be easily computed directly

having canonical systems and the equation (3.2)).

Config. 5.1 : 0 —-g g-—2
1) |&2=(z+1)(gz+1), g-1 0 g-1|=
L 9= (9— Doy +y? 0 g g
Config. 5.2 :
& = g(z? — 4), -2 0 6
2) |9=@*-49—=2*| | g 8 ¢ =
+(g2 +4)z -1 0 —1
L +gzy — o2

Config. 5.3 :
& =—1+22,

Ly =y=9'(y* - 1)

[ Config. 5.4 :
&=-1+22%, |;
Ly =¢'(y* +1)
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10)

11)

12)

13)

14)

DANA SCHLOMIUK AND NICOLAE VULPE

[ Config. 5.7 :
=1+,

Ly = —zy +y°

[ Config. 5.7 :

=1+,

Ly =~y +y?

Config. 5.8 :

& = g2,
Ly=(9— Dy +y°
Config. 5.8 :

& = gx?,

Ly = (9 - Dzy +y?
Config. 5.9 :
T = 2z,
ly=1—a—y
Config. 5.10:

i‘:gz‘z,

2

[ Config. 5.17 : ]
& =2,
L y=2y
[ Config. 5.17 : ]
& =22,
L y=2y

[ Config. 5.20 : ]
& =—1+22,
L y=1 J

[ Config. 5.21 : 7]
&= —1+ 22,
L y=z+2y |
[ Config. 5.26 : ]
T = —z,
L y=y—=2? |
[ Config. 5.27 : ]
T =1+=z,

L §=y—22 |

Ly = —2® + goy — o?

N N N e e N e Y e N N e N e Y

[e=]

_H O O O = O O = O

-1
-1

o =

o O = O

[ Config. 5.11:
& = z2 + zv,
L 9=y +y°
[ Config. 5.12:
& =—1+22,
L y=y¢°
[ Config. 5.13 :
& =g'(x* 1),
L 9=2y
[ Config. 5.14 :
z=(x+1)x
(g'z +1),
Ly = (9" — D=y
[ Config. 5.16 :
&=1+a?
L 9=y
[ Config. 5.15:
& =g'(z* +1),
L y =2y
[ Config. 5.18 :
m—1+x ]
'Conﬁg 519
T=c +xy,]
L y=y
" Config. 5.23
r=-1+= ,]
= —3+y
| —z2 + zy
[ Config. 5.22 :
z=1—x2,
L y=1—2zy |
[ Config. 5.29 : ]
& = x2,
L y=1+ 2zy
[ Config. 5.28 : ]
& = a2,
L y=1+=x

)

)

)

)

)
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5. Invariant conditions for distinguishing topological phase
portraits. We consider two equivalence relations on the classes of all
real quadratic differential systems which possess invariant lines of total
multiplicity five (QSLy) and six (QSLg): the topological equivalence
relation of the phase portraits and the equivalence relation induced by
the action of the affine group and time rescaling.

We note that the first equivalence relation is coarser than the second.
Indeed, we could even have an infinite set of equivalence classes of the
second relation, all included in the same equivalence class of the first
relation.

In this section we consider the following problem:

Give necessary and sufficient conditions for quadratic systems in
QSLy and for QSLg, formulated only in terms of algebraic invariants
and comitants depending on the coefficients of the systems: a € R'?
such that two systems have topologically equivalent phase portraits.

We shall use here the CT-comitants constructed in [23] as follows.

Notation 5.1. Consider the polynomial ®,53 = aoP + BQ €
Rla, X,Y, Z,, 8] where P = Z*p(X/2,Y/Z), Q = Z*¢(X/Z,Y]Z),
p,q € Rla, z,y] and max(deg (, ,)p,deg (5,)q) = 2. Then

®op = c11(a, B)X?+2c12(a, B)XY + caa(a, B)Y?
+ 2613(06,,3)XZ + 2023(&, /B)YZ + 033(a75)Z27

Ala,a, B) = det [|cij (e, B) lli jef1,2,3)
D(aa T, y) = 4A(a’ -Y CL’),
H(a,z,y) = 4] det ||lci; (—y, )i jegr,2y]-

Let us consider the polynomials

Ci(aaway) = ypi(aaxay) - in(aamay) € R[aaxay]a 1= 07 ]-727

0 0 .
Di(aaway) = %pi(a,l',y) + FyQi(aaxay) € R[aamay]a = 172-
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We construct the following T-comitants and C'T-comitants, cf. [23]:

Bs(a,z,y) = (Ca, D)V = Jacob (Ca, D),
Ba(a,2,y) = (Bs, Bs)® — 6B3(Cy, D),
(5.1) By(a) = Res, (Cs, D) /y° = —27°37% (By, Bs)'",
p(a) = Discriminant (K (a, z,y)) = po(a),
N(a,z,y) = K(a,z,y) + H(a,z,y),
)

Notation 5.2.

Hi(a) = —((Cz, C2)?, C2)®, D),
Hy(a,z,y) = (C1, 2H — N)P — 2D, N
Hj(a,z,y) = (Ca, D)?

Hy(a) = ((Ca, D), (Cy, D)) ®),

Hs(a) = ((Ca, C2)@, (D, D)) ®

+8((Cy, D), (D, D)) ®),

Hg(a,z,y) = 16N2(CZ,D)(2) + Hg(Cz,Cz)(z),
Ni(a,z,y) = C1(Cy, Cy)® —20,(Cy, Cy) P,
Na(a,z,y) = D1(Cr, Ca)®) — ((02,02)@),00)(1)
N3 (a,z,y) = (C,C1)"V,
Ni(a,z,y) = 4(Ca,Co)™ — 3C1 Dy,
Ns(a,z,y) = [(D2,C1) Y + Dy D,]* — 4(Cy, C2) P (Co, Do),
No(a,z,y) = 8D + Cy [8(00, Do)V —3(Cy, 01)@ + 2Dﬂ .
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TABLE 4 (M, = 6).
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Necessary and sufficient .
Orbit representative Configuration
conditions
& =-1+a?, ,
(VL) ) 5 n>0, Bs=N=0, H >0 | Config. 6.1
y=-1l+y
& =1+a2, ]
(vig)s L n>0, B3=N=0, H <0 | Config. 6.2
y=1+y
T = 2xy,
(VI.3){ ] 9 2 n<0, B3=N=0, H <0| Config. 6.3
y=y° -z’ —
T = 2xy, .
(VLY)q . a2 | <0, Bs=N=0, H >0| Config. 6.4
y=1—-z Yy
(VL5) & =a?, § =142 n>0, Bs=N=H; =0 Config. 6.5
T = 2zy, .
(VL6)S . 2,2 n<0, Bs=N=H; =0 Config. 6.6
y=-—-x Yy
P =—1 2 MD #0,n=B3=N=0
(vl ”® te #0, 7= Bs " | Config. 6.7
y=2y H=Ni=Ny=0
. 2 — - N —
=22 -1 MH #0, n=B3 =N=0,
(vigd T 70 70, m=Bs Config. 6.8
y = 2zy Hs =0,H3 >0
r=1 2 MH #0, n=B3=N=0
(vigd Tt Te #0,m=Bs " | Config. 6.9
Y = 2zy Hy =0,H3 <0
M#0, n=B3 =N =0,
(VL10) ¢ = 22,9 =1 #0, 7= 5B Config. 6.10
H=D=N; =N2=0
T =u, n=M=B3 =N =0, )
(VI.11) Config. 6.11
g:y—$2 N3 =N4 =0

The following theorem, which is proved in [23] using these invariant
polynomials, will be applied here to construct the conditions mentioned

in the above problem.
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TABLE 5 (M, = 5).

§=2y,g#0

H=N; =0, NyD#0, Ns <0

Orbit representative Necessary and sufficient conditions | Configuration
i = 1 1 >0, B3=0=0
vy d E- @t )(gz+2)’ ) Kl ' Config. 5.1
y=(9-Day+y”, g(¢g" —1) #0 N#0, pu#0, H #0
. 2
t=g(z"-4), g#0 <0, Bg3=6=0
(vV.2) ' KRt ’ Config. 5.2
i=(" -9 — 2> —y* + (6> + Yz + gzy N#0, u#0, H #0
. 2 . 2
i=-1+z = -1 >0, B,=N=0, By #0
(v.3) . +az%, 9 =g(y )s n >0, By , B3 #0, Config. 5.3
9(g" -1)#0 Hy >0, H4 =0, H5 >0
. 2
i=-1+z 0 >0, Bp=N=0, B #0
(V.4) ;r o7 ne B P Bs #0, Config. 5.4
y=g(y" +1), Hy =0, H5 <0
. 2
=1 0,1 >0, Bp=N=0, B3 #0
v d° +;"g|¢’ et o2 » Bs #0, Config. 5.5
y=g(y" +1) Hy <0, H4 =0, H5 >0
(V.6) t=142zy, §=g-22+y% gER n<0, B3#0, Bp=N=0 Config. 5.6
>0, Bg=6=0
(V.7) i=1+z,y=—zy+y2 K P8 ’ Config. 5.7
N#0, p=Hg=0
. 2
i =gz 0,1 >0, Bg=60=0
(V.8) go"r 1l # ", Kt ’ Config. 5.8
y=(g-Dzy+y N#0, p#0, H =0
<0, B3=6=0
(V.9) & =22, §=1—22—y> s B ' Config. 5.9
N #0, p=Hg=0
. 2
i =ga 0 <0, B3=0=0
(V.10) y 21975 ) s ’ Config. 5.10
g=—a° +gey—vy N#0, p#0, H =0
=0, M#0, By=0=0
(VA1) 6 =22 fay,§ =y +y> n=0, M#0, B ' Config. 5.11
p#0, N#0, D#0
>0, Bp=N=0, B #0
(V.12) &= —1+432,§=y> > e » Bs #0, Config. 5.12
Hy >0, Hy= Hs =0
. 2
= -1 =0, M#0, B3 =N =0
(v.az) d 79D n=0 M#0, By ' Config. 5.13
y=2y,|g|#0,1 H =N; =0, N2D#0, N5 >0
i=(z+1)(gz+1 =0, M#0, B3 =0=0
(V.14) (@+Dige+ )2’ n=0 M#0, B ' Config. 5.14
9y =(9-1uay, g(¢° -1) #0 NK #0, p=Hg=0
. 2
i =g(z® +1 =0, M#0, B3 =N =0
(v.15){ o ): n=0 M#0, By ' Config. 5.15
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TABLE 5 (M,

= 5) (continued).
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Orbit representative Necessary and sufficient conditions | Configuration
>0, Bo=N=0, B3 £0
(V.16) & =14 a2,§=y2 m B2 » Bs #0, Config. 5.16
Hy <0, Hy = Hs =0
=0, M#0, B3 =N =0
(V.17) & = 22,9 =2y n=0 Mz0 Bs ’ Config. 5.17
H=N; =0, NyD#0, Ns =0
—0, M#0, B3=6=0
(V.18) # =14 2,9 = —zy n=0 M#0, B; ’ Config. 5.18
N#0, u=K=Hg=0
=0, M#0, B3=6=0
(V.19) & = 22 + wy, § = y2 n=0 Mz#0, Bs ' Config. 5.19
p#0, N#0, D=0
—0, M#0, B3=N=0
(V.20) 2 =—1+22,§=1 n=0 M#0. By ’ Config. 5.20
H=D=N; =0, No £0, N5 > 0
(V.21) #=-1ta, n=0, M#0, By =N=0, Config. 5.21
=+ 2y H=Ny=0, D#0, Ny £0
(v.22) ¢=1-a n=0 M#0, B2 =N=0, Config. 5.22
y=1-2zy Bz #0, Hp =0, Hz3 >0
&= —1+ a2 —M=0, N#0
(v.23) ’ K » N#0, Config. 5.23
y=-34+y—z+ay B3 =60 =Neg =0
—0, M#0, B3=N=0
(V24) 2 =14a2, §=1 n=0 M#0. By ’ Config. 5.24
H=D=N; =0, No £0, N5 < 0
. 2
(V.25) ’ n=0 M#0 B ’ Config. 5.25
iy =1+ 2zy B3z #0, H» =0, H3 <0
—M=0, N3 #£0
(V.26) &= —z, § =y — =z 1 ' Na #0, Config. 5.26
B3 =N =D; =0
—M=0, Ny#0
(V2r) 4=142, §=y—a? n » Na#0, Config. 5.27
Bz =N =N3 =0, D #0
=0, M#0, B3 =N =0
(V.28) 2 =22, 9y=1+z n=0 Mz0 Bs ’ Config. 5.28
H =D =Ny =0, N1 #0
—0, M#0, B=N=0
(V.29) & =22, § =1+ 22y n=0 M#0, B ’ Config. 5.29
B3 #0, Hy = H3 = 0
—M=0, Ny #0
(V.30) &=1,§ = a2 K » Na 70, Config. 5.30

B3=N=N3=D;=0




2068 DANA SCHLOMIUK AND NICOLAE VULPE

Theorem 5.1 [23]. We consider the orbits of the class QSLg, re-
spectively QSLy, under the action of the real affine group and time
rescaling. The systems (VI.1) up to (VL.11), respectively (V.1) up to
(V.30), from Table 4, respectively Table 5, form a system of represen-
tatives of these orbits under this action. A differential system (S) in
QSLg, respectively (S) € QSLg, is in the orbit of a system belonging
to (VLi), respectively (V.i), if and only if the corresponding conditions
in the middle column are verified for this system (S). The conditions
indicated in the middle column, jointly taken, are invariant under the
action of this group.

Theorems 3.2 and 4.2 yield 42 phase portraits not necessarily topo-
logically distinct, each being generated by one of the 41 configurations.
We first retain only all topologically distinct phase portraits obtained
from the 42 pictures in Diagrams 1 and 3 after topological identifica-
tion. Furthermore, for each one of these topologically distinct phase
portraits, we want to find necessary and sufficient invariant conditions
under the action of the group Aff (2,R) x R*.

Theorem 5.2. Assume that a quadratic system (2.1) belongs to
QSLg UQSL;. Then its phase portrait is topologically equivalent with
one of the 28 portraits, listed below, which all appear in Diagrams 1
and 3. A particular phase portrait occurs if and only if the associated,
respectively one of the associated, set of the conditions, listed below,
jointly taken are satisfied:

1) Picture 6.2 <— n >0, B3 =N =0, H; <0;
2) Picture 6.3 <—=n <0, Bs=N=0, H; <0
3) Picture 6.4 <= n<0, Bs=N=0, H; >0
4) Picture 6.6 <= n <0, Bs=N=0, H; =0

N

6) Picture 5.2 <= n <0, Bs=60=0, N #£0, uH; # 0;

7) Picture 5.6 <= n <0, Bp =N =0, Bs # 0;

8) Picture 5.7 <= n>0, Bs=0=0, N #0, u= Hg = 0;
9) Picture 5.9 <= n <0, Bs=60=0, N #0, u= Hg =0;

)
)
)
)
5) Picture 6.9 <= n=0,M #0, B3 =N = Hy =0, H#0, H3<0;
)
)
)
)
10) Picture 5.10 <= n <0, Bs=60=0, N £0, 4 #0, H; =0;
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11) Picture 5.11 <= n=0, M #0, B3 =0=0, N #0, uD # 0;

12) Picture 5.12 <= [

13) Picture 5.17 <= [

n >

0, Bo=N =0, By #0,

H4:H5:0 H1>0;

14) Picture 5.18 <= [’7

15) Picture 5.19 <= {’7

16) Picture 5.20 <= [
17) Picture 5.28 <= n=M

18) Picture 5.26 <— [ =M=0, C, #0, B3 =N =0,

19) Picture 5.80 < [

20) Picture 6.1

21) Picture 6.5

22) Picture 6.7

23) Picture 6.8

24) Picture 6.10

25) Picture 6.11

26) Picture 5.4

27) Picture 5.15

28) Picture 5.25

~

o~

I

1%

1%

1%

R

0 M;éo Bs=N=H=0,
N5—0 NQD#O

0, M;«éO B3=0=0, N#0,
p=K = Hg = 0;

0, M#0, By =0=0, N #0,
pw#0, D=0;

n=0 M#0, Bs=N=H=D=0,

1

n

[ 5.22,
5.14(0) | T ) [n=0.M#0,Bs=0=p=0,

[5.28] = |

(5.29] = |

5.5,
5.16 |:77>0,BZZN:H4:()’

Ny =0, Na #0, N5 > 0;
:03 02#0, N#O, B3:6:N6:0,

D, =0, N37é0;

:MZO, CQ#O, BgZN:NQ,:U,

D1:07 N47é07

(5.1, {n>0, By =0=DB3N =H, =0,
53| ©w#0, Hy >0, H, >0
58] <= n>0, B3=0=0, p#0, H =0;
[ 5.13, 'n; O’Z\giziso:;:ou:o’
L =0, 5 or
5.21, | =\ 1,20 M £0,Bs = N=H=0,
[ 5.14(a) NiN3 = 0,N5 > 0,D # 0;

[-n:O,M;AO,BzzN:O
Hy; =0,H3 >0 or

L He¢=0,NK #0, L<O0;
UZO,M#O,BgzNZO,
H=D=N,=0;

[527] <= n=M =0, B3 =N = N3 = 0;

|

[5.24] = |

[n>0, By =N =H; =0,
B3z #0, H5 <0 or

Bs #0, Hs >0, H; < 0;
n=0, M #0, By=N=H=0,
N1:O, Ng?éo, N5<0;
n=0, M#0, B,=N =0,
B3 #0, Hy =0, H; <0;
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Proof. From Diagrams 1 and 3 it can easily be seen that we have the
topological equivalences indicated in points 20) — 28) above.

On the other hand, it can easily be seen that the pictures listed
in points 1) — 19) which correspond to the distinct configurations,
are topologically distinct among themselves and topologically distinct
from any one of the pictures listed in points 20) — 28). Therefore,
the corresponding conditions, invariant under the action of the group
Aff (2,R) x R*, for each one of the pictures listed in points 1) —
19) are those which have already appeared in Table 4 (for Config-
uration 6.1, i € {2,3,4,6,9}) and in Table 5 (for Configuration 5.j,
j € {2,6,7,9,...,12,17,...,20,23,26,30}). It only remains to find
invariant conditions for the cases 20) — 28). A common feature of all
these last cases is that for each one of them a single topological phase
portrait is associated to at least two distinct configurations.

We first observe that according to (5.1) we have the following:

Remark 5.3. The condition By = 0 yields B, = 0 = B; and the
condition N = 0 yields 6 = 0.

Case 20) According to Theorem 5.1 and Remark 5.3, the conditions
n > 0, Bo = 0 and # = 0 are satisfied for each one of the canonical
systems (VI.1), (V.1) and (V.3).

However, there are more conditions which should be satisfied and we
list the remaining ones:

(VL1): B3 =0, N =0, H; > 0;
(5.2) (V1) : By =0, N#0, p#0, Hy #0;
(V.3):B3#0, N=0, H, >0, H =0, H5 > 0.
To integrate in one sequence of conditions, covering all these cases, we
calculate: for (VI.1), u, Hy and Hs; for (V.1), Hy, Hy and Hs; for
(V.3), u, and we obtain
(VL1): pu=16%0, Hy =0, Hs = 6144 > 0
(5.3) (V.1): H; =576(9 — 1) >0, Hy =0, Hs = 384(g — 1)* > 0;
(V.3): u=16g%#0.
Looking at (5.2) and (5.3) we observe that the three sequences of
conditions for the three canonical forms (VI.1), (V.1) and (V.3) can
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be integrated as one sequence, which is exactly the one indicated in
point 20) of Theorem 5.2.

Case 21) Taking into account Remark 5.3 and Tables 4 and 5 we have
that besides the conditions n > 0, B3 = 0, § = 0 and H; = 0 which are
common to the canonical systems (VI.5) and (V.8), we have additional
conditions:

(VL) : N =0, p =16 # 0; (V.8) : N #0, u#0.

Analogously to the previous case, for the realization of the phase
portrait corresponding to both Configurations 6.5 and 5.8 we obtain
here exactly the sequence of conditions (jointly taken), indicated in
point 21) of Theorem 5.2.

Case 22) It is easy to establish that the phase portraits given
by Pictures 6.7, 5.13, 5.14 (a) and 5.21 (see Diagrams 1 and 3) are
topologically equivalent.

Remark 5.4. As shown earlier, Configuration 5.14 yields the phase
portrait given by Picture 5.14 (a) for g > 0 and given by Picture 5.14 (b)
for g < 0. Since for the systems (V.14) we have L = 8gz?, we obtain
Picture 5.14 (a) for L > 0 and Picture 5.14 (b) for L < 0.

According to Lemma 6.3 from [23] all invariant polynomials in Tables
4 and 5 which distinguish Configurations 6.7, 5.13, 5.14 and 5.21 are
T-comitants except for N;, Ny and N5 which are CT-comitants (for
detailed definitions, see [23]). More precisely, the polynomial Ny is
a CT-comitant modulo (n, H), whereas Ny and N5 are CT-comitants
modulo (n, H, Bs), see [23, Lemma 62]. Since for systems (V.14) we
have H = —(g — 1)%2% # 0 the polynomials N;, i = 1,2,5, cannot be
applied to these systems. Hence, there cannot exist one common set of
conditions in terms of these polynomials for the phase portrait given
by all these four configurations and we search the common conditions
only for Configurations 6.7, 5.13 and 5.21.

In a similar way to Case 20), according to Theorem 5.1, the canonical
systems (VL7), (V.13) and (V.21) have the conditions n = 0, M # 0,
Bs = N = H =0 in common. Furthermore, in addition to the common
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conditions for these systems, we have more conditions as follows:

(VL7): Ny =0, Ny = 0, N5 = 642® > 0, D = —4a’y # 0;
(V.].3):N1:0, N2 #0, N5 >0, D # 0
(V.21) : Ny #0, Ny = 0, N5 = 64z > 0, D # 0.

Therefore, for the realization of the phase portrait corresponding to
Configurations 6.7, 5.13 and 5.21 the set of conditions, jointly taken, are
exactly those indicated in the second line of point 22) in Theorem 5.2.

Regarding the remaining Picture 5.14 (a), we note that the condi-
tions from the first set in Case 22) are exactly the conditions for the
realization of the Configuration 5.14 plus the condition L > 0, see
Remark 5.4.

Case 23) According to Remark 5.4 the Pictures 5.14 (b) can be
realized if in addition to the conditions for Configuration 5.14, see
Table 5, the condition L < 0 is verified. According to Remark 5.3
from Tables 4 and 5 we see that for the systems (VI.8) and (V.22) the
only conditions which differ, involve the polynomial B3 differ: B3 =0
for system (VI.8) and B3 # 0 for system (V.22). This obviously leads
to the first sequence of conditions for Case 23) in Theorem 5.2. We note
that the second sequence of conditions for the Case 23) are exactly those
for the realization of Configuration 5.14 plus the condition L < 0, see
Remark 5.4.

Case 24) From Tables 4 and 5 we observe that all the conditions
for systems (VI.10) and (V.28) coincide with the exception of the
conditions for the polynomial Nj: for the system (VI.10) we have
N; = 0 whereas for the system (V.28) we have N; # 0. This obviously
leads to the sequence of conditions from Theorem 5.2 for the Case 24).

Case 25) According to Tables 4 and 5 the conditions n = M =
B; = N = N3 = 0 appear for both canonical systems (VI.11) and
(V.27). Furthermore, for the system (V.27) we have NyD; # 0, see
Table 5, whereas for the system (VI.11) calculations yield Ny = 0 and
D; =2 # 0. This leads to the sequence of conditions from Theorem 5.2
for case 25).

Case 26) According to Theorem 5.1, besides the common conditions
n >0, By #0, B, = N = Hy = 0, see Table 5, for the canonical
systems (V.4), (V.5) and (V.16) we have respectively additional condi-
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tions:
(V.4): Hy = —1152¢°%(¢* — 1), Hs < 0;
(V5) :Hy <0, H; > 0
(Vlﬁ) :H; <0, H5 =0.
Hence, we have either Hs < 0 or H5 > 0 and in this case H; < 0. This
leads to the conditions from Theorem 5.2 for the Case 26).

Case 27) From Table 5 we observe that all the conditions for the
systems (V.15) and (V.24) coincide except for the conditions for the
polynomial D: for the system (V.15) we have D # 0 whereas for the
system (V.24) D = 0 occurs. This obviously leads to the common
conditions from Theorem 5.2 for Case 27).

Case 28) According to Table 5 all the conditions for the systems
(V.25) and (V.29) coincide with the exception of the conditions for the
polynomial Hj: for the system (V.25) we have Hs < 0 whereas for
(V.29) we have H3 = 0. These conditions obviously can be amalga-
mated as H3z < 0, and this leads to the conditions from Theorem 5.2
for Case 28). O

Comments. In the proof of Theorem 4.2 we used the global topo-
logical classification of phase portraits in the neighborhood of infinity
of all quadratic systems, obtained by us in [24]. This serves as an ex-
ample for the usefulness of this topological classification for studying
subclasses of the quadratic class, in cutting short what otherwise would
be repetitive and much longer calculations. This also shows the impor-
tance of algebraic invariants and comitants in applying to whatever
normal form we choose, characterizations in terms of these invariant
polynomials.

ENDNOTES

1. Under the name degenerate invariant algebraic curve this notion
was introduced by Christopher in [9].
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