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GENERALIZED ORDER-k
FIBONACCI AND LUCAS FUNCTIONS

EMRAH KILIG AND DURSUN TASCI

ABSTRACT. In this paper, we consider the usual Lu-
cas numbers and the generalized order-k£ Fibonacci numbers.
Then we give a new definition for generalization of the Lucas
numbers. Therefore, we give the generalized order-k Fibonacci
and Lucas functions. Further, we derive new relationships be-
tween these functions.

1. Introduction. In [2], Er defined k sequences of the generalized
order-k Fibonacci numbers as shown:

k
gh=> gh_j forn>0and1<i<k,
j=1

with initial conditions for 1 — k <n <0,

.1 fi=1-n,
In= o otherwise,

where g? is the nth term of the ith sequence. For example, when

i = 2, then {g2} is the Fibonacci sequence {F,} and k = 4, then the

generalized order-4 Fibonacci sequence is
1,1,2,4,8,15,29, 56,108, 208, 401, 773, 1490, . . . .

Also Er showed that

(1.1) G, = A"
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where
11 -+ 11
1 0 0 0
(1.2) A=10 1 0 0
0 0 .-+ 1 0Jd,us
and
9 g - gk
grlkl 972171 T gfzfl
Gn = . .
g'}Lfk+1 972171@“ T gﬁfk+1

The matrix A is said to be a generalized order-k Fibonacci matrix.
Also, the following identities can be found in [2]:

(1.3) giH_l:giL—i—ng for1<i<k-1

n

(1.4) gk =gt

In [6], the authors defined k sequences of the generalized order-k
Lucas numbers as shown:

n—yj»

k
l;:Zli forn>0and 1<i<k,
j=1

with initial conditions for 1 — k <n <0,
-1 ifi=1-n,
I=<{2 ifi=2-n,
0 otherwise,
where [?, is the nth term of the ith sequence. For example, if i = k = 2,
then {I2} is the usual Lucas sequence.
Further, in [3], the following formulas can be found for all m,n and
p>0,

k

k
% _ j i i _ J )
gn+m+p - Zg%gm—ﬁ—p—l—l—j and gn+m - Zgn—pgm+p—j'

=1 =1
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In [1], Elmore introduced the Fibonacci function as follows:
eMT _ phaw

i
and hence f,,11(2) = fn(z) + frn_1(z), where

1 5 1—-+/5
= +2\/_ and M\ = 2\/7.

n AT n, A2
:)\161 — A\je?

fa (@) = f§7 (2) 7 ,

fo(z) =

AL

In [4], the authors gave a generalization of the Fibonacci function for
k-Fibonacci numbers.

For positive integers k and n with £ < n, let Q% ,, denote the set of all
strictly increasing k-sequences from {1,2,... ,n}. For an n x n matrix
V and for a,8 € Qi n, let V]a | B] denote the matrix lying in rows «
and columns 3, and let V(a | 8) denote the matrix complementary to

Vie|Blin V.

Note that the generalized order-k Fibonacci numbers can be ex-
pressed by powers of 2 for some n. For 1 < ¢ < k, we see that
gi =20 =1, g5 =2t =2 gg =22 =4,... ,g,’;ﬂ»+1 = 2% In
general, for | <i<kand1<n<k-—i+1,g, =2""1 Wheni=k,
gh=gh=20and gt =2""2for3<n<k+1.

2. Generalized order-k Fibonacci functions. In this section,
we define generalized Fibonacci functions and then we investigate some
properties of these functions.

We define a function F(i,k,z) by, for 1 <1i < k,

F(i,k,xz) = Z | zt.
t=0

|(~bs<

Since )
d 1
lim 9n (:l+ )
n—00 In+1

the function F(i,k, z) is convergent for any real number z.

—r 00,

The power series F(i, k, z) satisfies the differential equation

2.1) F® (i, k,z) — F& Y (i k,z) — - -
— F" (i,k,z) — F' (i,k,z) — F (i, k,x) = 0.
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From [5, 7], we have that the characteristic equation, =% —zF=1 —... —
x — 1 =0, of matrix A does not have multiple roots. If A\, Az, ..., A
are the roots of ¥ — zF~! — ... — 2 — 1 = 0, then A;, \o, ..., \x are

distinct.

Define V' to be a k x k Vandermonde matrix as

1 1 ... 1
A A e A
(2.2) v=| M XN - X
)\llcll )\129'71 . )\1]:'71

Theorem 1. Then, the initial-value problem Ef;é F") (i k,x) =
F®) (i, k,x), where F)(i,k,0) = gi for r = 0,1,2,... ,k — 1 has the

unique solution F(i,k,x) = Zle cre?, where
detV (k
(2.3) ep = (cyprr Qe VLRI ok

detV o

and X\;’s are as before.

Proof. Since the characteristic equation of A is z¥ —zF~1—...—z—1 =
0, it is clear that c1e? + c2e™2® + -+ + ce*® is a solution of (2.1).
Since F(i,k,x) = c1€M? + ce*2® + -+ + cpe**® and F() (i, k,0) = gl
forr=1,2,...,k—1and 1 <i <k, we have

F(i,k,0)201+02+-..+ck:gé
F'(i,k,0) = ci A1 + coda + -+ cpde = gt
F/I(i;kao):Cl>\%+02)\§+...+ck)\izg%

FOD (6,k,0) = el ™!+ AT 4o b ey T = g
Let ¢ = (c1,¢2,...,c,)T and u = (gj,9%,...,95_1)T. We have
that Ve¢ = u. Since the matrix V is a Vandermonde matrix and
A1, A2, ..., A, are distinct, V is nonsingular. The matrix V(k | r)
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is a Vandermonde matrix and nonsingular for r = 1,2,... k. Thus,
we obtain by Cramer’s rule

ktr det V (k| 1)

r:*l
e =(-1) det V

So the proof is complete. a

We can rewrite (2.1) as in the form
F®) (i, k,x) = F&V (i, ko) + FE2 (i,k,2) + -
+ F" (i,k,x) + F' (i,k,z) + F (i, k, ) .

Here we use the notation Fy(i,k,z) = F(i,k,z) and, for ¢t > 1,
Fy(i,k,z) = F® (i, k,z). Thus,

F, (i,k,z) = F™ (i,k, ) = c; \7eM® 4 coAFet?® + o 4 cp AR ®
gives us the sequence of functions {F, (i, k, z)} with
(24) F,(i,k,z)=F, 1 (,k,2)+ F, o (i, k,2)+ -+ Fk (4, k, 2)

where ¢; is as in (2.3). We refer to the above functions as generalized
order-k Fibonacci functions. Also, when i = k, we denote F(i, k, z) by
F(k,z). If k=2, F(2,2) = fo(x) is the Fibonacci function as in [1].

Theorem 2. For the generalized order-k Fibonacci function F (i, k,z),

FO(iakaU):g(iJv Fy (i,k,O):gi,
Fy (i,k,0) = gb, ..., Fr_1 (i,k,0) = gi_4,
Fy, (i,k,0) = Fy (i,k,0) + F5 (i,k,0) + - - - + Fp_1 (i, k,0) = gi,
g = F, (i, k,0) = c1 AT + oAy + -+ + cp AR
=g 1t g ot tgn g n>Ek

where each ¢; is given by (2.3).

Let F(i,k,z) = (Fnig_10i,k,2), Fuyr_2(i,k,@),..., Fa(i,k,x))T.
By (2.4), we can write that F,,4+1(¢, k, ) = AF, (i, k, x). Generalizing,
we derive

Tn+1 == ATn
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Since A™ = G, inductively we get

Tpir = ATy = G, T)
where A is given by (1.2) and
Froiw—1(L,kz) Foyk—1(2,k,x2) -+ Fpyp—1(kk,x)
T _ Fn+k,2'(1, k,z) Fn+k,2.(2, kyz) - Fn+k,2.(k, k,x)
F, 1,k 2) F,(2.kz) - Fn(k k)
From the definition of T, = [t;;], we have t;; = Fr4x—i(J, k, z).

Theorem 3. For all m,n,p >0 and1<i <k,

k

Fotmtp (i, k, @) = Zggpfk+1Fm+p+k—j (4, k, ).
j=1

PTOOf. Since Tn+m+p = Gn+m+p_1T1, Tn+m+p = GnTm+p and
= (Tn+4m+p)p+1,i, SO the proof is complete. O

Fn+m+p(ia k? x) -
Theorem 4. For allm,n >0 and 1 <i <k,

k
Frgm (i k,2) =Y g0 i Fongpyn—j (6, k, @)

j=1

In particular,
’L

% (i, k, ) i zt.

t=0

Proof. Since Tnim = Gpym—1T1 and Thim = G pGmyp-1T1
Gr—pTm+p, we have the conclusion. Especially since th_ol Fi(i, k,x)
Fy(i, k,z) and

k—1 gi
k+2 k+n _n
Z i (i k, @) = gj, + Ghr @ + 91 z? + - A

t=0
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we obtain
’L

% (i, k, ) i zt.

t=0

The theorem is proved. ]

Lemma 1. Forn >k >0,

k
_ J k—j
- Z gn—k-i-l)\
Jj=1

where G, = [t;;] = gi7i+1 and X\;’s are as before.

Proof. (Induction on n). First we assume that n = k. Since
tij = g, _;yq and g{ =1 for all j, we write

k
=Y gN T =g N BN g A g
j=1
=AM AR A+ L

Now we suppose that n > k. Thus

(2.5)
AL = Am A
k . .
= (St )
j=1
= (g'}Lkarl)\kil + gfkkﬂ)\kfz + gz k:+1>‘ +gk_ k1) A
= grlb—k+1)\k + 93—k+1)\k_1 T+ gn k+1>\ +gk_ k1A

Since \¥ = A\F=1 + A\F=2 1 ... 4+ X\ + 1, we rewrite (2.5) as

AL gl R R )
G2 e AT gl k+1>‘2 +Oh kA
= (npor1 + gfﬁkﬂ) Nl (gh s + 95 ) A2 4
+ (90 ki + QZ:iH) At (g0 ki1t 90 k1) AT Ih ki1
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From (1.3), we have
grlszﬂ + 972%1“1 = grlklwza

1 3 _ 2
In—kt1 T In—kt1 = In—k+2s

1 k k-1
In—k+1 T In—k+1 = In_kt2-

Thus,
(2.6) A" = gvl7.—k+2)‘k71 + gi_k+2/\’“’2 -+ gn k+2)\ + Gn ki1

By (1.4), we have that g} ., = gF . ,; thus, we write (2.6) as

AL = gl AT g2 N g k+2>\ + 98 o

So the proof is complete. o

Theorem 5. Forn > 0,

(i, K, \) Z’m” L

where

‘ g 145 k+1—j gn+k 1+t
T = G =) *Z (h—1+)"

Proof. Since \¥ = M1 4+ A\*=2 4 ... 4 X+ 1 and by Lemma 1, we
have

Fo(isk,A) = g, + g”“ A+ g”“ ICRE TS PO

31
gn+k 1yk-1 gn+k Ky Gon \n
TR A . ==
Te-0t TR TR
k gn+k k In+k+1 k Ghn,
<9n+91 ol +92(k+1)_+"'+9nk+1ﬁ+“‘>
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i
g 9
+(9n+1+ {c 19n+k ket Indktl |

1 KT Gy

Tin
g i+1ﬁ+“'>/\+“'

g, 9 g,
+( ntkl o 1Inth | 1 Inikil

(k= 1) KT

1 g%n P!
+ kT

Vi, + Y2 A+ Y3, AT e+, AT

k
27N

where
gn 145 k+1— J n+k: 14+t .
Y =Gt Z 1o
thus, the proof is complete. u]

From Theorem 4 by taking p = m = 0 and Theorem 6, we have

k
Fn (Za ka m) = Zg;—k+1Fk_j ('La k, 37)
j=1
= g;,k+1Fk71 (Za ka CU) + gz,k+1Fk72 (Z, k, CU) +
+ In—k1Fo (i, k, )

k
DI

3. Generalized order-k£ Lucas numbers. In this section we give
a more convenient definition for generalization of the Lucas numbers.
Then we define generalized Lucas functions and derive some properties
of them in the next section. In [6], the authors defined the generalized
order-k Lucas numbers. However, we see that this definition is not
convenient for further steps. So we give the following new definition.
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Define k sequences of the generalized order-k Lucas numbers as
shown:

k
Uizzvi_j, forn>0and 1 <<k,
i=1

with boundary conditions
3 if n = —i,
vi =< -1 ifn=1—4, for —k<n<0,
0 otherwise,
where v is the nth term of the ith sequence. When i = 2, the

generalized order-2 Lucas sequence is reduced to the Lucas sequence
{L,}. When ¢ = 4, the generalized order-4 Lucas sequence is

1,3,6,12,22, 43,83, 160, 308,594, . . . .

By a property of matrix multiplication, we have

4 . . T . 4 . T
(1) [vppr vn -0 g =Alvn vy o v
where A is given by (1.2). To deal with k sequences of the generalized
order-k Lucas series simultaneously, we define a k X k square matrix
B,, as follows:

RS
3=

1 2 k
vnkarl ’Unkarl o vnkarl

Generalizing (3.1), we derive B,,+1 = AB,,. We inductively rewrite it
as
B4 = A"B; = A""'By = A"T2B,

where by the definition of sequence {v%},

6 4 4 ... 4 1 5 9 9 5
3 2 2 ... 2 2 s 1 0 0
3 -1 0 --- 0 0
Bi=|, 5 1 . : ol Bo=|0 3 -1
. . . . T 0
[ 0 0 3 -1 0] 0 0 3 -1
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and
3 -1 0
B= 3
-1
0 3
Thus, we infer by A" = G,
(3.2) Bny1 = A""2B = G, 2B.
Theorem 6. Then
vt :—g;+11+3g;+1 for 2 <i <k,
Urlz = 3gvll+17

where v, and g, are as before.
Proof. The proof follows from (3.2). u]

In particular, when k£ = 2 in (3.2), then

[Ui-li-l 0331] _ [gé-m 9§+2] [3 _1}
)
Un Un Int1 Inp1] O 3
and since g; = g2, for n > 0, see [6], and vZ = L,, g2 = F,, we
obtain

L, = —gylwl + 3912z+1 = _9121+2 + 3912z+1
—Foio+3F, 41
= L'n+1 + Fn—h

which is a well-known relation between the Fibonacci and Lucas num-
bers (see [8]).

Theorem 7. Then, for n,m > 0,

k
i _ E : J a0
Un—i—m - gnvm—l—l—j'
=1
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Proof. From (3.2), we have B, = Gp.1B = A""'B. Thus,
By = AMTTIB = A"A™HB = G, B,,. The theorem is obtained
from a property of matrix multiplication. mi

Since By ym = A"TMTIB = AnPA™TPTLIR = G,,_, By, We have
the following result.

Corollary 1. For n,m,p > 0,

k

i _ j i

Untm = § :gnfpvm+p+17]"
j=1

For example, when ¢ = 2, then

2
2 72 : J 2
Untm = In—pVUm+p+1—j
Jj=1

1 2 2 2
= In—pUm+p + In—pUm—+p—1>

and since g} = 9721+1 = F,y1 and v2 = L,,,
Lypym = Fnpy1Lmip + Fnplmip1

and for p = 0, we obtain Ly, = Frp1Lm+ Fy Ly, 1, see [8, page 176].

4. Generalized order-k Lucas functions. We define the gener-
alized Lucas function L(i, k,z) by, for 1 <i < k,

Since

the function L(i, k, z) is convergent for real number x. The power series
L(i, k, z) satisfies the differential equation
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(41) L™ (4, k,z) — L&Y (4, k,z) — - -
- L" (i,k,x) — L' (i,k,z) — L (i,k,z) = 0.

Let the matrices A and V be as in (1.2) and (2.2), respectively.

Theorem 8. Then the initial-value problem Zf;é LU (i k,x) =
L®¥) (i, k, ), where L) (i,k,0) = v} for r = 0,1,2,... ,k — 1 has the

, . . k
unique solution L(i,k,x) =Y _ s,e*? where

(4.2) Sy = (_1)’“” detc‘lfT(l:/m, r=1,2,...,k,

where the \;’s are as before.

Proof. Since the characteristic equation of A, s;e*® + spe?2® 4 ... 4+
spe™® is a solution of (4.1) and since L(i, k, z) = s1e*1% + 59?27 4. .+
spe® and L) (i, k,0) = vl for r = 0,1,2,... ,k—1land 1 <i < k, we
have

L(i,k,0) =83 + 82+ -+ s = v
L' (i,k,0) = 51\ + s2dg + - -+ + s\ = vt
L" (i,k,0) = 5102 + 8903 + - -+ + 502 = v}

LE=D (1k,0) = sy AV fsod Lo s At = pf

Let s = (s1,82,...,8k) 7 and 2z = (v, vi,...,v} ;)T. Then we have
Vs = z. Since matrix V is a Vandermonde matrix and Aq, Az, ..., Ak
are distinct, matrix V' is nonsingular. Also matrix V(k | r) is a
Vandermonde matrix and nonsingular for r = 1,2,... k. Thus, we
obtain by Cramer’s rule

detV (k| r)
_ o q\ktr BV M1
sr=(=1) detV

So the proof is complete. o
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We may rewrite (4.1) as

L® (i k,z) = L*Y (i k, @) + L% (i, k,z) + - - -
+ L" (i,k,x) + L' (i,k,z) + L (i, k, z).

Using the notation Lg(i, k,z) = L(i,k,x) and for t > 1, L(i, k,x) =
L® (i, k, ), we may write

Ly (i, k,2) = L™ (i, k, @) = s;ATeM® + 55002 4o« 4 sp AR ?,
which gives us the sequence of functions {L, (%, k,z)} with
(4.3) Lp (i,k,2) = L1 (i,k,2) + Lpn—o (4, k,z) + -+ + Ly (i, k, x) ,

where s; is as in (4.2). We refer to the above functions as generalized
order-k Lucas functions.

Theorem 9. For the generalized order-k Lucas function L(i, k, z),

Lo (i,k,0) = v8, Ly (i,k,0) =i,
Ly (i,k,0) = v, ..., Ly_y (i,k,0) = vi_,,
Ly (i,k,0) = Ly (4,k,0) 4+ Ly (i,k,0) + - - 4 Ly_1 (i, k,0) = v,
vl = Ly (1, k,0) = 51 AT + 8205 + -+ - + sp A}
=V VU >k,

where each s; is given by (4.2).

Let £,(i,k,x) = (Lptk-1(i,k, @), Lysg—2(i, ky ), ..., Lo(ik,x))T.
By (4.3), we can write that £,,41 (3, k,z) = AL, (i, k, z), that is,

Ln+k (iakax) Ln+k—1 (iakax)
Ln k—1 (Za kvx) Ln k—2 (Zakax)
(4.4) L —al|l
LTLJrl (Z,k,l‘) Ln (Z,k,l‘)

where A is given by (1.2). Generalizing (4.4), we derive

Hn+1 = AHn,



ORDER-k FIBONACCI AND LUCAS FUNCTIONS 2005

where
Ln+k71 (17 kaw) Ln+k571 (2,]{7,.’1}) Ln+k571 (k?,k,.’l,')
H _ Ln+k72 (17 kaw) Ln+k572 (2,]{7,.’1}) Ln+k572 (k?,k,.’l,')
L, (1,k,z) L, (2,k,x) e L, (k,k,x)

Inductively, we obtain H,,; = A™H; and since A" = G, Hpy1 =
G.H,.

We can generalize the result of Theorem 7 for generalized order-k
Lucas functions.

Theorem 10. For m,n >0 and 1 <: <k,

k

Ln+m+p (’L, k, CL’) = Zgiik+1Lm+p+k—j (Za ka m) )
j=1

where Hy, = [hij] = Lptk—i(J, k, ).

Proof. Since Hp41 = GpH; and so Hyimip = Grimip—1H1,
Hn+m+p = GnHm+p and Ln+m+p(i; k,x) = (Hn—l—m—l—p)p—'rl,i- Thus,
the theorem is proved from a property of matrix multiplication. ]

Theorem 11. For m,n >0 and 1 <1i <k,
k

Lyym (i’ k, I) = Zgi—p—k-ﬁ—le'HH'k—j (ia k, x) .
j=1

In particular,

k (i, k,x) Zk"'tt

t=0

Proof. Since Hy i = Grom—1H1 and Hy iy = G pGryp—1H1 =
Grn—pHy+p, we have the conclusion. Since also Zf:_ol Ly(i, k, )
Ly (i, k,z) and

k—1

Ve
ZLtzkw)—vk—i—kam_,_ k2-|'r2 22+ ,._|_"T-5’-kwn+...,
t=0 :
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we obtain

(i, k,x) Z zt. O
t=0 t!
From Theorem 10, we have
k

Ln (Za k,LL‘) = Zgi_k_}lkaj (Za k,ﬂ?)
j=1

=g ps1le—1 (k@) + g5 gy Li—s (i,k,z) +
+ g§7k+1L0 (iv k, .Z') .

By Theorem 11, we have the following corollary.

Corollary 2. Let L, (i,k,z) and F,(i,k,x) be the generalized order-
k Lucas and Fibonacci functions, respectively. Then

L, (i,k,x) =3F,41 (i,k, ) — Fpy1 (1 — 1, k,2)  for 2<i<k
Ln(L k,x) = 3Fny2 (k, ).

Proof. From Theorems 6 and 11, we write for 2 < ¢ < k,

Lu(i ko) = 3 —”f;t zt

_ Z gn+t+1 + 3gn+t+1) zt

_Z gn+t+1 zt Z3gn+t+1 t

= 3Fn+1 (z k) — Frq1 (i — 1k, ).

By Theorem 6 and since g1 = gk, we write
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>~ 1
v
Ln(Lk,z) =) T;—,” ¢
t=0
N i 3grlz+1+t ot = i 395-1—2-1—15 2t
N t! N t!
t=0 t=0

= 3Fn+2 (k, k',l') = 3Fn+2 (k, 37) .

So the proof is complete. a
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