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SYMPLECTIC AND LAGRANGIAN SURFACES
IN 4-MANIFOLDS

TOLGA ETGU

ABSTRACT. This is a brief summary of recent examples
of isotopically different symplectic and Lagrangian surfaces
representing a fixed homology class in a simply-connected
symplectic 4-manifold.

1. Introduction. In recent years there has been considerable
activity that resulted in the construction of connected symplectic (and
more recently Lagrangian) surfaces which are different up to smooth
isotopy, but nonetheless represent the same homology class in a simply-
connected symplectic 4-manifold. The first of such examples was given
by Fintushel and Stern [10] who utilized their link surgery construction
[9] to obtain nonisotopic tori representing certain multiples of the
homology class of a generic fiber in the rational elliptic surface E(1) &
CP?#9CP? and n-fold fiber sum E(n) of E(1). They distinguished
infinitely many of these tori by using Seiberg-Witten invariants of
double covers of the ambient 4-manifold branched along these tori.
Based on their techniques, many more examples were constructed in
[4, 5, 6, 7, 21, 23]. All these examples are tori and the remainder of
the homologous nonisotopic surfaces of higher genera are constructed
in [14] (in certain 4-manifolds which are not simply-connected, Smith
constructed homologous, isotopically different higher genus surfaces in
[19]).

The interest in this subject mainly stems from the ever tempting
comparison between complex and symplectic categories. A simply-
connected complex surface always carries a Kahler form; hence it is,
in particular, a symplectic 4-manifold. It is a classical fact that in a
simply-connected complex surface, two complex curves which represent
the same homology class are smoothly isotopic. In fact, there is reason
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to conjecture that in CP?#nCP? withn < 9 (viewed as symplectic 4-
manifolds) a similar uniqueness result holds. First of all, the techniques
used to produce infinitely many nonisotopic homologous tori mentioned
above do not work in this case since they depend on the existence
of a symplectic torus of self-intersection zero, and CP*#nCP? has
not even such a smoothly embedded torus in it. Moreover, in [17],
using Gromov’s compactness theorem and extending the results of
Shevchishin [16] and Sikorav [18], Siebert and Tian proved that,
in CP?, any symplectic surface representing d[CPl] for d < 17 is
smoothly isotopic to the unique complex curve in that homology class.
They have similar partial results for CP!'-bundles over CP!, i..,
CP2#CP? and CP! x CP!.

On the other hand, one might expect to have uniqueness for La-
grangian representatives as the Lagrangian condition is a closed one
like the complex and unlike the symplectic one, but this was proven to
be false first by Vidussi in [22] and more counterexamples followed [3,
11, 12, 15].

This note is an attempt to summarize the existence results in this
subject. We try to emphasize only the main tools and ideas and refer
elsewhere for the details. In the rest of this note the term 4-manifold
refers to a compact, smooth and oriented 4-manifold. All surfaces are
assumed to be closed and connected.

2. Preliminaries.

2.1. Symplectic 4-manifolds, symplectic and Lagrangian
submanifolds. A differential 2-form w on a 4-manifold X is called
a symplectic form if it is closed, i.e., dw = 0, and nondegenerate, i.e.,
w Aw > 0. The manifold X which carries such a symplectic form is
said to admit a symplectic structure and the pair (X,w) is called a
symplectic manifold. We sometimes drop w from the notation and call
X a symplectic manifold.

A two-dimensional submanifold ¥ of X is called a symplectic subman-
ifold of X if the symplectic form w restricts to a volume form on . If
w vanishes on X, then ¥ is called a Lagrangian submanifold of X. An
interesting observation of Gompf is that a Lagrangian submanifold X
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of (X,w) is a symplectic submanifold of (X,w’) for a perturbation w’
of w if ¥ is homologically essential in X, i.e., [X] # 0 € Ho(X;2).

2.2. Seiberg-Witten invariants. Seiberg-Witten invariants of a
smooth 4-manifold X are integer-valued invariants defined on the set of
Spin.-structures of X. Since this set could be identified with Ho(X;Z)
in the absence of 2-torsion and since the Seiberg-Witten invariants of
only finitely many Spin.-structures are nonzero when b, (X) > 1, we
can view the Seiberg-Witten invariants of X as a polynomial (or more
precisely, as an element of the group ring Z[H>(X;Z)]), for example,
when X is simply-connected with by (X) > 1. In that case, we write
SWx = > g 0g - g, where the Seiberg-Witten invariant of the Spin.-
structure that corresponds to the homology class g is equal to ag.

2.3. Fintushel-Stern link surgery. In their seminal work [9],
Fintushel and Stern introduced a method to construct new 4-manifolds
out of old ones by replacing regular neighborhoods of certain tori
by circle times knot (or more generally link) complements. This
construction has many interesting features: under mild conditions the
new manifold, X, is homeomorphic to the old one, X; if we use
a fibred knot K and a symplectic X, then Xg is also symplectic,
etc. Moreover, the symplectic structure on the surgery manifold is
an extension of the natural symplectic form on Nx = S x (S® — vK)
as the total space of a fiber bundle over T2 when K is bred. This allows
us to construct symplectic or Lagrangian surfaces in N and consider
them in Xg. The genus-1 case can be made particularly efficient by
constructing tori T as a circle times a second knot C' (seen as a loop)
in the complement of K. There are several advantages to this: one can
read off the homology class [T¢] simply from the linking number of C
with K, and T is symplectic, respectively Lagrangian, whenever C' is
transverse to, respectively lies in, a Seifert surface, i.e., a fiber of the
fibration of S® — vK over S'.

Another useful feature of Fintushel-Stern link surgery is the descrip-
tion of the Seiberg-Witten polynomial of X i in terms of SWx and the
Alexander polynomial of K [9].
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3. Summary of results.

3.1. Symplectic tori. In this subsection we list the results on
the existence of homologous nonisotopic symplectic tori in symplectic
4-manifolds. In fact, in all of the following cases we get an infinite
family of such examples. In some of these cases it is possible to
conclude that the homologous tori constructed are not equivalent under
diffeomorphisms of the ambient 4manifold. Moreover, some of them
have complements with nonisomorphic fundamental groups, see [8].

One may think that there are different conditions that the tori 7" and
T; should satisfy in the following statements, but in fact the prototype
which satisfies all these conditions is a regular fiber in the elliptic
surface E(n). We will emphasize the interpretation of each result in
this prototypical case.

Theorem 1 (Fintushel-Stern [10, 12]). Let T' be a c-embedded
symplectic torus in a simply-connected 4-manifold X. Then for each
q > 2 there exists an infinite family of mutually nonisotopic symplectic
tori representing the homology class 2q[T).

A symplectically embedded torus is called c-embedded if it has self-
intersection 0 and a pair of simple closed curves which generate its
first homology and bound self-intersection —1 disks in the ambient 4-
manifold. Again, a regular fiber F in E(n) is the prototype we should
keep in mind. The theorem above implies the existence of an infinite
family of mutually nonisotopic symplectic tori in each even multiple
of the fiber class except for 2[F]. The following result generalizes the
elliptic surface case to every positive multiple of the fiber class for most

Theorem 2 (Vidussi [21]). For every ¢ > 1 and n > 3, there exists
an infinite family of mutually nonisotopic symplectic tori representing
the homology class q[F) € Hy(E(n); Z).

Theorem 3 (Etgi-Park [4]). Let T be an essentially embedded
symplectic 2-torus in a symplectic 4-manifold X with by (X) > 1.
If [T] € Hy(X;Z) is primitive, [T]? = 0, and HY(X — vT;Z) = 0.
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Then for any integer q > 3, there exists an infinite family of mutually
nonisotopic symplectic tori representing the homology class q[T].

The theorem above together with the corollary below almost ends
the story in the case of positive multiples of the fiber class in E(n).
There is only the fiber class in F(2) left, and most probably there is an
infinite family of nonisotopic symplectic tori representing it, too.

Theorem 4 (Etgii-Park [7], Park-Vidussi [15]). Let T be a symplec-
tic 2-torus in a symplectic 4-manifold X. Suppose that [T] € Ha(X;Z)
is primitive, [T)> = 0, and that T lies in a fishtail neighborhood. If
b;r(X) = 1, then we also assume that the Seiberg- Witten invariant of
X — vT is nontrivial and a finite sum. Then there exists an infinite
family of mutually nonisotopic symplectic tori in X, representing the
homology class q[T,,] € Ha(Xp; Z) for everyp > 1 and g > 1.

Here X, stands for the 4-manifold obtained by applying a generalized
logarithmic transform of multiplicity p to X along T. Using the fact
that no logarithmic transform on F(1) along a regular fibre changes its
diffeomorphism type, we get the following corollary.

Corollary 5 [7, 15]. For a suitable choice of a symplectic form on
E(1), there exists an infinite family of mutually non-isotopic symplectic
tori representing q[F| for each ¢ > 1.

Theorem 6 (Etgii-Park [5]). Let T; be a symplectically embedded 2-
torus in a closed symplectic 4-manifold X; with b3 (X;) > 1, [T;)> =0
and HY(X; —vT;; Z) = 0, for each i € {1,2}, and let X = X1#t7,—1, X>
be the symplectic fiber sum of X1 and X3 along Ty and Tz. If [T] and [R]
are the homology classes of Ty = Ts and a Tim torus in X, respectively,
then for each pair of positive integers (q,m) # (1,1) there exists an
infinite family of mutually nonisotopic symplectic tori representing the
homology class q[T] + m[R] € Hz(X;Z).

As usual we can apply the theorem above to the elliptic surface
case: For any pair of positive integers (¢, m) # (1,1) there exists an
infinite family of mutually nonisotopic symplectic tori representing the
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homology class g[F] 4+ m[R] of an elliptic surface E(2), where [R] is the
homology class of a rim torus.

Theorem 7 (Etgi-Park [6], Vidussi [23]). Let T be a symplectic
2-torus in a symplectic 4-manifold X with primitive homology class,
[T]?2 =0, and HY(X —vT;Z) = 0. Also assume that the Seiberg- Witten
polynomial of X — vT is a nontrivial finite sum in case b;r(X) = 1.
Then there exists an infinite family of mutually nonisotopic symplectic
tori in Xg representing [T| € Hy(Xk; Z) for any nontrivial fibred knot
K in S3.

The examples that lead to the theorem above are particularly in-
teresting, especially when X = E(n), as can be seen in the following
result. Moreover, these tori are used to construct the first examples of
homologous nonisotopic symplectic surface of higher genus in simply-
connected 4-manifolds as explained in subsection 3.3.

Theorem 8 (Etgii-Park [8]). If K is a nontrivial fibred knot in S3,
then there exists an infinite family of homologous symplectic tori in
E(n)k whose complements have mutually nonisomorphic fundamental
groups.

In contrast, the complements of the homologous (nonisotopic) tori
constructed in [4, 5, 7] have isomorphic fundamental groups [8].

3.2. Lagrangian tori.

Theorem 9 (Vidussi [22]). Let K be a knot in S* which has a trefoil
summand. There exists a primitive homology class [R] € Ha(E(n)k; Z)
such that q[R] is represented by infinitely many mutually nonisotopic
Lagrangian tori for each ¢ > 1 and n > 2.

In [1], Auckly showed that in case K is the sum of the trefoil knot
with its reflection, and that the complements of the nonisotopic ho-
mologous Lagrangian tori constructed by Vidussi have nonisomorphic
fundamental groups.
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Fintushel and Stern generalized Vidussi’s result to obtain the follow-
ing results.

Theorem 10 (Fintushel-Stern [11]). Let X be a symplectic 4-
manifold with by (X) > 1 which contains a symplectic torus of self-
intersection 0 in a fishtail neighborhood. For each nontrivial fibred
knot K, Xg contains an infinite family of null homologous mutually
nonisotopic Lagrangian tori.

Theorem 11 [11]. Let X; be a symplectic 4-manifold which contains
a symplectic torus T; of self-intersection 0 for each i = 1,2, and let T}
be embedded in a fishtail neighborhood. For each montrivial fibred knot
K, Xk contains an infinite family of mutually nonisotopic Lagrangian
tori representing a primitive homology class, where X = X141, -1, X2.

The Lagrangian tori constructed to prove the following theorem are
distinguished by the fundamental groups of their complements.

Theorem 12 (Etgii-McKinnon-Park [8]). Let K be a fibred knot
in S whose Alexander polynomial Ak (t) has an irreducible factor
none of whose roots is a oot of unity, and let X be a symplectic 4-
manifold with a symplectically embedded torus T of self-intersection 0.
If m(X —vT) = 1, then there are infinitely many null homologous
nonisotopic Lagrangian tori in X .

The Lagrangian tori in [15] can be distinguished by using the Seiberg-
Witten theory but not by the fundamental groups of their complements.

Theorem 13 (Park-Vidussi [15]). Let T be a symplectic 2-torus in
a symplectic 4-manifold X . Suppose that [T] € H2(X;Z) is primitive,
[T]?> = 0, and that T lies in a fishtail neighborhood. If by (X) = 1,
then we also assume that the Seiberg- Witten invariant of X — vT is
nontrivial and a finite sum. Then there exists an infinite family of
mautually nonisotopic Lagrangian tori in X, representing the homology
class q[T,] € Ha(Xp; Z) for everyp > 1 and g > 1.



1982 TOLGA ETGU

_ 7
q-2 7
strands
e

2p—1 crossings

FIGURE 1. Braid fp,q used in [4].

In the multiples of the fiber class in F(1) one can find Lagrangian tori
which are equivalent under the diffeomorphisms of E(1), but smoothly
nonisotopic.

Corollary 14 [15]. For a suitable choice of a symplectic form on
E(1), there exists an infinite family of mutually nonisotopic Lagrangian
tori representing q[F| € Hy(E(1);Z) for each ¢ > 1.

3.3. Symplectic surfaces of higher genus. The only examples of
higher genus homologous mutually nonisotopic surfaces symplectically
embedded in a simply-connected 4-manifold are constructed by Park,
Poddar and Vidussi. In nonsimply-connected 4-manifolds, we also have
the examples of Smith [19].

Theorem 15 (Park-Poddar-Vidussi [14]). For each integer ¢ > 2,
there exists a simply-connected symplectic 4-manifold which contains
infinitely many homologous mutually nonisotopic symplectic surfaces

of genus g.

4. Constructions of sympectic surfaces. There are several
different constructions of nonisotopic homologous symplectic surfaces in
simply-connected 4-manifolds. Even though these have certain common
features, each one of them has a different aspect. We start with the
general framework and mention some of the differences along the way.
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Different techniques used to distinguish homologous tori are explained
in Section 6.

4.1. Constructions of symplectic tori. We start with a closed
symplectic 4-manifold X with a self-intersection 0 symplectic torus T’
embedded in it. We almost always assume that the homology class
[T] is primitive in Hy(X;Z) and H'(X — vT;Z) = 0. For technical
reasons, in Seiberg-Witten theory, in the case bJ (X) = 1 it may also be
necessary to assume that SWyx_,r is nontrivial and a finite sum. The
elliptic surface E(n) and a generic fiber of it are the ideal candidates
frequently used for the roles of X and 7', respectively.

At another part of this construction site we have a braid 8. In the
simplest case, e.g., as in [4], the closure B of § is a knot, and we
consider its closure inside the complement of its axis A. Since A is
an unknot, its complement is S x D? which trivially fibers over the
circle. A fiber of this fibration is the obvious disk that is bounded by
A. When we multiply this whole picture by another circle we obtain a
disk bundle over a torus Ny = S* x (S® — vA) which admits a natural
symplectic form which is essentially the sum of symplectic forms on the
fiber and the base [20]. Hence, the simple fact that B is transverse to
the disk bounded by A implies that Tz = S x B is a symplectic torus
in N4. To get more general results, we may use a braid which closes
to a multi-component link and consider one of these components in the
complement of the rest of them union the axis A, (see [5, 6, 7]), and
we get a symplectic torus after crossing the whole picture by a circle.

Once we obtain a symplectic torus as the inside pictures in Figure 1,
for example, N4 which is homologically the same as a regular neigh-
borhood of the self-intersection 0 torus 7" in X, we take such a regular
neighborhood out of X and glue N4 instead of it to obtain a closed
4-manifold. In more complicated cases, since the initial symplectic
torus we construct is in a 4-manifold, say N, with more than one
boundary component, gluing Ny to X — vT produces a 4-manifold
with boundary components diffeomorphic to T2. Depending on the
case, we may choose to close each of these boundary components by
T? x D?, E(1) — vF or S* x (S3vK) for a specific fibred knot K. No
matter how we close the boundary, we always have to make sure that
we respect the symplectic structures on all the pieces. That way we
obtain symplectic tori in the targeted closed 4-manifold.
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The homology class of the resulting torus depends on the linking
numbers of the components of the closure of the braid 8. The way
we glue our pieces makes some of this linking data irrelevant, hence
one can obtain symplectic tori representing a fixed homology class in
many different ways. Of course, this is not enough to claim that these
homologous tori are nonisotopic and the methods used to distinguish
them is the subject of Section 6.

4.2. Luttinger surgery and singular plane curves. A small
neighborhood of a Lagrangian torus in a symplectic 4-manifold can be
removed and replaced by a standard T2 x D? symplectically. In some
cases, i.e., when the gluing is made using certain diffeomorphisms, this
operation can be considered as a 4-dimensional Dehn surgery, called
Luttinger surgery. Moishezon’s construction of singular curves in CP?
is discussed through the eyes of Luttinger surgery in [2]. Both this con-
struction and the construction of symplectic tori summarized above can
be seen as braiding of many copies of disjoint symplectic submanifolds,
and they are related based on the fact that any symplectic 4-manifold
is a cover of CP? branched along a singular curve.

4.3. Construction of symplectic surfaces of higher genera.
The first examples of homologous nonisotopic higher genus symplectic
surfaces in a simply-connected 4-manifold are given in [14]. This con-
struction uses a certain class of homologous symplectic tori, constructed
in [6] (also see [23]) in the knot surgery manifold E(2)x , which were
shown to have complements with nonisomorphic fundamental groups
[8]. The diversity encoded in these fundamental groups survives (at
least when K is a hyperbolic knot) if one uses Park’s doubling con-
struction [13] and two copies of a torus representing g times the fiber
class in E(2)k to obtain a symplectic surface of genus g + 1 in the
double of E(2)k, i.e., the fiber sum of two copies of E(2)x along the
surface 3 obtained from the union of a regular fiber away from the
surgery region in E(2) and a pseudo-section which is a minimal genus
Seifert surface of K capped off by the punctured section of E(2). Since
the torus in F(2)k intersects with ¥ at g points, after the fiber sum
we have a g-punctured torus in each piece, and the union of these two
tori is the desired genus g + 1 surface.



SURFACES IN 4-MANIFOLDS 1985

5. Construction of Lagrangian tori.

5.1. Constructions of null homologous Lagrangian tori.
The first examples of homologous nonisotopic Lagrangian tori in a 4-
manifold were constructed by Vidussi in [22]. These examples are in
knot surgery manifolds like F(2)g. The way they are constructed is
very similar to the construction of symplectic tori above. The main
difference which makes the tori Lagrangian, as opposed to symplectic,
is that the simple closed curves that give these tori after multiplication
by the trivial S! factor in S x (§® — vK) are not transverse to but
embedded in a fiber of the fibration of the complement of the fibred
knot K over the circle. It should be noted that these tori are necessarily
null homologous.

After these first examples, and inspired by them, many other exam-
ples are given in more general classes of 4-manifolds, see [3, 11, 12,
15].

5.2. Circle sum construction and essential tori. In [11], gener-
alizing a technique used by Vidussi [22], Fintushel and Stern developed
a tool called circle sum that enables one to construct homologically es-
sential Lagrangian tori by using the null homologous Lagrangian tori
above. This is done by fixing an essential Lagrangian torus 1), = S Lxu
in the gluing region of the knot surgery and adding this loop u to dif-
ferent simple closed curves in the Seifert surface in S — vK before
multiplying by the trivial circle factor as above. These new tori repre-
sent the same homology class as T,.

6. Tools to distinguish homologous symplectic surfaces.

6.1. Seiberg-Witten invariants of branched covers. One way
to distinguish the homologous symplectic tori is to consider the double
branched covers of the ambient manifold branched along the tori. This
is exactly how it is done in [10]. These covers are distinguished by using
their Seiberg-Witten invariants which can be calculated after observing
that the covers are link surgery manifolds, and the diffeomorphism type
of the cover depends only on the isotopy class of the branch tori. One
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minor disadvantage of this technique is the restriction to tori which
represent even homology classes.

6.2. Seiberg-Witten invariants of fiber sums. To distinguish
the homologous symplectic tori constructed in the general framework
mentioned in this note one can also use the Seiberg-Witten invariants
of the fiber sum of the ambient 4-manifold with F(1) along the tori
on one side and a generic fiber on the E(1) side (see [4-7, 21, 23]).
The effectiveness of this method lies within the fact that such a fiber
sum could also be interpreted as a link surgery manifold. Hence, the
calculation of the Seiberg-Witten invariants boils down to calculation
of the multi-variable Alexander polynomial of certain links. Once the
difference of these invariants is established, the nonisotopy of the tori
could be claimed as the diffeomorphism type of the fiber sum depends
only on the isotopy type of these tori.

6.3. Fundamental group of the complement. As another
method of distinguishing homologous symplectic surfaces, one can try
to use the fundamental group of the complement (see [7, 14]). In the
examples on which this method is applied one needs only the Wirtinger
presentation of link components and the Seifert-van Kampen theorem
to calculate the fundamental groups. In general, complements of ho-
mologous nonisotopic symplectic tori do not necessarily have noniso-
morphic fundamental groups (e.g. the examples in [4, 5, 7]). Even if
they do, showing that two groups are not isomorphic is usually a chal-
lenging task. As is demonstrated in [8], techniques from the theory of
hyperbolic 3-manifolds or gauge theory (through its relationship with
the SU(2)-representations of the fundamental groups of 3-manifolds)
can be used to show the existence of infinitely many homologous sym-
plectic tori, the complements of which have nonisomorphic fundamental
groups. Moreover, the nonisotopy of higher genus surfaces obtained in
[14] is established by extending the results in [8]. The fundamental
group of the complement is especially significant in the higher genus
case since it is the only known way to distinguish homologous symplec-
tic surfaces of genus > 1.
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7. Tools to distinguish homologous Lagrangian surfaces.

7.1. Seiberg-Witten invariants of fiber sums. Seiberg-Witten
invariants of the fiber sum of F(2) x and E(1) along Lagrangian tori and
a regular fiber are used to distinguish the tori in [22]. This technique
is similar to the analogous computations for symplectic tori.

7.2. Lagrangian framing defect. Fintushel and Stern define
the Lagrangian framing defect (see [11, 12]) of a null homologous
Lagrangian torus and show that it is not only particularly easy to
calculate for the tori constructed along the ideas in [22] but it is in
fact a smooth isotopy invariant by demonstrating its relationship with
Seiberg-Witten theory. This defect is an integer invariant which is
essentially the difference between the null homologous and Lagrangian
framings of the torus. Another nice feature of this invariant is that
it is compatible with circle sum construction, i.e., it can be used to
distinguished essential tori obtained by circle sum.

7.3. Fundamental group of the complement. As is demon-
strated in [1, 3], certain classes of homologous Lagrangian tori have
complements with nonisomorphic fundamental groups. Again, differ-
ent techniques can be used to show the diversity of these groups. For
example, in [3], the Alexander ideals of fundamental groups of certain
homologous Lagrangian tori in specific knot surgery manifolds lead to
an unexpected connection with algebraic number theory, which upon
using one can prove that the groups in question are different at least
when the Alexander polynomial of the knot involved in the surgery has
a root which is not a root of unity.

8. Conclusion. Although there has been extensive research on
homologous and nonisotopic symplectic or Lagrangian surfaces in 4-
manifolds there are still more questions waiting to be answered in this
area. For example, there is the property of zero self-intersection that
is shared by all the surfaces constructed (symplectic or Lagrangian,
torus or higher genus). This may seem to be a technical point, yet
there are no examples in nonzero self-intersection homology classes.
Also the variety in genus-1 examples is yet to be seen in higher genus.
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Of course this could be explained by the ineffectiveness of Seiberg-
Witten theory, as it is used in this subject, on distinguishing higher
genus surfaces up to isotopy. Note that, since the normal bundle of
a Lagrangian surface is isomorphic to its cotangent bundle, the self-
intersection is determined by the genus, hence higher genus Lagrangian
surfaces necessarily represent homology classes of positive square.
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