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NECESSARY AND SUFFICIENT CONDITIONS FOR
GLOBAL ATTRACTIVITY OF HOPFIELD-TYPE
NEURAL NETWORKS WITH TIME DELAYS

SHANGGUO ZHANG, WANBIAO MA AND YANG KUANG

ABSTRACT. In this paper, two classes of two- and three-
dimensional Hopfield-type neural networks with time delays
are considered by using a completely different method from
known results. Some necessary and sharper sufficient criteria
for the global attractivity of equilibria of the neural networks
are presented.

1. Introduction. It is well known that early study on stability of
Hopfield-type neural networks mainly dealt with ordinary differential
equation models (see, for example, [11, 12]) in which the updating and
propagation are assumed to occur instantaneously. However, strictly
speaking, the integration and communication delays are ubiquitous
both in biological and in artificial neural networks. Hence, investigation
on the stability of neural networks with time delays has attracted
considerable interest in recent years (see, for example, [1-9, 19, 20|
and [14-18, 21-25)).

Hopfield-type neural networks have a broad spectrum of application
in various optimization, associative memories, and engineering prob-
lems (see, for example, [11, 12]). As is known, engineering applications
of neural networks, such as optimization and association, rely crucially
on the dynamical behaviors of neural networks. Therefore, qualitative
analysis of neurodynamics is indispensable for the practical design of
neural network models and tools. When neural networks are applied as
associative memories, the equilibria represent the stored patterns, and
their stability means that the stored patterns can be retrieved even in
the presence of noise. When applied as optimization solvers, the equi-
libria of the networks characterize all possible optimal solutions of the
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optimization problems, and the stability of the networks then ensures
the convergence to the optimal solution.

Generally speaking, theoretical analysis on global dynamical proper-
ties (such as global asymptotic stability of equilibria or periodic solu-
tions) of neural networks with time delays is still a difficult but a chal-
lenging problem in both biology and mathematics. It is known from
numerous known results (see, for example, [1-9, 19, 20] and [14-18,
21-25]) that the classic method of Liapunov functions or functionals
still plays an important role. On the other hand, the construction of Li-
apunov functions or functionals for a given system is usually very skillful
and complicated. As a result, for a given system, different Liapunov
functions or functionals usually result in different stability criteria. In
fact, even for some lower-dimensional systems, to give any necessary
or sharper sufficient criterion for global asymptotic properties is still a
very important problem.

The purpose of the paper is to try to develop a completely different
method for analysis of global attractivity of equilibria of two classes of
lower dimensional Hopfield-type neural networks with time delays, and
to give some necessary and shaper sufficient conditions. Our results
show that time delays are actually harmless for global asymptotic
properties of systems to be considered.

This paper is organized as follows. In the following section, we shall
give some preliminaries which include a description of an n-dimensional
Hopfield-type neural network with time delays and an important lemma
associated with the Hopfield-type neural network with time delays. In
Section 3, by using some computational techniques in matrix theory, we
shall give some necessary and sufficient conditions for global attractivity
of two- and three-dimensional Hopfield-type neural networks with time
delays. Our results show that time delays are harmless for the global
attractivity of systems to be considered. In the last section, we shall
give a numerical simulation example, which shows that our result can
be applied to more general systems and that the sufficient condition in
Section 3 may also be necessary.

2. Preliminaries. We consider the following Hopfield-type neural
network with time delays,
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(1) ai(t) = —bius(t +Zawf1ua —7ij)), i=12...,n

for ¢ > 0, where b; and aw are real constants and the time delays 7;;
are nonnegative.

Based on some well-known biological meanings, it is assumed that
the following conditions are satisfied for (1):

(Hl) b; > 0 and b; > \aii|.
(Hz) fi(0) = 0 and f;(u) saturates at +£1 for any u € R, i.e
limy, 400 fi(u) = 1.

(Hsz) fi(u) is continuous such that f/(u) > 0 for any u € R, f;(0) =1
and 0 < f;(u) < u for any u > 0, where

fi(u):ma‘x{fi(u)? _fi(_u)}7 UZOJZLZ y

As usual, the initial condition for (1) is given as u;(s) = &i(s),
-r<s<0,i=12,...,n, where r = max{r;; | i,j = 1,2,... ,n},
¢i(s), i = 1,2,...,n, are continuous on [—r,0]. Note that from

Lemma 1 below, it is not difficult to show that under (H;)—(Hgs), the
solution of (1) satisfying the above initial condition is existent and
unique on Ry = [0, +00) (see, for example, [13]).

It is clear that (1) always has an equilibrium u = (0,0,...,0)%, i.e.,
(1) has the trivial solution w;(t) =0,i=1,2,... ,n, for t > —7.

With the same arguments as in [16], we have the following lemma
which plays a very important role in the paper.

Lemma 1. If (Hy)-(Hs) are satisfied, then for any solution

(ur(t), ... ,un(t))T of (1), it follows that limsup,_, . |u;(t)] < M,
1=1,2,...,n, where the nonnegative constants M; satisfy

1 Z" - ,
MZ:F |aij|f]~(Mj), Z:l,2,... , T
7 j=1

Proof. First, we have from (Hz)—(Hj3) and (1) that, for ¢ > 0,

Dffui(t)] < ~biluwi(®)l + Y laggl, i=1,2...,n,
j=1
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from which it is easily seen that limsup, ., . |ui(t)] < M =
(1/b;) 2?21 laijl, i = 1,2,...,n. Thus, for any sufficiently small con-
stant n > 0, there exists sufficiently large time Ty, = Ty(n) > 0 such
that for ¢ > Tp, it has |u;(t — r)| < Mo +n, i = 1,2,...,n, which,
together with (H3) and (1), yield that for ¢t > Tp,

Dwmwbm\+2mm otn), i=1,2,...,n
j=1

Note that one can take n — 0 as ¢t — +oco. We also have that
limsup, , | |ui(t)| < M1, i =1,2,... ,n, where

Z‘al]|fj jo) < Mo, i=1,2,...,n

By repeating the above procedure, we can obtain the positive and de-
creasing sequences {M;;}, i = 1,2,...,n, such that for £ =0,1,2,...,

it has limsup,_, | o |ui(t)| < Mk, i =1,2,...,n, and
1 n
Mﬁzz%m W i=12...n

Let M;, i =1,2,...,n, denote the limits of {M;}, i =1,2,...,n, as
k — 400, respectively. Thus, we have that limsup,_, . |u;(t)] < M;,
t1=1,2,...,n, and

1< _ _
- gZ‘aiﬂfj(Mj), i=1,2,...,n.
1].:1

This completes the proof of Lemma 1. ]

3. Main results. In this section, we shall give necessary and
sufficient conditions for global attractivity of equilibria of two- and
three-dimensional Hopfield neural networks with time delays.

First, for global attractivity of the equilibrium (0,0)7 of (1) for the
case of n = 2, it has the following
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Theorem 1. The equilibrium (0,0)T of (1) for n = 2 is globally
attractive for any time delays 7;; > 0, 4,5 = 1,2, if and only if the
following inequality holds,

(2) (b1 — |a11]) (b2 — |azz|) — |aizazi| > 0.

Proof. (Sufficiency). From Lemma 1, we only need to show that
M;=0,i=1,2.

In fact, if there are My = 0 and M> > 0, from Lemma 1 and (Hj)
it can be seen that |ags|/bys = Ma/fa2(Mz) > 1, which contradicts
|aga| < bo. If My > 0 and My = 0 hold, it is also a contradiction
to |CL11| S bl.

If M; > 0 and M> > 0, from Lemma 1 and (Hs) it can be seen that
b;M; < 2521 la;j|M;, @ = 1,2, which is equivalent to the following
inequalities

3) {d1 = (b1 — |a11]) M1 — |a12|M2 < 0,

dy = —\a21|M1 + (bg — \a22|)M2 < 0.

It is clear from the inequalities (3) that by — |a11| and |a12| cannot be
zero simultaneously.

If by > |a11], from (3) it can be seen that
((b2 — lazz]) — laz1l|a12|/(by — |a11])) Mz = d2 + |az1|d1 /(b1 — |a11]) <O,
which implies that
(b1 = la11])(b2 — lazz]) — |az1llasz|) Mz = (b1 — |a11])dz + |az1|dy < 0.
If |ai2| > 0, it can be seen from (3) that
((br = la11]) (b2 — |azz|)/|ar2| — [a21]) My = d2 + (b2 — |azz|)d1/|a12| <O,
which implies that

((b1 — [a11])(b2 — |a22|) — |az1||a12|) M1 = (b2 — |azz|)d; + |ai2|d2 < 0.
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Hence, it follows from (2) that the above inequalities are not true. This
shows that M; = My = 0. Therefore, the equilibrium (0,0)% of (1) for
n = 2 is globally attractive for any time delays 7;; > 0, 4,5 = 1, 2.

(Necessity). Note that from assumption (Hs), the linearized system
of (1) at the equilibrium (0,0)7 is of the following form,

2
(4) ’Uq(t) = —biui(t) + Zaijuj(t — Tij), 1=1,2.
j=1

By using standard analysis techniques for the characteristic equation
of (4) (see, for example, [4, 13, 22]), it is not difficult to show that, if

(b1 — la11])(b2 — |azz|) — |aizaszi| <0,

then the positive constants 7, > 0, k = 1,2,..., exist such that system
(4) has Hopf bifurcations for 7;; = 7, > 0, 4,5 = 1,2; k = 1,2,....
This completes the proof of Theorem 1. o

Remark 1. Theorem 1 shows that the time delays 75, 4,7 = 1,2, are
factually harmless for global attractivity of the equilibrium (0,0)7 of
(1) for the case of n = 2.

Next, let us further consider global attractivity of the equilibrium
(0,0,0) of (1) for n = 3. This shows the following

Theorem 2. The equilibrium (0,0,0)T of (1) for n = 3 is globally
attractive for any time delays 7;; > 0, i,7 = 1,2,3, if all the principal
minors of C' are nonnegative, where the matriz C = (c;j)3x3 is defined
as follows,

(6)  cii = b —Jai| >0, cij = —laii| i#3, 1,5 =1,2,3.

Proof. From Lemma 1, one only needs to show that M; = 0,
1=1,2,3.

If there is some M; = 0, it follows from the proof of Theorem 1
and the assumption of Theorem 2 that M; = 0, i = 1,2,3. Hence, in
the following, we assume that M; > 0, i = 1,2,3. Furthermore, it is
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easily shown from Lemma 1 that Z?=1 la;;| >0,3=1,2,3, if M; >0,
i =1,2,3. Hence, from Lemma 1 and (Hj), it follows that

3 3
(6) szz :Z\a”|f_J(MJ) <Z|a”‘MJ’ 121,2,3
j=1

j=1
Let di, d2 and d3 be negative constants such that
(b1 — |ar1|) My — |a12| M2 — |ayz| M3 = dy <0,

(7) —|ag1| My + (b2 — |aze|) M2 — |ag3| M3 = dy < 0,
7|a31‘M1 — |a32|M2 + (bg — |a33\)M3 = d3 < 0

We first consider the case of b; — |a;;| > 0 for some i. Without loss of
generality, we assume that by > |a11|. Hence, from (7) it follows that

a12a21 a21a13
172*|0L22|*—| | My — |0023|+7| | M3
b1 — |a11] b1 — |a11]
= d2 + |a21| dl < 07
b1 — |a11]
a12a31 a13as1l
- (\%2\ + u) My + (bs — |ass| — u) M:
b1 — |a11] b1 — |a11]
_ lasi]
=ds3 + d1 <0,
b1 — |a11]

which is equivalent to the following inequalities
8
( )((52 — |az2|)(b1 — |a11]) — |arzaz1[) M2
— (Jags|(by — |a11]) + |az21a13]) M3 = (by — |a11])d2 + |a21|di <0,
— (laz2|(b1 — la11]) + |arzasi|) M
+ ((bs — lass|) (b1 — |a11]) — |a1zaz1]) M3
= (b1 — |a11])ds + |az1|d1 < 0.

Note that, by the assumption of Theorem 2, it follows that
A = (b2 — |aze|)(by — |an]) — |arzazi| > 0,
Agz = (bz — |ass|) (b1 — |a11]|) — |aizasi| > 0.
Set

A1z = Jags| (b — |a11]) + |az21a13], A21 = |asz|(b1 — |a11]) + |a12as1],
D, = (b1 - |a11\)d2 + |021|d1, D; = (b1 - \a11|)d3 + |a31|d1.
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Since M2 > 0, M3 > 0, Dy < 0 and D3 < 0, from (8) we can see that
A1+ Ap > 0and Aoy + Axp > 0. If Ay > 0, we have from (8) that
(A22 — A12A21/A11)M3 = D3 + D2A21/A11, from which it follows

(9) (A11A22 — A12A21) M3 = A11D3 + A1 D2 < 0.

If A;2 > 0, again we have from (8) that (A11A422/A12 — A1) My =
D3 + A33D5/A;9, from which it also follows that

(10) (A11A22 — A12A21)M3 = A12D3 + Az Dy < 0.
By some simple computations, it follows that
A11A22 — A12A21 = (b1 — |a11|) Det (C) Z 0

Therefore, the equalities (9) and (10) are contradictive.

Now we consider the case of ¢;; = b; — |a;;| =0 for i = 1,2,3. If at
least one column vector of the matrix C is a zero vector, for example,
|a12] = |asz| = 0, we have from (7) that

{ (b1 — |a11|) My — |ais|Ms = dy <0,
—|as1| My + (bs — |ass|) M3 = d3 < 0.

This is reduced to the cases of the two-dimensional system. It follows
from the proof of Theorem 1 that M; = M3 = 0, and hence, M = 0.

We assume that any column vector of the matrix C' is not a zero
vector. Note that ¢;; =0, i = 1,2, 3; it follows from the assumption of
Theorem 2 that

aizaz; =0, aizazr =0, azzazz =0, aizazzaz; =0, aizaziazx =0.

If a13 # 0 and ag3 = 0, it follows that az; = 0; hence, as; # 0, a12 =0
and agy # 0. Hence, ajzaziaze # 0, which is a contradiction. If a1 # 0
and ag3z # 0, it follows that az; = 0 and ags = 0; hence, az; # 0 and
a1z # 0. Hence, ajzas; # 0, which is a contradiction.

Therefore, the contradictions show that the assumption M; > 0,
1 =1,2,3, is not true. This completes the proof of Theorem 2. ]

Remark 2. Based on Lemma 2.5 in [2], it can be shown that the
condition in Theorem 2 is also necessary for the global attractivity of



HOPFIELD-TYPE NEURAL NETWORKS 1837

the equilibrium (0, 0,0)7 of (1) for any time delays 7;; > 0,4,5 = 1,2, 3,
if

(H4) Det (biéij + aij)3><3 #0
holds. Here 0;; = 1 and 0 for ¢ = j and ¢ # j, respectively. On
the other hand, the numerical simulations in the following section
strongly suggest that condition (H4) may not be necessary for the

global attractivity of the equilibrium (0, 0,0)7 of (1) for any time delays
Tij Z 0, i,j = 1,2,3.

4. Numerical simulation example. In this section, we shall give
an illustrative example which shows that Theorem 2 can be used for
more general systems. The numerical simulations below show that the
conjecture in Section 3 is true for the example.

Let us consider the following three-dimensional Hopfield-type neural
network with time delays,
(11)
ﬂl(t) —ul(t) + a1 tanh(ul(t — 7'11))7
'I:LQ (t) = —U2 (t) + a1 tanh(ul(t — 7'21)) + a2 tanh(u2 (t — ng)),
’I:L3 (t) = —U3(t) + asg tanh(u2 (t — 7'32)) + ass tanh(U3 (t — T33)),

where 7;; > 0 and a;j, 4,7 = 1,2, 3, are constants.

It is easy to see that (11) satisfies the assumptions (H;)—(Hj). Fur-
thermore, it is easily checked that the matrix C' satisfies the conditions
of Theorem 2, if and only if the inequalities

(12) |0,“’| S 1, 1= 1,2,3

hold. Hence, it follows from Theorem 2 that, if (12) is satisfied, the
equilibrium (0,0,0)7 of (11) is globally attractive any time delays
Tij Z 0, Z,] = 1,2,3.

We would like to point out here that, if |a;;| < 1, ¢ =1,2,3, holds, it
follows from some known results (see, for example, [3, 5, 6, 7, 9, 14,
15, 19-21, 23-26] and the references therein) that the equilibrium
(0,0,0) of (11) is factually globally exponentially stable for any time
delays 7;; >0, 4,7 =1,2,3.

On the other hand, it is clear that most known results (also see, for
example, [1-9, 14, 15, 17-26]) cannot be applied to (11) for the case
of |a;;| =1 for some i.



1838 SHANGGUO ZHANG, WANBIAO MA AND YANG KUANG

u3
Sy
oe & A b o N A O o

FIGURE 2. ass = 1.1, 7 = 30.

To give a numerical simulation for (11), let us choose a;; = a2 = —1,
assz — 1, a1 = 5, aza — 6 and 7 = 27'11 = 37'21 = T2 = (5/3)7‘32 =
(3/2)733. Figure 1 shows that the equilibrium (0,0,0)7 of (11) is
globally attractive for any 7 > 0. If we let ags = 1.1 > 1, 7 = 30, and
the other parameters are the same as the above, Figure 2 shows that
the equilibrium (0,0,0)7 of (11) becomes unstable and some solution
shall tend to some nonzero constant vectors or nonconstant periodic
orbits for large 7 > 0.
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