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GLOBAL SOLUTIONS FOR
A TRITROPHIC FOOD CHAIN MODEL
WITH DIFFUSION

FANG YANG AND SHENGMAO FU

ABSTRACT. In this paper, a tritrophic food chain model
with Holling II type functional response is studied. Very few
mathematical results are known for this model with diffusion.
We first consider the asymptotical stability of equilibrium
points for the model of ODE type. Then, the existence and
uniform boundedness of global solutions and stability of the
equilibrium points for the model of weakly coupled reaction-
diffusion type are discussed. Finally, the global existence of
solutions for the model of cross-diffusion type is investigated
when the space dimension is less than six.

1. Introduction. For several decades, after the pioneering work of
Lotka and Volterra in the 1920s, one of the topics of major concern in
mathematical ecology has been the study of tritrophic food chains [19,
20]. A spatially homogeneous food chain model is given by the ODE

system
dX X AY
= _X 1= ) - =2
dt [R< k) B1+X]’
Y A X Ay Z
(1.1) v _y B 22 p|,
dt Bi+X By+Y

dt

The model describes a tritrophic food chain composed of a logistic
prey (X), a Holling type II predator (Y'), and a Holling type II top-
predator (Z). In this model, ¢ is time, R and k are the prey intrinsic

7 Ay
d—:Z[EzL—DZ].
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growth rate and the carrying capacity, the A;’s are maximum predation
rates, the B;’s are half saturation constants, the D;’s are death rates,
and the FE;’s are efficiencies of predator (i = 1) and top-predator
(i = 2) (see [20, 23] for more details). In order to preserve the
biological meaning of the model, the parameters are assumed to be
strictly positive. It is not hard to verify that Y is extinct if £1A; < Dy
and Z is extinct if F3As < Do, so we always assume that E;A; > D;,
i=1,2.

By rescaling the variables [20],

Y A
=X - __“
U , v B w F.E,’
one obtains
du (o v) v
dt k 1+bul’
dv alu AW
1.2 g _ -D
(12) dt v[1+b1u 1+ byv 1]’
dw asgv
> D
dt w[l ¥ bov 2]’
where
AlEl A2E1E2 1 E1
= = = b = — b = —.
r R7 ax B1 ) az B2 ) 1 Bla 2 B1

For a food chain model, with almost no exceptions, the first con-
tributions dealt with the problem of persistence [8, 9, 13]. Complex
dynamics of the model (1.2) are investigated in [20] by combining nu-
merical continuation techniques with theoretical arguments. In [20], it
is first shown that (1.2) admits a sequence of pairs of Belyakov bifurca-
tions (codimension-two homoclinic orbits to a critical node), then fold-
and period-doubling cycle bifurcation curves associated to each pair of
Belyakov points are computed and analyzed. The overall bifurcation
scenario explains why stable limit cycles and strange attractors with
different geometries can coexist.

To take into account the inhomogeneous distribution of the predators
and prey in different spatial locations within a fixed bounded domain
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Q Cc RN at any given time, and the natural tendency of each species
to diffuse to areas of smaller population concentration, we are led to
the following PDE system of reaction-diffusion type [20]:

u aiv
=diAu+ 1—— ) - —— Q
ug = di1Au U[r( k> 5o ], zeQ, t>0,

aiu asw
]. + blu ]. + bgv

vt:dgAv—t—v{ —Dl], reN, t>0,

asv
1+ byv

wt:dgAw—i—w[ —Dg], zeQ, t>0,
(1.3)
Ogu(z,t) = Opv(z,t) = Oqw(z,t) =0, x€9Q, t>0,

u(z,0) = wo(z), wv(x,0)=vo(z), w(z,0)=wo(z), z€Q,

where 7 is the unit outward normal vector of the boundary 02 which
we will assume is smooth. The homogeneous Neumann boundary
condition indicates that the above system is self-contained with zero
population flux across the boundary. The constants d;, d2 and ds,
called diffusion coefficients, are positive, and the initial data ug(z),
vo(z), wo(z) are nonnegative smooth functions.

As far as the authors are aware, the knowledge of system (1.3) is
limited. Observe that, if w = 0, then the system of equations (1.3)
reduces to a Kolmogorov type prey-predator model with diffusion and
Michaelis-Menten functional response [14, 18]. In this special case, the
existence and asymptotic behavior of the solutions have been studied
extensively, for example, the existence of traveling front solutions was
established in [14] using a modification of the Conley index and in [18]
using the shooting argument and the Hopf bifurcation theorem.

In recent years there has been considerable interest in investigating
the global behavior of a system of interacting populations by taking

into account the effect of self- as well as cross-diffusion [5-7, 10-12,
23, 24, 26]. We are led to the following cross-diffusion system:

u ai1v

ze, t>0,

(1.4)
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e, t>0,
9 asv
wy = A(dsw + agiuw + agsw?) + w [1 b Dg],
zeQ, t>0,
Opu(z,t) = Opv(z,t) = Oyw(x,t) =0,
z €0Q, t>0,

u(z,0) = uo(z), wv(z,0) =vo(z), w(z,0)=wo(z), ze€Q,

where d; (4,7 = 1,2,3), a;, b, D; (i = 1,2), v, k and ag; are
positive constants anda;; (¢ = 1,2,3) is a nonnegative constant. di,
ds and d3 are the diffusion rates of the three species, respectively. a;;
(t = 1,2,3) are referred to as self-diffusion pressures and aj; as the
cross-diffusion pressure. The term self-diffusion implies the movement
of individuals from a higher to a lower region of concentration. Cross-
diffusion expresses the population fluxes of one species due to the
presence of the other species. The value of the cross-diffusion coefficient
may be positive, negative or zero. The term positive cross-diffusion
coefficient denotes the movement of the species in the direction of lower
concentration of another species and negative cross-diffusion coefficient
denotes that one species tends to diffuse in the direction of higher
concentration of another species [7]. For a;; # 0, the problem becomes
strongly coupled with a full diffusion matrix. Nonlinear problems of
this kind are quite difficult to deal with since the usual idea to apply
maximum principle arguments to get a priori estimates cannot be used
here [12]. As far as the authors are aware, very few mathematical
results are known for this system.

The main purpose of this paper is to study the asymptotic behavior of
solutions of the reaction-diffusion system (1.3) and the global existence
of the solution of the cross-diffusion system (1.4). The paper will
be organized as follows. In Section 2 a linear stability analysis of
equilibrium points for the ODE system (1.2) is given. In Section 3 the
uniform bound of the solution to (1.3) and stability of the equilibrium

points are proved. Section 4 deals with the existence of global solutions
of (1.4).
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2. Stability for the ODE system. In this section, we discuss
the stability of nonnegative equilibrium points for system (1.2). The
following theorem shows that the solution of system (1.2) is bounded.

Theorem 2.1. Let (u(t),v(t),w(t)) be the solution of system (1.2)
with initial values (u(0),v(0),w(0)) > 0, and let [0,T) be the mazimal
ezistence interval of the solution. Then

0<u(t) <M, 0<uv(t), w(t)<M,, tel0,T),

where My = max{u(0),k}, Mz = max{u(0) + v(0) + w(0), ((r/l)
+ )M}, | = min{D;, D2} and T = +o0.

Proof. Tt is easy to see that (1.2) has a unique positive local solution
(u(t),v(t),w(t)). Let T € (0,4occ] be the maximal existence time of
the solution. By the first equation of (1.2), we have u < Mj.

Let z = u+ v+ w. Then
_:Tu<1—%) —Dl’U—Dg’U)S(T—Fl)Ml—lZ,

where | = min{D;,Dy}. Thus, 2(t) < My, t € [0,T), and T =
+00. ]

Now we consider the stability of equilibrium points of (1.2). For
simplicity, by rescaling the new variables,
1 1 aq
2.1 U=—1u v=—0 w=—uw
( ) ) b2 ) a2b1 )
and using u, v and w instead of w, v and w, respectively, then system
(1.2) reduces to

du [ CoU }
=ru|l —cu— ,

dt 14+u
(2.2) v —mv{ = —03},

dt 14u 14w

dw v

dat w{l—l—v_czl]’
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where
(2.3)
ai as 1 ai D1by Dobo
= y C4 = .

= — n=— Cl = —— Cy = — C3
b1 ’ b2 ’ blk, bg’f" ajy as

Then the conditions E;A; > D;, i = 1,2, become

(H)0<e3<1,0<eq <1

System (2.2) has the following three trivial equilibrium points (spatial
homogeneity and temporal invariance):

(i) the trivial equilibrium point S (0,0, 0);

(ii) the semi-trivial equilibrium point Sz((1/¢1),0,0), corresponding
to prey at carrying capacity and in the absence of predator and top-
predator;

(iii) the semi-trivial equilibrium point Ss((cs/1 — ¢3), (1 — e3 — c1c3)/
((1 — c3)%¢cz),0), which is positive for 1 —c3 —cjc3 > 0 and corresponds
to prey-predator coexistence in the absence of top-predator.

As for nontrivial equilibrium points, it is possible to show that at most

two of them can be positive, namely, P;(u1,v1,wy) and Ps(uz,ve, ws),
where

1-— c1 + \/(1 — 01)2 + 401(1 — 02’01)

uy = )
(2.4) 2¢1
Ca uy
— = — 1
e Ty i (1+u1 C3>( o),
u 1—61—\/(1—01)2+4CI(1_CQU2)
2 = )
(2.5) 2¢1
C4 U2
= = - ]_ .
V2= wy <1+u2 Cs)( + v2)

It is easy to see that system (2.2) has a unique positive equilibrium
point Py, if

(Hs) cacq < 1—¢4, 1 —c3 —cic3 > c; and (2.2) have two positive
equilibrium points P, and P, if

(H3) 1/(c2) < (ca/1 —ca) < ((L+c1)?)/(4erce), (L—c1—c3—cics) —
(1 — (23)\/(01 + 1)2 — (4610284)/(1 — C4) > 0.
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Now we analyze the local geometric properties of the nonnegative
equilibria of (2.2).

Theorem 2.2. The trivial equilibrium point S1(0,0,0) of (2.2) is
unstable.

Theorem 2.3. The semi-trivial equilibrium point S2((1/¢1),0,0) of
(2.2) is locally asymptotically stable if 1 — c3 — cycs < 0. Sy is unstable
Zf]. —c3 —cie3 > 0.

Theorems 2.2 and 2.3 are very obvious, so we omit their proofs.

Theorem 2.4. Assume that 1 — c3 — cic3 > 0 holds. For the semi-
trivial equilibrium point S3 of (2.2), we have

(1) If 1—c3—ciez < ((1—c3)?cacq)/(1 —c4) and 1 — c3 —crc3 < ¢y,
then Ss is locally asymptotically stable;

(2) If 1 —c3 —ciez > ((1 —c3)?caca)/(1 —c4) or 1 —c3 —cic3 > ci,
then S3 is unstable.

Proof. The Jacobian matrix of the equilibrium Sj3 is

cear(l —c3 —ciez —c1)

—cac3r 0
rp—— 2C3
(1 —c3—cic3)m (1 —c3—cic3)m
5= | U-ae-agm 0 -
c2 (1—03) ca+1—c3—cic3
1 cqa—
0 0 ( c3 —cic3)n Cen

(l — 03)202 +1—c3 —cics3

The characteristic polynomial of Jy is

(1 —c3—ciecs)n
(]. — 03)202 +1-— C3 — C1C3

+ cqn

- i-

[)\2 — )\1637; (1—c3—cieg —c1) +e3(l —ez —eres)rm]|.
—c3

If 1 —c3 —cies < ((1—c3)%cacq)/(1—c4) and 1 — c3 — c1c3 < e,
then f()\) has three negative real roots and S3 is locally asymptotically
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stable. If 1 — c3 — cie3 > ((1 — ¢3)%caca) /(1 — cq) or 1 —c3 —c1e3 > e,
then f(\) has a positive real root at least, and S3 is unstable.

Theorem 2.5. Assume that (Hy), (Hz) and

1—c1)%(1
(H4) cam < rt—e)?(t+el) +c1)’
1—c3 —cic3

r(1—c1)?[r(1 —c1)cdea + (1 —c1 — ¢3)%(1 4 c1)?(1 — ca)eam]
(1—c3—cic3)(1 —ca)[r2(1 +c1) + rmc2 + (1 — c3 — c1c3)(1 — ca)camn]

hold. Then the unique positive equilibrium point Py of (2.2) is locally
asymptotically stable.

Proof. The Jacobian matrix of P; is
mi1 miz 0

Jo= | ma1 mae mas |,
0 mso 0

where
rur(l —¢1 — 2ciuq) rCaty
= 0 = —
miy 1+ <0, my2 T+u <0,
muvy Ul
= s, = - >0,
Moy 1+ w)? Moz <l o C3> cam
U
Moz = —cgm < 0, M3y = <l+u1 —03>(1—C4)n>0.

The characteristic polynomial is
FO) = X3+ A0+ A\ + A3
=\ - (m11 + m22))\2 + (m11ma22 — M1aMma1 — MazMz2)A
+ mi1maogmss.

According to the Routh-Hurwitz theorem [23], P; is locally asymptot-
ically stable if (H;), (H2) and (H4) hold.

Remark. ¢ = 0.8, co = 300, 3 = 0.1, ¢4 = 0.001, » = 0.1, m = 0.001
and n = 1 satisfy (H;), (Hz) and (Hy).
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Theorem 2.6. Assume that (Hy), (Hs) and

4cireacy (1+c1)(l—c1 —c3)eam
2 _
(HS) \/(Cl +1) 1—ca ~ r(l—ci1) ’

(14+ec1)[r(l— cl)c% + (1 —c1 —c3—cics)e)

>1
r2(1—c1)d+r(l —c1)eem+ (1 —c1 —e3)(1 — ca)camn

hold. Then (1.2) has two positive equilibrium points Py and Py. Py is
locally asymptotically stable and P» is unstable.

Proof. If (H;) and (Hj) hold, then (2.2) has two positive equilibrium
points P; and P,. According to the Routh-Hurwitz theorem [23], P;
is locally asymptotically stable if (H;), (Hs) and (Hs) hold.

The Jacobian matrix of P; is
! !
myp Mg 0

— ! !
Js =1 my my, mays |,
i
0 m3 O

where

, rug(l — ¢y — 2ciug) , rcaus

= 0 =— 0

my 1+ uy y Myo 1+ uy )

’ muvg ’ (15}
My = ——5 > 0, Moy = —c3 |Jeam > 0,

21 (1 +’U,2)2 22 <1+u2 3> 4

be = —cam < 0, o= —2— —¢3)(1 —ca)n > 0.
Mg cam Mo T c3 ) (1 —cq)n

The characteristic polynomial is

FO) = X% — (mh + mhy)N* + (mhymhy — mlamb — mhzmi, )X

! ! 4
+ My MgzMay.

Noticing that f(0) = mjym53mbs, < 0 and f(m};) = —mf;mismsy >
0, f(A) has a positive real root between 0 and m/,. Hence, the positive
equilibrium point P; is unstable.

In the following theorem, the global stability of the semi-trivial
equilibrium points S and S3 is shown.
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Theorem 2.7. (1) If 1 — ¢35 — cic3 < 0, then the semi-trivial
equilibrium point Sy of (2.2) is globally asymptotically stable.

(2) If 1 —c3 —c1e3 > 0, 1 —c3 — crez < ((1—c3)?cacq)/(1 — c4) and
1—c3—c1 <0, then the semi-trivial equilibrium point S3 of (2.2) is

globally asymptotically stable.

Proof. (1) Define the Lyapunov function

1 1
V(u,v,w) =u— — — —Inciu+ p1v + §w,

C1 C1

where p1 = (reg)/(merces) and 61 = (reg)/(neices). Let (u, v, w) be the

unique positive solution of (2.2). Then

dv r rCoU TCoCaW
_— = — — ]_ 2 — T - ]_ - .
7 o (cru —1) crcs(1 £ 1) (crcz +c3 —1) 13

By the Lyapunov-LaSalle invariance principle [15], S is globally
asymptotically stable if 1 — ¢z — cic3 < 0.
(2) Define the Lyapunov function

V(u,v,w) = <u—u*—u*ln%> —i—pg(v—v* —v*ln:—*> + dow,

where py = (rc2)/(m(l—c3)), d2 = (r(1 —c3 — c1c3)/(nea(l — c3)?),
u* = c3/(1 —c3) and v* = (1 — c3 — c1e3)/((1 — e3)2ca). Let (u,v,w)

be the unique positive solution of system (2.2). Then

dVv cou” #2
< — [ —
r(cl 1 u*>(u u®)

dat =
b cor — —P (u—u")(v—20")
1+u\’ 1+ wu*

[v(mp + ndey — nd) + (ndey — mpv™)]

14w
r *\2
g—l_ (c1 +c3—1)(u—u")
reow(l —cy)(1+u*) [ ca 1—c3—cics
1—cy (1 —c3)2c2

cs(1+v)
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Hence global asymptotical stability of Ss follows from the Lyapunov-
LaSalle invariance principle [15].

3. Global behavior of the PDE system without cross diffu-
sion. In this section we discuss the existence and uniform boundedness
of global solutions and the stability of constant equilibrium solutions
for the weakly coupled reaction-diffusion system (1.3). In particular,
the instability results in Section 2 also hold for system (1.3) because
solutions of (1.2) are also solutions of (1.3).

Let f1 = u[r(1 — (u/k)) — (a1v)/(1 + byw)], f2 = v[(a1u)/(1 + biu) —
(asw)/(1 4+ byv — D1)] and f3 = w((azv)/(1+ bav) — Ds]. It is easy
to see that f1, fa, f3 € Cl(ﬁi) with Ri = {(u,v,w) | u,v,w >
0}. Standard PDE theory [21] shows that (1.3) has unique solutions
(u,v,w) € [C(Q x [0,T)) N C*1(Q x (0,T))]3, where T < +oo is the
maximal existence time. The following theorem shows that the solution
of (1.3) is uniformly bounded, and thus 7" = +o0.

Theorem 3.1. Let (u,v,w) € [C(Q2 x [0,T)) N C%1(Q x (0,T))]® be
a solution of (1.3), T the maximal existence time and (uo(x), vo(z),
wo(z)) > 0. Then 0 < wu(z,t) < M, 0 < v(z,t),w(z,t) < Mo,
t € [0,T), where My, = max{||uo(z)|=),k}, M is a positive
constant depending on Q and all the coefficients of equations (1.3),
luol| o), ||vollze(q) and ||wol|lL=(q). Furthermore, T = +oo and
(u(z,t),v(z, t),w(z,t)) >0 for any t > 0 if ug > (#)0, vo > (#)0 and
wo > (#)0.

Proof. Let (u,v,w) be a solution of (1.3) with (ug(z), vo(z) and
wp(x)) > 0. From the maximum principle for parabolic equations [25],
it is not hard to verify that (u,v,w) > 0 for (z,t) € Q x [0,T'), where
T is the maximal existence time of the solution (u,v,w). Furthermore,
we know by the strong maximum principle that (u,v,w) > 0 for ¢ > 0
if ug > (£)0, vo > (£)0 and wy > (F)0.

Now we prove that (u,v,w) is bounded on © x [0,7). The maximum
principle gives v < max{|lug(z)||L=(q),k} = M;. Integrating the
equations of (1.3) over Q and adding up the results, we have that,
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by the Young inequality,

%/(u—&—v—i—w)dac:/ <ru—%u2—Dlv—D2w> dx
Q Q

k
< X2 —/ U+ v + w) da,
4r Q
where [ = min{D;, Da}. Therefore, ||u(t)||L1(q), [|v()]|L1(@) and
lw(t)||L1(q) are bounded in [0,00). Using [17, Exercise 5, Section
3.5] we obtain that ||u(t)|| L (), [|[v(t)]| L~ (o) and ||w(t)|| L= (o) are also
bounded in [0, 00). O

To compare stability analysis for the ODE system (2.2), we discuss
the following system

CoU
14+u

w
1+u 14w

ut:dlAu—l—ru[l—clu— ], ze, t>0,

vt:d2Av+mv[ —03], zeQR, t>0,

wt:dgAw—an[#cél], e, t>0,

(3.1)
Opu(z,t) = Oyv(z,t) = Oqw(x,t) =0, = €0, t>0,

u(z,0) = ao(z), wv(x,0)=7¢(z),w(z,0) =w(x), zec.

In order to establish global stability of the equilibrium solution, we
first recall the following result which can be found in [24]:

Lemma 3.1. Let a and b be positive constants. Assume that
¢, ¢ € CY[a,)), ¢(t) > 0 and ¢ is bounded from below. If
' (t) < —bp(t) and ¢'(t) < K in [a,00) for some constant K, then
lim;, o () = 0.

Let 0 = p1 < p2 < p3 < --- be eigenvalues of the operator —A on
Q2 with the homogeneous Neumann boundary condition, and let E(u;)
be the eigenspace corresponding to y; in C1(Q).
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Let X = {U = (u,v,w) € [C*(Q)]® | Oyu = 0,z € 99}, {pij, j =
1,2,...,dimE(y;)} be an orthonormal basis of E(y;) and X;; =
{C-¢;; | C € R} Then X; = @i W)X, X = o, X; [22,
24].

Theorem 3.2. The semi-trivial equilibrium point Sy of (3.1) is
globally asymptotically stable if 1 — c3 — c1c3 < 0.

Proof. We present the proof in two steps:

Step 1. Local stability. Let D = diag(dy,ds,ds) and L = DA + J,
(see Section 2). The linearization of (3.1) at Sz is U; = LU (i > 1). For
each ¢ > 1, X is invariant under the operator L, and A is an eigenvalue
of L on X; if and only if it is an eigenvalue of the matrix —u; D + Js.

The characteristic polynomial of —u; D + J; is given by

T + C3m) (A + pids + cqn).

Clearly, —p;di —r, —pida+(m/(1 + c1))—cgm, —p;ds—can are the three
roots of p;(A). Thus, the spectrum of L, consisting only of eigenvalues,
liesin {Re A < —(1/2) max{r,cam—(m/(1+c1)),can}}if 1—cz—cic3 <
0, and local stability of Sy is obtained [17, Theorem 5.1.1].

Step 2. Global stability. Let (u,v,w) be the unique positive solution
of system (3.1). It follows from Theorem As in [4] and Theorem 3.1
that
(3.2)

(s Ollgnegay N0 Ollonagay (s llgam < C forall ¢ > 1,

where a € (0,1) and C is a constant which does not depend on ¢.

Define the Lyapunov function

V(u, v, w) :/ {(u 1 lln(:1u> +pv+5w} dz,
Q

C1 C1

where p = (rcg)/(meics) and 6 = (rez)/(neics). By (3.1), we have

av dy ) / 1)?
o[ B v de - - =) 4
p /Q ol |Vu|*dx — rey ; U o x

(3.3) )
B reg(cres +c3 — 1) / v dr TCyCy / wds.
cic3 al+u Ci1C3 Jq
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By Theorem 3.1, Lemma 3.1 and equations (3.2) and (3.3), we know
that

1\2
lim / |Vu|? dz = 0, lim <u - —> dz =0,
t— o0 Q t—o0 Q C1

lim vdx =0, lim wdz =0,
t—o0 Q t— o0 Q

(3.4)

if 1 — c3 — cye3 < 0. From the Poincaré inequality, it follows that

. 2 _
(3.5) tlglolo Q(u u)*dr =0,
where U = l/Q Jqudz. By [,(w— (1/c1))?dz < 2 [,(uw—u)?dz +

2 [,(u—(1/cy))? dx, we have u(t) — (1/01) as t — oo. Therefore, there
exists a sequence {tm} with ¢,, — oo such that @ (¢,,) — 0 as t,, — oo.

Since 7 = (1/Q) [vdz — 0 and w = (1/Q) [ywdz — 0 as t — oo,
there exists a subsequence, still denoted by {¢,,}, such that ¥’(¢,,) — 0
and W' (tm,) — 0 as t, — co.

At t = t,,, from the first two equations of (3.1), we have

| (tm) = /Qru [1 —cju — lc—ivu} dz — 0,

(3.6) " »

QY (tm) = /va [H—u T30 03] dzr — 0.
Hence,
(3.7) lim v(t,) =0, lim w(t,) = 0.

m—»o0 m—r 00

It follows from (3.2) that a subsequence {t,,} exists, still denoted by
{t.n}, and nonnegative functions u;, v1 and w; € C?(£) exist such that

Tim ([l tm) =l gy 100G ) =01l s (et =01 )
=0.

Thus,

. 1
i (1uCtn) = e ot sl o) =0

m—r o0
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The global asymptotical stability of S3 follows from this together with
the local stability of Ss.

Theorem 3.3. Assume that cic3 <1 —c3<ci and1l —c3 —cic3 <
((1 — c3)%c2ca)/(1 — c4) hold. Then the semi-trivial equilibrium point
S3 of (3.1) is globally asymptotically stable.

Proof. Let L = DA + J; (see the proof of Theorem 3.2). The
linearization of (3.1) at S3 is Uy = LU. The characteristic polynomial
of —p; D + Js is given by

Cc3T
1-— C3
+ [L?dldg +c3(l —c3 —cie3)rm

pi(A) = {)\2 + [M(dl +da) — (1 —c3—cic3 — Cl)})\

csr
—#idzl 3C (1—03—0103—01)}
—c3
(1-c3—cies)n
A ids — .
{ s (1—03)2C2+1—03—C103+C4n

By direct computation we know that the three roots A; 1, A; 2 and A; 3
of ;(\) have negative real parts if 1 —c3 —cjcg<min{cy, ((1—c3)%c2cq)/

(1—cq)}.

Now, we prove that a positive constant ¢ exists such that

(38) Re {)\ivl}7 Re {>\i72}, Re {Ai73} S 7(5, 7 Z 1.

Let A = p;¢ and ¢;(¢) = :(\) = pd¢® + Aip?¢? + Bipi¢ + C;. Since
p; — 0o as (i — 00), it follows that

tim ZX8) _ 81 (dy s 4 d3) P+ (dr o dsdh )G+ dudads £ B(C).

i—»00 w3

©?(¢) has the three roots —dj, —dy, —d3. Thus, there exists an g
such that the three roots (;1, (2 and (3 of ¢;(¢) satisfy Re{(i1},
Re{(iz} and Re {ng} S 7(d/2), ) Z io, where d = min{dl,dg,dg}.
So Re {Aivl}’ Re {)\i72}, Re {Ai73} S 7,U/z(d/2) S 7(d/2), ) Z io. Let
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75 = IMaXj<i<ig {R? {)\i71},Re {/\i72},Re {>\173}} Then 5 > 0 and (38)
holds for § = min{9, (d/2)}.

Consequently, the spectrum of L, consisting only of eigenvalues, lies in
{Re A < —0}, and the local stability of Sy is shown [17, Theorem 5.1.1].

Let (u,v,w) be the unique positive solution of system (3.1). Define
the Lyapunov function

V(u,v,w) :/ Ku—u*—u*ln%) +p<v—v*—v*ln%> +(5w] dz,
Q u v

where p = (re2)/(m(l—c3)), § = (r(1 —c3 — cie3)/(nea(l — c3)?),
u* = (c3)/(1 —¢3) and v* = (1 — c3 — e1e3)/((1 — ¢3)?c). Then
S diu’ dyv”

a < _/Q< 11;; |Vu\2 + —i;} Vv|2> dzx

_ 1_63(01—}—0371)/(;(u7u*)2dx

_rc2<1—c4>(1+u*>[ s 1—63—6103]/ Y gy
Q

Ca 1-cy (1 —e3)%co 1+w

From this, and using the similar argument in the proof of Theorem 3.2,
we can show

i ([l ) = 0¥ llosys T ([0 tm) = 0 oy,

Global asymptotical stability of Ss follows from this together with the
local stability of Ss.

By some tedious calculations, the following theorem can be proved in
a similar way as Theorem 2.5 and Theorem 3.3.

Theorem 3.4. Assume that (Hy), (Hs2) and (Hy) hold. Then the
unique positive equilibrium point Py of (3.1) is locally asymptotically
stable.

4. Global existence of solution for the cross-diffusion system.
In this section, we will discuss the global existence of nonnegative
classical solutions for the cross-diffusion system (1.4).
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By [1, 2], (1.4) has a unique nonnegative solution u,v,w € C([0,T),
W2 (Q)) NC>((0,T),C>(Q)) if ug, vo, wo € Wp(Q) for p > n, where
T € (0,+00] is the maximal existence time of the solution. If the
solution (u,v,w) satisfies the estimate
(4.1)

sup{ (-, )l s [0+ O llwacays (s ) lwa ey + £ € (0,T)} < ox,

then T = +oo. If, in addition, ug, vo, wo € W2(RQ), then u, v,
w € C(10, 00), W2(2).

To obtain L°-estimates of solutions of (1.4), some preparations are
needed.

Lemma 4.1. Let (u,v,w) be a solution of (1.4), z = (d + au)u,
Qr = Qx(0,7), 7 < T. Then there exists a positive constant C(1)
which depends on [[uol|wy () and |luol|L= (), such that

(4.2) I2llwz1 (g, < C(7).
Furthermore,
(4.3) VzeVa(Qr),  Vue LEn2D/nQ).

Proof. Let (u,v,w) be a solution of (1.4). Then
2zt = (d+ 2au)uy = (d 4 20u)Az + 1 — Bav,

where 81 = dru+(2ar—(rd/k))u®—(2ar/k)u?, B2 =[(a1u)/(1 + byu)] x
(d+2au). By [6, Lemma 2.2], one can obtain that ||z||W22,1(QT) <C(r
so (4.3) is a standard embedding result. O

)

Combining Lemmas 2.3 and 2.4 of [6], we can prove the following
lemma.

Lemma 4.2. Letp > 1, p =2+ (4p)/(n(g+ 1)), and let w satisfy

sup ||wl|Lee /e (o) + Vw2 (@r) < 00,
0<t<T



1802 FANG YANG AND SHENGMAO FU

and there exist positive constants 8 € (0,1) and Cr such that
/ w(-,t)|Pde < Cp  (for all t <T).
Q

Then there exists a positive constant M' independent of w but which
may depend upon n, Q, p, B and Cr, such that

lwllLa(@r)
>4p/(n(p+1)ﬁ)

’ 2/p
<M {1 " (é‘fET e (8)l] oo ||Vw||L2(QT)} -

The main result in this section is as follows:

Theorem 4.1. Assume that ug > 0, vop > 0 and wo > 0 satisfy
zero Neumann boundary conditions and belong to C***(Q) for some
a € (0,1), ajjassazg > 0 and azy > 0. Then (1.4) has a unique
nonnegative solution u, v and w € C2T*1H(2/2)(Qx [0, 00)) if the space
dimension n < 5.

Proof. Firstly, we establish L!- and L2-estimates of the solution
(u,v,w) of (1.4).

From the maximum principle for parabolic equations, it is obvious
that

(4.4) 0<u<My, 0<wv, 0<w, reQ, tel0,T),

where My = max{k, |[uo||L=(q)}. Furthermore, we know by the strong
maximum principle that (u,v,w) > 0 for t > 0 if ug > (#)0, vo > (#)0
and wg > (#)0. In addition, there exist positive constants M; and M;
depending upon k, €, the initial value ug and 7T such that

Hu||L1(QT) S Ml, ||UHL2(QT) S Mg, for all ¢ Z 0.

Integrating the first three equations of (1.4) over Q and adding up
the results, we have

d
pn Q(u—{—v—l—w)dac:

S~

(ru— %uQ — Dyv — Dyw) dz

k
< —(r+k)2\ﬂ|7/l(u+v+w)dac,
47" Q
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where | = min{D;, D>}. Therefore,

lo(®)[| L2 (), lw ()] L1 (o)
< max { %(r + R0, /Q(uo(x) +v0(z) + wo()) dac}
= Mé

and
||U||L1(QT)7 HwHLl(QT) < MéT = M3, forallt>0.

Multiplying the second equation of (1.4) by v and integrating it over
2, we have

1d

a 24, < 2 ﬂ/ 2 g
5 7t Qv dx < d2/Q|V’U| da:—i—bl Qv dx

By the Gagliardo-Nirenberg inequality, |v]s < C(|Vo|3/ 2|y 2/ ("F2) 4
|v|1), we have

1d , ds ) (n+2)/ a1/ ) o
e L . d 2 0 da + dy M.
2dt o, = CMé@/n)[/Q” v T e

Therefore, a positive constant M} exists depending upon as, b1, di, do
and k such that

(4.5) / vidr < My, t>0,
Q

and ||UHL2(QT) < MiT = My.

Secondly, we will obtain L?-estimates. Multiplying the second equa-
tion of (1.4) by qu?~! (¢ > 1) and integrating it over €2, we have

—/qu d2/ V(") da

8(1((1 1)azo / (g+1 a1
—_ V v at )/2 2 d.’,v + -— 'Uq dl‘
(¢+1)2  Jg Vi ) by Q
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Thus,

(4.6) /qu(m,T)dH@/ IV (0"2)? da dt

8¢(q—1
4 Sala = Doz )2‘22 / IV (0(@D/2)|2 gz gt
(g+1) Qr

§/vg(aj)dm+ﬂq/ v? dz dt.
Q b]- T
Let 7 = v(4t1/2, Then
/5(2‘1)/(‘1“)(90,@ dac+/ |V7|? dz dt
Q T
(2 1
< [ vh@)do+ SapIZLE D g
(2 (g+1
a1+ ||v||Lé’q§/?q+3(QT))
and
(4.7) B < Ci( 1+ |7 G000
: 1 LD/ (a+1)(Qr)
where

E = sup /ﬁ(zq)/(q“)(x,t) d:v+/ |Vo|? dz dt.
Q

0<t<T T

It follows from (2q)/(¢+1) <2 < § =2+ (4q)/(n(¢+ 1)) that
(4.8) E<Cy (1+ (5= q+1>).
Setting 8 = (2/(q + 1)) € (0,1), from the L' estimate of v, we have

1
) ) 1 1
oo = |v(-,t>|ﬁdx) = ol < 252,
forallt < T.
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By Lemma 8 and (4.8) one can obtain that

(4 n 1)q
E <Oy 1+ (M'+M' sup |[v(-, )HLél{E(qflt(Q))
L 0<t<T
(2¢)/(q+1)
2
<o) ]
- (49)/(n(g+1)q)
— 2 1
49 <an|ue (s ICOIZH )
0<t<T
. (2a)/((¢+1)q)
% (199)22q,))

< Cs (1 1 B9/ (n(g+1)d) E<2q>/((q+1>q>> .

It follows from [(4g)/(n(q +1)d)] + [(24)/((¢ + 1)@)] € (0,1) and (4.9)
that a positive constant Mj exists such that £ < Ms. Thus, ||[9]|L4(q,)

is bounded and v(?t1)/2 € LI(Qr), that is,
(4.10) v e LtVD/2(Qr),

Multiplying the third equation of (1.4) by qw?! (¢ > 1) and
integrating it over 2, we have

4(q -1
4t da < _M/ IV (w??)[? dz
Q q Q

dt
 8g(g — Dags / IV (/22 g
(¢+1) Jo

—qlq— 1)0431/ w? Vu - Vwdz + %q/ w? dz.
Q ba” Ja
Thus,

(4.11) /qu(m T)dm—i—%/ IV (/) da dt

N 8q(q — 1);133 / IV (@722 de di
(g+1) Qr

< /ng(m) dz — q(q — 1)asy

/ wi 'VuVw dz dt + %q/ w? dz dt.

2



1806 FANG YANG AND SHENGMAO FU

It follows from Lemma 4.1 that

(4.12) ‘q(q —1asy / wi™'Vu - Vwdz dt

< 2(1((1 )0631

q—1)/2
= g+1 || HL((q D(n+2))/2(Qr)

X | Vull paemi/n @IV (@) 120y
1)/2
< Cyllw] Y 1/)("+2))/2(QT ||V(w(q+1)/2
0481

Nz
—— IVt 2)|32 0, +

” |- D(+2)/2(Qg)"
Choose €1 such that (Cse1)/2 < [(8¢(q — 1)as3)/((g + 1)?)]. Then, by
(4.11) and (4.12)

(4.13) /E(Qq)/(q+1)(x,t)dx+/ |Vw|* de dt
Q

T
—1(2(g—1))/(g+1 —1(20)/(a+1
S/Q HE )dx+ H ||( (Z 1))()n/-£2q)]/(31+1)(QT +_ q|lw ||(L<Zq)/((lq+1)>(QT)
(2(g—1))/(q+1 —1(29)/(g+1
<Cs ( + ||w||L[Eg 1><n/+(g)1/(?1+1) @r) T 1@ ||(L<Zq)/((1q+1)>(QT)>
where @ = w(@tD/2, Let

E = sup /E(zq)/(q“)(m,t) d:v—i—/ |Vw|? dz dt
0<t<T JQ T
From (4.13), we have

E < Cs (1 + ||| (2(g—1))/(g+1)

+H—||(2q (g+1)
Ll(a=1)(n+2)]/(¢+1) (Q ) L(29)/(a+1)(Qr)

It is easy to see that (2¢)/(¢g+1) <2< q and [(¢ —1)(n+2)]/(g+1)
<q=2+(49)/(n(g+1)) if ¢ < (n(n+4))/(n* — 4). Thus,
(4.14) E < Cg (1 + || Qe )/ @+ )

@2 1
Satan) " + |G
Setting 8 =2/(g + 1) € (0,1), from the L! estimate of w, we have

1/B
ooy = ( [ 1ot0P de) =l <217
Q

LY(Q)
forallt < T.
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It follows from Lemma 4.2 and (4.14) that

B < Gol L+ (0040 sup G240

(2(g—1))/(q+1)
< vl )

(4 n(g+1)q
+ (M7 M sup (- ) e
o<t<T

2
x ||V 2

(29)/(q+1)
L2(Qr ))

(20)/(a41) (4(g—1))/(n(q+1)q)
<Cr [1 + ( sup |[W(, )| Loy carn )>

(4.15) 0<t<T

_ (2(g—1))/((g+1)q)
x (IV@l3 (o) )

(20)/(a+1) (49)/(n(g+1)q)
= (s 1ot 01 822 )

o<t<T
iy (20)/((a+1))
x (IV@l3(o))

<c (1 + B D)/t D) p(a-1)/(a+1)a)
1 B0/ (n(a+1)d) E(zq)/<<q+1>q>> .
Since [(4(g —1))/(n(g+ )] + [(2(¢ —1))/((g+1)9)] € (0,1), [4q/
(n(g+1)§)]+[2¢/((g+ 1)d)] € (0,1), we know by (4.15) that a positive

constant Mg exists such that E' < Mg. This implies that ||W||La(g,) is
bounded. Thus, w € LI4+14/2(Qr). From this and (4.15), we have

2 1
(4.16) v,we LYQr), forallge (1, %)

Specifically, choose ¢ = 2 in (4.6) and (4.11). Then there exists a
positive constant M7 for n < 5 such that

(4.17) H'U”VZ(QT)v ||w||V2(QT) < Mq.

Therefore,

(4.18) ||U||L[2(n+2)]/n(QT), ||w||L[2(n+2)]/n(QT) S M7.
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Thirdly, to prove v, w € L>®(Qr), we rewrite the second and the third
equations of (1.4) as

"9 ov au asw
4.19 - Y a2ty = - — Dy,
( ) vt ijZ:1 0Ij (a J 6IZ) ’U|:1 + biu 1+ byv 1:|
and

"9 ow asv
42 N L0, bw) = w| 2 Dy,
) w3 g ) u| {2 - |

where a;j = (d2 + 20(22’0)(5”', bi]' = (d3 +a31u+ 20[3310)(51']', bj = 031Ug;
and §;; are Kronecker symbols.

To apply the maximum principle [21, Theorem 9.1, pages 341-342]
to conclude that v,w € L>®(Qr), we need to verify the following condi-
tions: (1) [Jw||vz2(q,) is bounded; (2) 327, bij&i&; > v 3 & (visa
positive constant); (3) || 2?21 bf, w((azv)/(1 + b2v) — D2)||par(@r) <
w1 (p1 is a positive constant), where ¢ and r satisfy

1
S+ o1 ox, 0<x<l,
r 2q

n 1
€l too), re|—,40), n>2
I [2(1—><) ) [1—>< )

We next verify conditions (1)—(3) in turn. We know that condition (1)
is true from (4.17). Ome can choose v = d3 in condition (2). Let
uz = (dy + apju)u. It follows from Lemma 4.1 and fundamental
estimates of the parabolic equation [21] that a positive constant Mg
exists such that

(4.21)

2’ n-—-2
By the Sobolev embedding theorem, it follows that
Vuy € L{nt2)a)/(n+2-q) (Qr).

n+2 2(n+1)
g 2 02 (32,2050,

Solving equation us = (dy + ajju)u for u, we know that a positive
constant My exists such that |Vul|pn+2)a)/miz—q < My for all ¢ €
(((n+2)/2),(2(n+1))/(n —2)). Hence,

agv
]. + bz?)

b? e L((n+2)Q)/(2(n+2—q))(QT) C LYQr), w[ — D2:| € LYQr).
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Selecting ¢ = r = ((n + 2)q)/(2(n + 2 — q)), the above three conditions
are all satisfied. It follows from [21, Theorem 9.1] that a positive
constant Mo exists such that

(4.22) [w]|Le(@r) < Mio-

Similarly, a positive constant exists, still denoted by Mjp, such that

(4.23) [oll Lo (@r) < Mo-

It follows from (4.4), (4.22) and (4.23) that a positive constant My
exists for all T > 0 such that

[l (Qr)s [vllzo (@) wl[os(@r) < Mi1-

Finally, we prove that the solution (u,v,w) of (1.4) is classical in Qr
for any 7' > 0. The first equation of (1.4) can be written as

"9 _ Ou N aLv
(24)  w= ) (@) :“Hl‘ E) B 1+1b1u]’
b i

2,j=1

where @;;(z,t) = (di + 2a11u)0;;.

From Lemma 4.1 and equation (4.4), we know that (4.24) satisfies
all conditions of [21, Theorem 10.1] for n = 2, 3, 4, 5 and ¢ = r €
(((n+2)/2),(2(n+1))/(n —2)). Thus, a positive constant Mi, and
some 3 € (0,1) exist such that

(4.25) HUH(;@,(B/Z)@T) < M.

From uy = (di + anju)u € W2 (Qr) and the Sobolev embedding
theorem, we have

uz € Clten((l+e)/2) (@T) and u = <—d1 + 4/ d% + 40111U2)/(20411),

SO

(4.26) ue ot +a)/2 (@ ).
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Now we return to (4.19) and (4.20). From the above proof, we know
that ||v||y2(g,) and ||w|y2(g,) are bounded for n = 2, 3, 4, 5, and
v(((a1u)/(1 + brw)) = ((azw)/(1 + byv)) = D1), w(((azv)/(1 + byv)) —
Dy) € L*(Qr). One can obtain by Schauder estimate [21, Theo-
rem 10.1] that a* € (0,1) exists such that

(4.27) v,we C /D@L,

By (4.25)—(4.27), we have (di + 2a11uw)d;j, —2011(0u/0z;), u[r(l —
(u/k)) — ((a1v)/(1 + bru))] € C/2(Q,), where ¢ = min{a,a*}.
Therefore, applying the Schauder estimate [41, Theorem 5.3] for (4.24),
we have

(4.28) u e ot @/2@L).

Let

(4.29) v = (d2 + aoav)v, we = (d3 + aziu + agzw)w.
Then

aiu a2w
4.30) vy = (da2+2a200)A d+2 - -
(4.30) o = (d2+2a220) Avatv(da+ a220)<1+b1u 1+ byv 1)’

Wop = (d3 + aziu + 2a33w)Aw2
(431) + ’UJ(dg + aziu + 20633’11)) (% — Dz)

+ aziwug.

It follows from (4.28) that all the coefficients of (4.30) and (4.31) are
in C%(°/2(Qr). Thus, by the Schauder estimate [21, Theorem 5.3],

V2, W2 € CHUJHU/Q)(@T)-
Furthermore, by solving equation (4.29) for v and w, we have

(4.32) v,we O+ (QL).

In particular, to conclude, u,v,w € C?T®!+(«/2) (Qr) for the case
o < a. We need to repeat the above bootstrap arguments. Since T is
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arbitrary and Theorem 4.1 can be proved in a similar way as Theorem 2
in [11] when the space dimension n = 1, the proof of Theorem 4.1 is
completed.
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