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PERMANENCE IN MULTI-SPECIES
COMPETITIVE SYSTEMS WITH DELAYS
AND FEEDBACK CONTROLS

LINFEI NIE, JIGEN PENG AND ZHIDONG TENG

ABSTRACT. In this paper, we consider whether or not
the feedback controls have influence on a multi-species Kol-
mogorov type competitive system with delays. The general
criteria of integrable form on the ultimate boundedness and
permanence are established. When these results are applied to
some population models, some new results can be obtained,
and some known results also can be generalized and easily
verified.

1. Introduction. In this paper, we consider the following nonau-
tonomous n-species Kolmogorov type competitive systems of functional
differential equations with finite delays and feedback controls:

dxi t
) 1)t 2(0) (0, )
(1.1) dus (1)
u;
- —e;i(t)ui(t) + gi(t, zi(t), Tst),
where ¢ = 1,2,...,n, t € R, z;(t) is the density of compet-

itive species, w;(t) is the control variable, see [27, 29|, z(t) =
(z1(t),z2(t), ..., 2n(t), z¢e(s) = z(t + s) and wuyu(s) = wui(t + s) for
all s € [-7, 0], 7 > 0 is a constant.

In the theory of mathematical biology, system (1.1) is a very im-
portant mathematical model which describes population dynamics of
the multi-species in a time-fluctuating environment and the effects of
time delays, and has been extensively investigated in literature as bio-
mathematics models. This system contains many bio-mathematics
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models of delay differential equations with feedback controls, for ex-
ample, the following well-known multi-species systems with feedback
controls and finite delays.

(1) Nonautonomous n-species competitive Lotka-Volterra system
with delays and feedback controls (see [13, 27] and references cited
therein):

(1.2)
dxcit(t) — [m(t) — ai(t)zi(t) — ;aij(t)/o K;j(s)z;(t —s)ds
J#
—aul®) / " Hy(s)us(t — 5) ds]
dué() :—nz( Uz —i—a, / x] t—S)dS

(2) Nonautonomous food limited Michaelis-Menton system with feed-
back controls and delays (see [10] and references cited therein):
(1.3)

dxc;t( ) - [1 - Z m — di(t)ui(t — 7i(t))

dt

= —mi(t)ut) + ei(t)ai(t — oi(t)).

(3) Nonautonomous Allee-effect system with delays and feedback
controls (see [4, 5] and references cited therein):

(1.4)
dx;(t a” - zJ
dt(): [ Zaw ;;bwl ﬂ (t = 7iji)
—Z/_ it 9)a] (¢ + 5) ds — di(tyus(t)
—e;i(t) 3 .H,(t,s)u,(t—i—s) ds]
duz( ) 0

= fi(t) — gi(t)u;(t) + hy(t) K;(t, s)mf" (t+ s)ds.

—Ni
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As is known, ecosystem in the real world is continuously distributed
by unpredictable forces which can result in changes in the biological
parameters such as survival rates. In ecology, we know that the
practical interest question is whether or not an ecosystem can withstand
those unpredictable disturbances which persist for a finite period of
time. In the language of control variables, we call the disturbance
functions control variables, whereas, the control variables discussed in
most literature are constants or time dependent [10-12].

Recently, we have seen that some special population equations with
delays and feedback controls are studied in [2-5, 7, 9, 13, 15, 17,
18, 27-29]. In particular, Li and Zhu [13] investigated the existence
and nonexistence of positive periodic solutions of an infinite delay
functional differential system with parameter and feedback controls.
Weng [27] considered a class of periodic integrodifferential systems with
feedback controls and established sufficient conditions for the existence
and global stability of a positive periodic solution. Chen [3] considered
a periodic multi-species Kolmogorov type competitive system with
delays and feedback controls, and established sufficient conditions for
the existence of the positive periodic solution. Xia [28] considered an
almost periodic n-species competitive system with feedback controls
and established sufficient conditions for the existence of a unique almost
periodic solution. However, we see that for general nonautonomous n-
species Kolmogorov type competitive systems of functional differential
equations with finite delays and feedback controls (1.1), until now there
has not been any work on permanence of positive solutions. On the
other hand, we also note that few authors consider whether or not
feedback controls have influence on the permanence of system (1.1).

Motivated by the above questions, we study the permanence of pos-
itive solutions for general n-species Kolmogorov type competitive sys-
tems with delays and feedback controls, and establish the general cri-
teria of integrable form on the ultimate boundedness and permanence
of all positive solutions. This paper is organized as follows. In the next
section, as preliminaries some useful lemmas are presented. We will
state and prove sufficient conditions on the ultimately bounded and
permanence of any positive solutions for system (1.1) in Section 3. In
the last section, we deduce criteria to some well-known special cases of
system (1.1) to illustrate the generality of our results.
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2. Preliminaries. Let 7 be a nonnegative constant. For any positive
integer m, we denote by C™ the Banach space of bounded continuous
functions ¢ : [—7, 0] = R™ with the supremum norm defined by

6l = sup_16(s),

—TSSS

where ¢ = (61,... ,om) and [9(s)] = S0, [6i(5)]. Let RT = {o
(1,...,&m) € R™ : x; > 0,i = 1,2,...,m} and C}7 = {¢ =
(f1,---,m) € C™ : ¢i(s) > 0, for all s € [—7, 0] and ¢;(0) > 0,
for i = 1,...,m}. For any ¢1 = (¢11(t),¥12(t)s--- »¥1m(t)), Y2 =
(P21 (t), 22(t), - - - s 2 (t)) € CT, 1 < 9o denotes that 1;(t) < ai(t
for any t € Ryp and ¢ = 1,2,... ,m. When m =1 and m = n, we
have the definition of C}r, C%, R} and Ry, respectively. Particularly,
let Riog = [0, 00). For any point z € R"} we will use & to denote the
constant function ¢(s) = z for all s € [—7, 0]; for any point y € R we
will use y* to denote the constant function ¢(s) =y for all s € [—7, 0],
where ¥ € C}_.

As usual, if z(t) : [-7, a) — R is a continuous function, o > 0 and
t € [0, a), then z;(s) is defined by z;(s) = z(t + s) for all s € [—7, 0].

Firstly, we consider the following single-species nonautonomous Kol-
mogorov system

(2.1) —— =yt y()),

where f(t,y) is a continuous function defined on (t,y) € Ryg X R4.
We assume that for any (to,y0) € Ryo X Ry, system (2.1) has a unique
solution y(t) satisfying y(to) = yo. If y(t) > 0 on the interval of
existence, then y(t) is said to be a positive solution. It is easy to prove
that for all ¢ > to, y(t) > 0 if the initial value yo > 0 and y(¢) > 0 if
the initial value yo > 0. For system (2.1) we introduce the following
assumptions.

(A1) For any constant o > 1, f(¢,y) is bounded on R4 x [0, o].

(As) There are positive constants k1, wy, such that

t+w;y
lim sup/ f(r, k1) dr <O.
t

t—o0
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(A3) Partial derivative 0f(t,y)/0y exists for all (t,y) € Ryo X R4,
and there is a nonnegative continuous function ¢(t) and a constant

t+ws

wg > 0 which satisfy liminf;_, ft g(t)dr > 0, and a continuous

function p(y), which satisfies p(y) > 0 for all w € R, such that

%ﬁ/’y) < —q(t)p(y) for all (¢,y) € Ryo X R4.

We notice that assumptions (A;)—(As) are quite weak and can be
satisfied for wide classes of ecologically reasonable functions.

Let y*(t) be a fixed positive solution of system (2.1) defined on R .
We say that y*(t) is globally uniformly attractive on R, if for any
constants 77 > 1 and € > 0 there is a constant 7' = T'(n,e) > 0 such
that for any initial time ¢to € R1o and any solution y(t) of system (2.2)
with y(to) € [n71,n], one has |y(t) —y*(t)| < e for all t > t; + 1. By
Lemma 1 given in [23], we have the following result.

Lemma 2.1. Suppose that assumptions (A1)—(As) hold. Then
(a) there is a constant M > 0 such that

limsup y(t) <M

t—o0

for any positive solution y(t) of system (2.1).

(b) each fized positive solution y*(t) of system (2.1) is globally uni-
formly attractive on Ry.

Next, let us consider the following first order differential equations
with a parameter:

do(t)

(2.2) o

= g(tB) = b(t)v(t),

where g(¢, 8) is a continuous function defined on (¢, 8) € R4o X [0, Bo],
Bo is a constant, and b(t) is a continuous function defined on R. For
system (2.2) we introduce the following assumptions.

(B1) Function g(t,3) is a nonnegative bounded on R x [0, 5o] and
satisfies the Lipschitz condition with 8 € [0, 3], i.e., there is a constant
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L = L(Boy) > 0 such that |g(¢,81) — g(t,82)| < L|B1 — B2| for allt € R
and ﬁla /82 € [07 /80]

(B2) Function b(t) is nonnegative bounded on Rio and there is a
constant ws > 0 such that

t— o0

t+ws
liminf/ b(s)ds > 0.
t

In system (2.2), when parameter 5 = 0 we obtain the following system

do(t)

(2.3) -

= 9(t,0) = b(t)v(?).
By Lemma 3 given in [23], we have the following result.

Lemma 2.2. Suppose that the conditions (By) and (Bz) hold. Then
(a) there is a constant M > 0 such that

limsupov(t) < M

t—o0

for any positive solution v(t) of system (2.3).
(b) If there is a constant ws > 0 such that

t+wq
liminf/ g(s,0)ds > 0,
¢

t— o0
then there is a constant n > 1 such that

n~ ! <liminfo(t) < limsupv(t) <7
t—oo t— 00
for any positive solution vg(t) of system (2.3).

(c) Each fized positive solution v*(t) of system (2.3) is globally uni-
formly attractive on Ry.

Let vg € R4, tg € Ry and 8 € [0, Bo], and further let vg(t) and vy (t)
be solutions of systems (2.2) and (2.3) with initial values vg(tg) = o
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and vg(tp) = v, respectively. By Lemma 2.2 given in [17], we further
have the following result.

Lemma 2.3. Suppose that assumptions (A1) and (Az2) hold. Then
vg(t) converges to vo(t) uniformly for t € [ty, 00) as B — 0.

Remark 2.1. In system (2.3), if function g(¢,0) = 0, then system (2.3)
has a trivial equilibrium F = 0, and E is globally asymptotically stable.
For any constant I' > 0 and ty € R4o, let 8 € [0, So] and vg(t) be the
positive solutions of system (2.2) with initial value vg(ty) € [0, I']. By
Lemmas 2.2 and 2.3, we further have the following result: the solution
vg(t) converges to 0, as 3 — 0 and ¢ — o0, i.e., for any € > 0, there are
positive constants T = T'(e,T") and § = §(¢) such that vg(t) < ¢ for all
t>to+ T and B < 6.

In order to show the convenience of the statement in the beginning
of this paper, we introduce the following definition on persistence.

Definition 2.1. System (1.1) is said to be persistent if there are
positive constants m and M such that

m < liminf z;(¢) <limsupz;(t) < M, i=1,2,...,n,
t—o0 t— 00

for any positive solution (z1(t), z2(t), ... ,zn(t), u1(t), ua(t), ... ,un(t))
of system (1.1).

Remark 2.2. In system (1.1), u;(t), ¢ = 1,2,...,n, is a control
variable, so we do not consider the permanence of control variables.

Main results. In system (1.1), we introduce the following assump-
tions.

(H;) For each 1 < i < n, the function f;(t, z(t), z¢, u;(t), us) satisfies
the following conditions.

(1) For any constant K > 0, the function f;(¢, x, ¢, u;, ;) satisfies

Sup{|fi(t7m7¢aui7¢i)‘ : (t,$,¢, Uu%) € R+0 X Ri X Cﬁ X R+ X Ci?
|a"j| <K, ||¢]||C <K, |U’l| < K, ”'L/JZHC <K, j=12,... ,n.}<oo.
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(2) The function f;(t, z, ¢, u;, ;) is decreasing with respect to (z, @,
ui, Pi) € R} xC% x Ry x Ci, i.e., for any (z1, ¢1, ui1, Yi1), (T2, P2, Uiz,
Yi2) € RT x C% x Ry x C4, if 21 < @9, ¢1 < @2, uin < ui2, and
Yir < g then fi(t, w1, d1,uin,Yi) > fi(t, x2, b2, uiz, ¥ie) for all
teR.

(3) The partial derivative df;(t,0,... ,0,;,0,...,0,0,0*)/0z; exists
for any x; € R, and there exist a nonnegative continuous function g;(¢)
and a constant ¥; > 0, which satisfy lim inf;_, ftt—Wi gi(t)dr > 0, and
a continuous function p;(z;), which satisfy p;(z;) > 0 for all z; € R,
such that

ofi(t,0,...,0,z;:0,...,0,0,0,0)
(9xi

< —qi(t)pi(z:)

for all (t,x;) € R x Ry.

(4) There are positive constants k; and v; such that

t+v;
limsup/ fi(5,0,...,0,k;,0,...,0,0,0,0%)ds < 0.
t

t— o0

(H3) For each 1 < i < n, the function g;(¢,x;,$;) satisfies the
following conditions.

(1) For any constant G > 0, satisfies
Sup{gi(ta xia'(/}i) : (tawiawi)ER—FOXR-&-XCia |$z| S G7 ||’¢}1||c S G}<OO

Also, for 1 > 0 and z2 > 0, g;(t,z1,22) > 0.

(2) The function g;(t,z;, ¢;) is increasing with respect to (z;,®;) €
R+ X C}F

(3) The function g;(¢,x;, ¢;) satisfies the Lipschitz condition with
respect to (z;,¢;) € Ry x C1.

(H3) For each 1 < i < n, the function e;(t) is nonnegative continuous
and bounded on R, and there is a constant «; > 0 such that

t+a;
lim inf/ ei(s)ds > 0.
¢

t—o0



MULTI-SPECIES COMPETITIVE SYSTEMS 1617

For any (t,#,v) € Ry x C%} x C7}, by the fundamental theory of
functional differential equations (see [8, 10]), it is well known that
system (1.1) has a unique solution X (t) = (z(t), u(t)) through (to, ¢, ¥)
which is continuous. It is easy to verify that solutions of system (1.1)
are defined on [0, co) and remain positive for all ¢ > 0 if the initial
value (to, ¢, 'l/)) € R+ X Ci X Ci

Firstly, on the boundedness and ultimate boundedness of all positive
solutions of system (1.1), we can get

Theorem 3.1. Suppose that assumptions (Hi)—(Hs) hold. Then
system (1.1) is ultimately bounded in the sense that there are positive
constants M and T such that, ift > T, then z;(t) < M and u;(t) < M,
i =1,2,...,n, for all positive solutions X (t) = (z(t),u(t)) of system
(1.1).

Proof. Let X(t) = (z(t),u(t)) be any positive solution of system
(1.1). We first prove that the components z;, i = 1,2, ... ,n, of system
(1.1) are ultimately bounded. From condition (2) of (H;) and the ith
equation of system (1.1) we have

dai(t .
xdf ) < zi(8)£i(t,0,...,0,z:(t),0,...,0,0,0,0%).

By the comparison theorem and conclusion (a) of Lemma 2.1, we can
obtain that there is constant M;; such that for any positive solution
(x(t),u(t)) of system (1.1), there is a Tj; > 0 such that z;(t) < M;; for
all t Z T%l. NOW, let M1 = maxlSiSn{Mﬂ} and T1 = maxlgign{Til}.
We have

(3.1) zi(t)y <My forallt >Ty, i=1,2,...,n.

Further, from (3.1), condition (2) of (H3) and the (n+i)th equation of
system (1.1), we have

dui (t)
dt

< —e;(t)u(t) + gi(t, My, My)

for all t > T; +7. Hence, by the comparison theorem and conclusion (a)
of Lemma 2.2, we can obtain that there is a constant M;> > 0 such
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that for any positive solution (z(t),u(t)) of system (1.1), there is a
T;o > Ty + 7 such that u;(t) < Mz for all t > T;s.

Finally, we let M = max{My, Mys,..., M2} and T = max{T}, T}z,
.y Th2}. Then, forallt > T

z;(t) < M, w(t) <M, i=12...,n.

Therefore, the solution X (¢) = (z(t), u(t)) is ultimately bounded. This
completes the proof of this theorem. i

In order to obtain the permanence of system (1.1), we first consider

the following single-species nonautonomous Kolmogorov system
dx;(t A

(3.2) i%lzﬁum@m”wm%@ﬁwqmamm%
where ¢ = 1,2,... ,n. By conditions (1), (3) and (4) of (H;), we see
that system (3.2) satisfies all conditions of Lemma 2.1. Hence, by
Lemma 2.1, each positive solution of system (3.2) is globally asymptot-
ically stable. Let x;0(¢) be some fixed positive solution of system (3.2)
and zo(t) = (210(t), 220(t), ... , Tno(t)).

Next, we consider the following auxiliary system

d’U,i t *
(3.3) J)z—q@m®+m@m0%
where ¢ = 1,2,... ,n. By conditions (1) and (3) of (Hz) and (Hs), we
note that system (3.3) satisfies all conditions of Lemma 2.3. Hence, by
Lemma 2.3, each positive solution of system (3.3) is globally asymp-
totically stable. Let wu;o(t) be some fixed positive solution of system

(3.3).

Remark 3.1. If g¢;(¢,0,0*) = 0, then system (3.3) has a trivial
equilibrium FEy = 0, and Ej is globally asymptotically stable. In this
case, we let u;o(t) = 0.

On the permanence of system (1.1), we have the following result.

Theorem 3.2. Suppose that assumptions (Hy)—(Hs) hold. Assume
further that
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(Hy) for each 1 < i < n, there is a constant v; > 0 such that

t+y;
liminf/ filpszi0(p),y - .., Ti10(n),0,
t

t—o0

Tit10(1), -+ Tno(1), Top, wio (1), wiow) dp > 0,

where xo, = xo(p + 5) and wio, = uio(p + s) for all s € [—7, 0].

Then system (1.1) is permanent.

Proof. Let X(t) = (x(t),u(t)) be any positive solution of system
(1.1). From Theorem 3.1, there is a constant M > 0 such that for any
positive solution X (t) of system (1.1), there is a 71 > 0 such that, for
all t Z Tl,

z;(t) < M, w(t) <M, i=1,2,...,n.

Therefore, from condition (2) of (H;) and the ith equation of system
(1.1), we have

dmi (t)
dt

(3.4) > a;i(8) fi(t, U, U, M, M*) > —o;z(t)

for all t > Ty + 7, where U = (M,... ,M) € R", a; = supycp,, ¥
{Ifi(¢,U, U,M, M*)|}. For any t > Ty + 7 and s € [—7, 0], integrating
(3.4) from ¢ + s to ¢t we obtain

(3.5) z;(t+ s) < zi(t) exp(—a;8) < z(t) exp(a;7) < z;(t) exp(ar),

where a = max;<j<p{a;} and i =1,2,... ,n.

On the other hand, from condition (2) of (H1) and the ¢th equation
of system (1.1), we have

dz;i(t .
xdf ) < 2 (£)f;(,0,...,0,z:(t),0,...,0,0,0,0%).

By the comparison theorem and since z;(t) is a globally uniformly
attractive positive solution of system (3.2), we obtain for any ¢ > 0
there is a constant t;; = t;;(€) > 0 such that

z;(t) < xzio(t) + € forall t > t;.
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NOW, let tl = maxlgign{tﬂ}. Then, for all ¢ Z tl,
(3.6) zi(t) <mip(t)+e 1=1,2,...,n.

For any t3, t3 and t3 > t5 > 0, integrating system (1.1) directly we
have

(3.7) xxmy:%@gmpl3ﬁuwayaﬂmn#mdt

In the following, we will use two propositions to complete the proof of
Theorem 3.2.

Proposition 3.1. There is a constant 5 > 0 such that limsup,_, ., X
z;(t) > B,1=1,2,... ,n, for any positive solution X (t) = (z(t), u(t))
of system (1.1).

In fact, by (Hy), we can choose positive constants 7o > T3, € and ¢
such that
(3.8)

t+yi
/ fi(ﬂ’a xlO(/'L) +e&... ,LL‘Z',lo(/,L) +e&,¢, xiJrlO(:u’) +e&... ;an(p‘)

t

+¢e,xou + &, uio (1) + €, uiop +€) dp > 0.

forallt > T and ¢ = 1,2,... ,n, where € = (¢,... ,&) € R™.

Consider the following system with a parameter

dui (t)
dit

(3.9) = —e;(t)ui(t) + gi(t, B, Bexp(ar)),

where 8 € [0, Bo] and 4 = 1,2,... ,n. Let u;g(t) be the solution to
system (3.9). By conditions (H;) and (H3), we see that system (3.9)
satisfies all conditions of Lemmas 2.2 and 2.3. By Lemma 2.2, u;3(t) is
globally asymptotically stable. Further, by Lemma 2.3, we obtain that
u;g(t) converges uniformly for ¢t € R to u;o(t), as 8 — 0. Hence, there
are constants 8 > 0 and 8 < € such that for all t > T5,

(3.10) wﬂﬂgmdﬂ+; i=1,2,...n.
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If Proposition 3.1 is not true, then there are an integer k£ €
{1,2,...,n} and a positive solution (z(t),u(t)) of system (1.1) such
that limsup,_, ., zx(¢) < 8. Hence, there is a constant T3 > 7% such
that z(t) < 8 for all t > T3. From condition (2) of (Hz), (3.5) and the
(n + k)th equation we obtain

duk (t)
dt

S _nk(t) + gk(t,ﬂ,ﬂexp(on')) for all ¢ Z T3-

Using the comparison theorem and globally asymptotically stable of
solution uyg(t), we obtain that there is a T > T3 such that

(3.11) uk(t) S uns(t) + 5 forall ¢ > Ty,
Hence, from (3.10) and (3.11) it follows that

(3.12) up(t) < ugo(t) +e forall t > Ty.

On the other hand, by (3.6) there is a T5 > T4 such that
(3.13) z;(t) < wzio(t) + & for all t > T,

where i = 1,2,... ,n and 7 # k.
By (3.7), (3.12), (3.13) and condition (2) of (H;), we obtain

t

xk(t) = mk(TS) exp . fk(,uﬂm(“)axpauk(u)vuku) dp
t

Z LL‘k(T5) exp fk(:u’axl()(ﬂ)—i_sa"' 73716710(/")—’_57
Ts

g, mk+10(:u’) +&..., +$n0(p’) +e, Zop +5, uzO(/l’) +e,
Uiy +€) dp

for all t > T5. Thus, from (3.8) we finally obtain lim;_, . zx(t) = oo
which leads to a contradiction. Therefore, Proposition 3.1 is true.

Proposition 3.2. There is a constant v >0 such that lim inf;_, o x;(t)
>v,1=1,2,...,n, for any positive solution X (t) of system (1.1).
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In fact, if Proposition 3.2 is not true, then there is an integer
j €{1,2,...,n} and a sequence of initial value {X,, = (dm,¥m)} C
C x C? such that, for the solution (z(t, X;), u(t, X;,)) of system (1.1),

<P

htrgg)lfa:j(t,Xm) ot m=12...,

where constant 3 is given in Proposition 3.1. By Proposition 3.1, for

every m there are two time sequences {st(lm)} and {tém)}, which satisfy

0 < s <™ < s < tf™ <o <si™ <t < - and
limg sgm) = 00, such that
m B m B
(3.14) zi(sg™, Xm) = 0 (", Xm) =
and
(3.15) % <zj(t, Xm) < % for all ¢ € (s{™, ¢im™).

From the ultimate boundedness of system (1.1), we can choose a
positive constant T(™) for every m such that z;(t,X,,) < M and
ui(t,Xm) < M for all t > T(™ and i = 1,2,... ,n. Further, there

is an integer K™ > 0 such that s\ > T(™) 47 for all ¢ > K{™. Let
q> Kim), for any t € [s((]m), t((lm)]; by condition (2) of (H;) we have

de (t, Xm)

dt ij(taXm)fj(taUafjaMaM*)

Z _70'1’.] (t7 Xm)7

where U = (M,... ,M) € R" and vy = supteRw{\fj(t,U,ﬁ,M,M*)\}.

Integrating the above inequality from s,(lm) to t((lm), we further have

z; (tflm), Xm) > z; (s((]m), Xm) exp[—’yg(t(gm) — s((]m))].
Consequently, by (3.14),

B _B m m
. > Eexp[—’yo(t(g ) — sfl ).
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Hence,

1
(3.16) 10 — st > I forall ¢ > K™,
7o

By (3.8), there are positive constants P and p such that
(3.17)
t+rK
/ fily wio(p) +65- 0 s im10(p) + &6, Tit10(p) + &5+ s Tro(p)
t
+ €, Top + E; uzO(N’) + €, Uiop + E) dﬂ >0

forallt > 0 and kK > P.

Let w;g(t) be the solution of system (3.9) with the initial condition
i (si™) = u;(si™, X,). By (3.5), (3.15) and condition (2) of (Hs),

we have

d’LLj (t, Xm)

T < —e;(t)u;(t, Xm) + g;(t, B, Bexp(ar))

for any m, g and t € [s((]m), tgm)]. Using the comparison theorem it

follows that
(3.18) uj(t, Xm) < Wg(t) for all t € [s{™), ¢lm)].

Further, by Lemma 2.2, the solution u;s(t) of system (3.9) is globally
uniformly attractive on R;g. We obtain that there is a constant
Ty, > P, and T5 is independent of any m and g > K™ such that

(3.19) Ujp(t) < ujp(t) + - forall t > s{™ + .

N ™

On the other hand, by (3.6) there is a T35 > T3 and T3 is independent
of any m and ¢ > K™, such that

(3.20) zi(t, Xm) < mijp(t) +¢ forall t > T,

where ¢ = 1,2,... ,n and i # j. Choose an integer Ny > 0 such that,
when m > Ny and ¢ > K(™),

tim) — s > T3+ P
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Further, from (3.10), (3.18) and (3.19) we obtain

(3.21) u;(t, Xom) < ujo(t)+e forallte [s((]m) + T3, t((lm)].

Hence, when m > Ny and ¢ > K(™) by (3.7), (3.20), (3.21) and
condition (2) of (H;), it follows that

B

m?2

t{m)
= 2;(st™ + Ty, X,u) exp / Lt a(),meu(0),we) dt
sq +T3
t{m
> mj(ggm) + T3, Xm) exp/( ) fit,z10(t) +&,.. ., zj_10(t) + ¢,
sq " +Ts
g, Ij+10(t), e ,Ino(t) =+ €, Lot + E, Ujo(t) =+ g, u]’Ot =+ 6) dt
B

>
m2’

which leads to a contradiction. Therefore, Proposition 3.2 is true.

Finally, from Propositions 3.1 and 3.2 we complete the proof of this
theorem. ]

Remark 3.2. From the proof of Theorem 3.2, we note that if function
9i(t,0,0) = 0, then let u;o(t) = 0, ¢ = 1,2,...,n. In this case, the
feedback controls are harmless to the permanence of system (1.1).

If system (1.1) is T-periodic, then we can take constant 9; in con-
dition (3) of (Hi), v; in condition (4) of (Hi), o; in (H3) and v; in
(Hy),i=1,2,...,n, all as T, and particularly let x;o(t) and u;o(t) be
a fixed positive T-periodic solution of systems (3.2) and (3.3), respec-
tively. Further, for any T-periodic continuous function f(¢) on R, we

can obtain that liminf; , j;HT f(s)ds and limsup,_, ., ftHT f(s)ds

are equal to fOT f(s)ds.
Using Theorem 1 given by Teng and Chen in [21] on the existence
of positive periodic solutions for the general n-species periodic Kol-

mogorov type systems with delays, we have the following theorem on
the existence of positive periodic solutions for the periodic system (1.1).

Theorem 3.3. If system (1.1) is T-periodic and assumptions
(H1)-(Hy4) hold, and further assumption fOTgi(s,O,U*)ds >0, 1 =
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1,2,...,n, holds, then system (1.1) has at least a positive T-periodic
solution.

The proof of Theorem 3.3 is similar to that of Theorem 3 in [18], so
we omit it here.

Remark 3.3. Chen [3] studied the existence of the positive T-periodic
solution of T-periodic system (1.1) by using the technique of Schauder’s
fixed point theorem (see [3, Theorem 2.1]). Obviously, this method is
totally different from our method in this paper. We also note that
assumption (Ag) in Theorem 2.1 of [3] clearly implies assumption (Hy)
in Theorem 3.3. So, our result is very general and rather weak.

4. Applications. To illustrate generality of the results obtained,
we will apply the results given in Section 3 to particular competition
systems with delay and feedback controls or without delay and feedback
controls, which have been studied extensively in the literature. The
following four examples will show that the derived sufficient conditions
are easily verifiable, more general, and weaker than those given in the
literature; thus, we improve and generalize some well-known results.

Example 4.1. Consider the following nonautonomous Lotk-Volterra
differential system with finite delays
(4.1)
dxi (t)
dt

= x;(t) |c;(t) — a;(t)zi(t) — ' Zaﬁj(t)xj(t — n)], t > to,

j
zi(t) = ¢i(t) >0, t <ty and ¢;(to) >0,

where 77 >0,0<1<m,i=1,2,...,n, and each ¢;(t) is a continuous
function for ¢ < to, each ¢;(t), a;(t) and af;(t) is a nonnegative bounded
continuous function on [tg, ©0).

On the permanence of system (4.1), applying Theorems 3.1 and 3.2
we have the following result.

Theorem 4.1. Suppose that there exist positive constants w; and \;
such that for each i =1,2,... n,
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and
t—o00 t

where x;o(t) is some fized positive solution of system

da;(t)

=2 = 2 (0)e (1) — a; (B (1),

then system (4.1) is permanent.

Remark 4.1 Obviously, the result in [16, Theorem 1.1] implies our
Theorem 4.1.

Example 4.2. Consider the permanence of any positive solution for
system (1.2).

In system (1.2), we assume that

(Cq) Foreach i, j =1,2,...,n, ri(t), a;j(t), ai(t), a;(t) and n;(t) are
nonnegative bounded continuous functions on [0, 0o).

(Cy) For each i, j = 1,2,... ,n, K;; : [0, w] = [0, co0) is continuous
and fow K;;(s)ds =1, K;, H; are provided with the same behaviors as
Kij-

(C3) There is a constant v; > 0, ¢ = 1,...,n, such that

t—o0

t+i
Iiminf/ n;i(s) ds > 0.
t
On the permanence of system (1.2), applying Theorems 3.1-3.3 we
have the following result.

Theorem 4.2. Suppose that assumptions (C1)—(C3) hold, assume
further that there exist positive constants w; and A\; such that for each



MULTI-SPECIES COMPETITIVE SYSTEMS 1627

t+w;
lim inf/ ai;(s)ds >0
t

t—o0

and

t+A; n w
lim inf |:7‘,'(7') - Z aij (7')/ K;j(s)zjo(r — s)ds| dr > 0,
¢ 0

t—o0 . <
J=1,j#i
where x;o(t) is some fized positive solution of system

da; (t)

—a = 2 (0)ryi(t) — aji (O ().

Then (a) system (1.2) is permanent.

(b) If system (1.2) is T-periodic and fOT a;i(s)ds >0,i=1,2,... ,n,
then system (1.2) has at least a positive T-periodic solution.

Remark 4.2. Weng [27] studied the existence of the positive w-
periodic solution of w-periodic system (1.2) by using the technique of
coincidence degree. Obviously, this method is totally different from our
method in this paper, and our result can be more easily checked.

Remark 4.3. In system(1.2), we note that the feedback controls are
harmless to the permanence of system (1.2).

Example 4.3. Consider the permanence of any positive solution for
system (1.3).

For system (1.3), we introduce the following assumptions:

(Dy) Functions r;(t), a;(t), bi(t), ci(t), di(t), e;(t), ni(t), 7:i(t) and
0;(t) are nonnegative bounded continuous functions on [0, oo), and
inftzo bi(t) >0,1=1,2,...,n.

(D3) There is a constant y; > 0,7 =1,2,... ,n, such that

t+pi t+pg
lim inf/ a;(s)ds > 0, liminf/ ni(s)ds > 0.
t ¢

t—o0 t— o0
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On the permanence of system (1.3), we have the following result.

Theorem 4.3. Suppose that assumptions (Dy) and (Ds3) hold,
assume further that there is a constant \; > 0 such that for each
i=1,2,...,n,

1immf/t+A 1— Z (5)zj0(s) ds >0
t—oo Jy bi( +Cz( )xJO(S) ’

Jj=1,j#i

where ;o (t) is some fized positive solution of system
da;(t) a;(t)zi(t)
= = (B (t) |1 - |
a - e )[ bi(t) + ci(b)as (t)
Then, (a) system (1.3) is permanent.

(b) If system (1.3) is w-periodic and [ e;(s)ds >0, i=1,2,.
then system (1.3) has at least a positive w-pemodzc solution.

Remark 4.4. In system(1.3), we note that the feedback controls are
harmless to the permanence of system (1.3).

Example 4.4. Consider the permanence of any positive solution for
system (1.4).

For system (1.4) we introduce the following assumptions:

(Eq) For each i,j = 1,2,... ,nand l = 1,2,... ,m, aij, Bij, Yij> Vs,
Tij» T; and 7; are positive constants; 7;(t), a;;(t), biji(t), di(t), e;(t),
fi(t), gi(t) and h;(t) are nonnegative bounded continuous functions on
[to, OO)

(Ez) For each i,j = 1,2,...,n, cj(t,s), Hi(t,s) and K;(t,s) are
continuous with respect to ¢ on R and integrable with respect to
s; also, sup{f , Cig(t,s)ds} < oo, sup{f H;(t,s)ds} < oo and
sup{f_n, K;(t, s) ds} < 0.

On the permanence of system (1.4), we have the following result.

Theorem 4.4. Suppose that assumptions (Ey) and (E2) hold,
assume further that there exist positive constants p;, vi, p; and \; such
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that for each i =1,2,...,n
t+p; t+v;
lim inf a;;(s)ds >0, liminf fi(s)ds >0,

t—o0 t t—o0 t

t+pi
lim inf/ gi(s)ds >0
t

t—o00

and

n

t+A;
ot [ [1(6) = dO)un®) = D0 00157 6)

t—o0
jzl,#i
n m
= Y D bia(@)ale (0)(0—7in) Z / cij (0, 8)2] (0+5)ds
J=1,j#i =1 J=Ll#l T

0
— ei(ﬁ) H,-(0, s)uio(ﬁ + S) d8:| dé > 0,

where z;0(t) and u;p(t) denote some fized positive solutions of systems

dt

= i (t)[ri(t) — aii ()27 (t)]

and
2 = i)~ gt o)

respectively. Then (a) system (1.4) is permanent.

(b) If system (1.4) is w-periodic, then system (1.2) has at least a
positive w-periodic solution.

Remark 4.5. In system(1.4), we note that the feedback controls have
influence on he permanence of system (1.4).
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