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MODELING DISEASE SPREAD VIA
TRANSPORT-RELATED INFECTION
BY A DELAY DIFFERENTIAL EQUATION

JUNLI LIU, JIANHONG WU AND YICANG ZHOU

ABSTRACT. A delayed SIS model is developed to describe
the effect of transport-related infection, where time delay
arises very naturally and the basic reproduction number Ro
can be calculated. It is shown that this number characterizes
the disease transmission dynamics: if Ry < 1, there exists only
the disease-free equilibrium which is globally asymptotically
stable; and if Ry > 1, then there is a disease endemic equilib-
rium and the disease persists. Analysis of the dependence of
Ro on the transport-related infection parameters shows that
an outbreak can arise purely due to this transport-related in-
fection.

1. Introduction. Much has been done in terms of modeling spatial
spread of diseases. For example, Wang and Ruan [14] studied the global
spread pattern of the 2002-03 SARS outbreak. Rvachev and Longini
[6, 7] used a discrete time difference equation in a continuous state
space to study the global spread of influenza. Sattenspiel and Dietz
[8] introduced a model with travel between populations, where they
identified parameters in the case of the transmission of measles in the
Caribbean island of Dominica and numerically studied the dynamics
of the model. Sattenspiel and Herring [9] used the same type of model
for the consideration of travel between populations in the Canadian
subarctic, which can be thought of as a closed population where
travelers can be easily quarantined. Extensions to include quarantine
were given in [10] with an application to the data of the 1918-1919
influenza epidemic in the center of Canada. Metapopulation models
involving multi-patches have also been recently studied in [1, 13, 15,
16].
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Transport-related infection was not considered until the work [2] of
Cui, Takeuchi and Saito, where the following SIS model was formulated
and analyzed:

dsS: BS11h yaSals
e L — -
dt Sl 51 T Il + 1) 1 aS’l + OéSg SQ n I2,

% _ 651]1 + ’70&5212
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— =A—-dS; — 0l —aS S1—
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% - 652]2 'yaSlfl _
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(c+d+a)lx+ aly.

This model was generalized by Liu and Takeuchi [5] to an SIQS model
to incorporate entry screening and exit screening. The global dynamics
of model (1.1) was also investigated in [12].

Our work is inspired by the aforementioned studies [2, 5, 12]. Our
focus is to rigorously describe the disease dynamics through an SIS
model during the transportation, which gives a precise replacement of
the term (yaS;I;)/(S;+ I;), i = 1,2, in model (1.1) which involves
a delay representing the time needed to complete the use of the
transportation. Such a replacement seems to be natural and necessary,
for otherwise solutions of (1.1) may become negative if the infection
rate v during the use of the transportation is sufficiently large.

In the next section, we will construct a delay SIS epidemic model
with transport-related infection and obtain an explicit formula for
the basic reproduction number Ry and for an endemic equilibrium
(if it exists). We show in Section 3 that Ry < 1 implies the global
stability of the disease-free equilibrium. We then consider the case
when Ry > 1. In this case, we obtain the local stability of a positive
(endemic) equilibrium (in Section 4), and we show the persistence of the
disease (in Section 5). We conclude with some discussions in Section 6
about the role of transport-related infection in a disease outbreak.

2. Model derivation. We consider two patches connected by
same sort of transportation and assume, for the sake of simplicity, a
typical user of the transportation needs 7-units to complete a one-way
transport between two patches. Denote by S;(t) and I;(¢) the number
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of susceptibles and infectives in patch 4, and let N;(t) = S;(t) + I;(¢).
Also, let s91(0,t—7) and i2; (0, t— 1) be the number of susceptibles and
infectives at time 6 which left patch 2 for patch 1, where t — 7 < 0 < ¢.
Therefore, if « is the per capita rate an individual leaves patch 2 to
patch 1, then so1 (t—7,t—7) = aSa2(t—7) and i1 (t—7,t—7) = alz(t—7).

During the transport from patch 2 to patch 1 between time ¢ — 7 and
time ¢, we have

821(0,15 - T)igl(a,t - T)

2 so(O,t 1) = —

g Ot-7)=—y not(0,t—1)
(2.0) . o 821(9, t— T)igl(a,t - T)

A it ey 7

7’L21(0,t*7’)2521(0,2577')4-2'21(0,2577'), 0 e [t*T,t],

where -y is the transmission rate during the use of the transportation.
Thus (0/00)n21(0,t — 7) = 0, and hence no1(0,t — 7) = a(S2(t — 7) +
I,(t — 7)) = K is a constant, independent of § € [t — 7,t]. From the
second equation of (2.0), we get a logistic equation

i21(9, t—

%251(9,15—7):7[1— T)}iu(@at—T)-

Therefore,

Kigl(g,t - T)
[K — i21(6,t — T)]S_V(t_g) + i21(9, t— T) )

igl(t,t—T) =

In particular,

aly(t — 7)[Sa(t — 7) + Lt — )]
e~ So(t — 1) + Iz(t — 7)

izl(t,th) =

gives the inflow to the infective class of patch 1. Therefore,

so1(t,t —7) =K — i (t,t —7)

a[Sz(t—T)+I2(t—T)] —i21(t,t—7')

_ aei‘y‘rSQ(t — T)[Sz(t — T) + Ig(t - 7')]
e So(t — 1) + I(t — 7) ’
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and s91(t,t — 7) is the input rate to the susceptible class of patch 1.
By symmetry, we can get s12(t,t — 7) and 412(t,t — 7).

Consequently, we obtain the following delay differential system for the
disease transmission between two patches involving transport-related
infection

sy B511h
E—A*dslf Sl+11 +(51170é51+821(t,t77'),
dl ST
i _ 554 +igy(t,t —7) — (d+ 6+ @)1,
dt S1+1
2D 4 as BSs 1L
2 _ 4 B 212 B B
E =A dSQ SQ T Ig + (512 aSz + Slg(t,t T),
dly — BS2ly . o
dt = 52+12 +212(t,t T) (d+5+a)]2,
with
B ae” 1Sy (t — 1)
821(t7t T) - 6_77—52(25 _ T) n Ig(t — 7_) [Sz(t T) + I2(t T)]a
) alz(t —1)
— ) = _ I (t —
RS AR A
' . ae TS (t— 1)
512(t7t T) - e_»y-rSl(t — 7_) +Il(t — 7_) [Sl(t T) +Il(t T)]a
I (t —
it t—7) = ahi(t=7) [Si(t —7) + L (t — 7).

e Si(t—7)+ Li(t—7)
Here, and in what follows, A is the newborn rate (into the susceptible

class), d is the natural death rate, 8 is the disease transmission rate
within a patch, § is the recovery rate.

It should be emphasized that the concept of patch should be under-
stood in a much broader sense than a geographical location such as a
city. For example, we can consider here a city with two major regions
connected by public transportation. The model (2.1)—(2.2) implicitly
assumes that individuals claim their residency in a patch as long as
they are physically there, and the behaviors including the use of trans-
portation are the same for all the individuals within the patch.

The initial conditions for system (2.1) take the form of
51(0) = ¢1(0) > 0,11(6) = ¢2(6) > 0,

B3 50(0) = 12(6) 2 0,12(60) = () = 0, ¢ [-7,0),
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where ® = (¢1, 2, %1,%2) € CH([-7,0],R%), the space of continuous
functions mapping [—, 0] into Ri. Note that time lag 7 arises very
naturally.

It is straightforward to show, see [11], that

Lemma 2.1. The solution of system (2.1) with an initial condition
(2.3) is nonnegative for all t > 0.

Lemma 2.2. There exists an M > 0 such that for any solution of
system (2.1) with initial condition (2.3), there must be a T > 0 such
that S;(t) < M and I;(t) <M fori=1,2 andt > T.

Proof. For V(t) = S1(t) + I1(t) + Sa2(t) + I2(t), we have
(2.4) V(t) =24 — (d+ a)V(t) +aV(t — 7).

It follows that

(2.5) lim V(t) = %.

t—o0

This completes the proof. a

It is easy to check that Ey = ((4/d),0,(A/d),0) is the disease-free
equilibrium of (2.1), and it exists for all nonnegative values of the
parameters. The basic reproduction number is defined as

_ fHae’

Ry=2T"2° |
T dtd+a

We can also show that if Ry > 1, then system (2.1) also has a unique
endemic equilibrium E, = (S, I, Sk, L) given by

—B — 2 _
(2.6) L=4_s, 5 ="8-vB-404
d 28(1—e7) d

with

B=(d+d6+a)e™ " —(d+5+a+p), C=p8(d+6§)(1—e7).
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In fact, the total populations in both patches are described by the
equation

dN—l(t) =A—(d+ a)N1(t) + aN2(t — 1),
2.7) o
% — A— (d+ a)Na(t) + aNi (¢ —7),

which has a unique equilibrium (N7, Ny) = ((A4/d),(A/d)). Suppose
E. = (S1,I},55,1;) is an endemic equilibrium of (2.1), then the
symmetry, implies S} = S3 £ S,, If = I} 2 I,. Then S, + I, = A/d,
and S, satisfies

_

180 =5

(1—-e77)S% 4+ BS, + <1 + g>A =0.

It is easy to see that f(S,) has two positive roots

B VB_iC

Sl* - 2/8(1 _ 6_77—) (A/d)’
_B+ VB Z4C

52* - 2,8(176777) (A/d)

To obtain the endemic equilibrium, we need 0 < S, < (4/d). On the
other hand, Sz, > (A/d), for otherwise, we have Sa, < (A/d), that is,

(2.8) 28(1—e ")+ B >+/B?—-4C,
which implies
(2.9) e "(d+5+a—28)>d+5+a-0.

Squaring (2.8), we get d +d + @ > B + ae?”. Thus, (2.9) implies
e "> (d+d+a—p)/(d+ 5+ a—2F) > 1, a contradiction.

Since B < 0, then it follows that a unique endemic equilibrium exists
if and only if f(A/d) < 0. Hence, a unique endemic equilibrium exists
if and only if Ry > 1.

3. Global Stability of Ej.

Theorem 3.1. The disease-free equilibrium Eo=((A/d),0,(A4/d),0)
s unstable if Ry > 1 and is globally asymptotically stable if Ry < 1.
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Proof. The characteristic equation of system (2.1) at Ey is

M- X -Y
(3.1) det< v )J—X)ZO’
where
¥ = —(d+a) —B+9d
N 0 B—(d+d+a))’

and

—AT YT\ p— AT
v — (aeo a(l—e")e >

T —AT

ae’"e

From [2], the roots of (3.1) are identical to those of det(A\]—X —-Y) =
0 and det(A] — X +Y) = 0. On the other hand, we have

(3.2) detQ\[—X —Y)=(\+d+a—ae?)
A=B+d+6+a—ae’e™ ) =0,

and

(3.3) det(M — X +Y)=(\+d+a+ae )
A=B+d+6+a+aee ) =0.

Let fN)=A—B8+d+6+a—ae’e ™, gAN)=A-B+d+6+a+
ae’™e*. We know from [3] that all roots of

(3.4) Ad+atae™™ =0

have negative real parts.

Note also that if Ry = (B4 ae’™)/(d+ 8§+ a) > 1, then f(0) =
d+d6+a—(B+ae’™) <0, and f(+00) = co. Hence, f(A) =0 has at
least one positive root and Ej is unstable.

If Rg <1,thend+d+a>pF+ ae?. Let A = u + iv with u,v € R
be a root of f(A) = 0. Then we have

(ut+d+6+a—pF)°+v>=(ae?e )%
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If w > 0, then
(ut+d+d+a—B)2+0v2 > (@e))? > (ae?Te "),

a contradiction. This shows that all roots of f(A) = 0 must have
negative real parts. Similarly, we can show that all roots of g(\) = 0
have negative real parts. Therefore, Fy is asymptotically stable.

To complete the proof of Theorem 3.1, we only need to show that Ey is
globally attractive under the condition Ry < 1. Let V' (t) = I1(t)+1I2(¢).
We have

. S S
V() = e + B (@4 S+ o)+ 1)
al,(t—T1
MPETIAT —l(f-) ¥ ;1(15 —y St =)+ Lt =)l
O{Iz(t — T)

e St —n) + Ll —7) (St =)+ Lot = 7))

<ae”V(t—1)—(d+ 6+ a—p)V(¢).
But, for the equation
u(t) = ae’u(t — 1) — (d+ 0 + a — Bu(t),

if Ry < 1, then lim;,. u(t) = 0 (again, see [3]). Therefore, an
application of the standard comparison argument yields lim;_, o, V(¢) =
0, which implies that

(3.5) tllglo Ii(t) =0, tlggo I(t) = 0.
On the other hand, the total populations satisfy

dNq(t

% =A—(d+ a)N1(t) + aN2(t — 1),
(3.6) dN2t(t)

5 = A — (d+ a)Ny(t) + aNy(t — 7).

This is a cooperative and irreducible system of delay differential

equations with a unique locally asymptotically stable equilibrium
((A/d),(A/d)). Therefore,

Jim (0, 8a() = (5.3):

completing the proof. O
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4. Local stability of E,. In this section, we consider the local
stability of positive equilibrium E, under the condition Ry > 1.

Theorem 4.1. IfRy = (8 + ae ™) /(d + § + a) > 1, then the positive
equilibrium E is locally asymptotically stable.

Proof. For simplicity, we consider the following equations:

(4.1)
b)) _ A ];I(IQ)(t)]Il O it 7) @+ 3+ 0)n0)
d%f):A—M+®Nﬂ®+MW@_ﬂ’

d(t) _ BINa() = O L, 0y (a4 5+ a)a(2),

dt Na(t)
PLl) - A (a+ 0)Nalt) + adi(t -~ 7),
with
) B al(t—1)
uy TS R (e )
it t — ) = oh(t —7) Ni(t— 7).

NG + (eI 7)

Linearizing system (4.1) at the equilibrium E+ = (I, N, L, Ny),
where I, is defined by (2.6) and N, = A/d, we get the characteristic
equation as follows

MN-X -Y \
(43) det( _)'7 AI—)?)_O,

> (a1 a2 S [ brie™" biae™?"

X = ( 0 a22> ’ Y= < 0 bgge)‘T>
and aj; = 5(1 — (21*/N*)) — (d+ ) + CY), ajp = (5[3)/(]\[3), a29 =
—(d+ ),

with

ae YTN?2
e N, + (1 — e 7)L]?’

a(l—e )12

— *

b1 =
1 [e="N, + (1 — =72’

b12
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b2z = . Using a similar argument to that for Theorem 3.1, we note that
the roots of equation (4.3) coincide with the roots of det(A\[-X-Y) =0
and det(\l — X +Y) =0.

Firstly, we prove that all roots of det(AI — X - }N’) = 0 have negative
real parts, namely, all roots of

(4.4) A = (@11 + brre ™ )][A — (a2 + byoe™7)] = 0,
have negative real parts. We start with the equation

(4.5) A — (a1 +bye™ ) = 0.

Assume XA = z + iy with 2 > 0, z,y € R. Then (4.5) implies

T =ay +bie "7 cosyt,

y = —bye” " sinyr.
As by; > 0, we have
z < ap+ b

21, ae YT N2

=B(1 - —(d+6 *
A N, )= (d+d+a)+ (e Ny + (1 — e 77)I,)2
B GBI, alN, L oze"y"N*2
N, eV N,+(l—e ), (e "N+ (1—e7)L,)2
B, a(l — e 7T)N, I,

N, (e N.+(1—-e)L)2

<0,

a contradiction. Hence, all roots of (4.5) have negative real parts. Next,
we consider the equation

(46) A — (022 + bggei/\r) =0.
Assume A = z + iy with > 0, z,y € R. Then (4.6) implies

T = a9y + base” *7 cosyT,

y = —boge™ "7 sinyT.
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Since b2y > 0, we have

x < age + by :—(d+a)+a= —-d <0,
again a contradiction. Thus all roots of (4.6) have negative real parts.
We conclude that all roots of (4.4) have negative real parts.

Similarly, we can show that all roots of det(AI — X +Y) = 0 have
negative real parts.

Then we have proved that all roots of (4.3) have negative real parts.
Hence, the positive equilibrium is locally asymptotically stable. This
completes the proof. i

5. Permanence. We now consider the issue of disease persistence.

Theorem 5.1. Let Ry = (B+ ae?™)/(d+ 6+ a) > 1. Then there
exists an € > 0 such that every solution (S1(t),I1(t),S2(t),I2(t)) of
system (2.1) with initial conditions ¢1(8) > 0, ¥1(6) > 0, ¢2(6) > 0,
¥2(6) > 0 and ¢2(6o) + ¥=2(60) # O for some 6y € [—7,0] satisfies

lim inf S;(t) > €, liminf I;(¢t) > €, i=1,2.
t—o0 t—o0

In order to prove Theorem 5.1, we need the uniform persistence
theorem for infinite dimensional systems from [4]. Let X be a complete
metric space. Suppose that X° is open and dense in X, with X°UX, =
X, X'NXy = 2. Assume that T'(t) is a C° semi-group on X satisfying

(5.1) T(): X°— X T(t): Xo — Xo.
Let Tp(t) = T(t)|x,, and let Ay be the global attractor for Ty(¢).
Assume further that
(i) There is a to > 0 such that T'(t) is compact for ¢ > to;
(ii) T'(¢) is point dissipative in X;
(iit) A = Uyea,w(z) is isolated and has an acyclic covering M, where
M = Ui, My;

(iv) We(M;))N XY =@ fori=1,2,... k.
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Then X is a uniform repeller with respect to X©, i.e., thereis an ¢ > 0
such that for any x € X°, liminf, ,, o d(T(t)z, Xo) > ¢, where d is the
distance of T'(t)z from Xj.

We now are able to present the proof of Theorem 5.1.
Proof of Theorem 5.1. From (2.1), we have

dSi(t)
dt

>A—(B+d+a)Si(t), i=1,2.

Hence S;(t) is ultimately bounded below by some positive constant (for
example, ms = (A/2(8 + d + «))), which is independent of the initial
conditions. We need to prove that liminf; o, [;(t) > €,i=1,2.

Let

X = C+([_Tv 0]7Ri)7
XO = {(¢17¢27¢17¢2) S X‘ ¢2(9*) > 0 or ¢2(9*) >0
for some 0* € [—7,0]},

Xo = {(¢1, B2, ¥1,¢2) € X| ¢2(0) =0,
¥2(0) = 0 for all § € [—7,0]}.

It suffices to show that there exists an ¢y > 0 such that, for any solution
ug of system (2.1) initiating from X°, liminf; ., d(us, Xo) > €o. To
this end, we verify below that the conditions of the above uniform
persistence theorem are satisfied. Firstly, we show that X0 is positively
invariant. By (2.1), we have

 larsrert “ T BS1(p)11(p)
(5:2) T(t) = e"@rote) {W)*/o [m

n aly(p— )
e So(p—7) + L2(p—T)

(Salp—7) + Io(p - T»] e<d+6+a>Pdp},
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and

tdisrent “ T BS2(p)I2(p)
(5.3) Ip(t) = e~ (@3t {12(0)+/0 [m

ali(p—71)
e Sip—7)+ Li(p—T)

(S1(p— )+ In(p T»] e<d+5+a>Pdp}.

Then I;(t) > 0 for all t > 0, i = 1,2 if ® = (¢y, ¢, %1,92) € X°. This
implies that X0 is positively invariant.

By (2.1), we have

dI;(t)
d

0, 1=1,2;
(p1,902,%1,%2)EXo

thus, I;(t) = 0 for all ¢ > 0, ¢ = 1,2. Hence, Xy is positively
invariant, and condition (5.1) is satisfied. We have verified the point
dissipativeness of the semi-flow of system (2.1) in Lemma 2.2.

Denote the w-limit set of the solution of system (2.1) starting in

(@1, 02, %1,92) € X by w(1, d2,1,v2). Let
Q = U{w(o1, b2, ¥1,%2) | (1, P2, %1,¢2) € Xo}.

Restricting system (2.1) to X, gives

A0 _ 4 _ (a4 a)Sy(t) + aSs(t — 1),
(5.4) A
;t( ) _ A —(d+ a)Sa(t) + aSi(t — 7).

It is easy to verify that system (5.4) has a unique equilibrium E; =
(So, So), where Sy = A/d, which is globally asymptotically stable. Thus
Q ={Ep}, and Ey is a covering of 2, which is isolated (since Ejy is the
unique equilibrium) and is acyclic (since there exists no solution in X
which links Ej to itself). It remains to show that

(5.5) W4 (Ey)NX° =g,
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where W?*(Ey) denotes the stable manifold of Ey. Suppose (5.5) does
not hold; then there exists a solution (Sy(t), I(t), S2(t), I2(t)) € X°,
t >0, of (2.1) with initial conditions in X9, such that
(56) tll)Ilolo Sz(t) = S(), tll)Ilolo Iz(t) =0.

Since Ry = (B4 ae’™)/(d+ 0 + &) > 1, we can choose sufficiently
small € > 0 so that So — ¢ > 0 and

(5.7) ms = (B+ae?’)(Sy —€)/So — (d+ 6 +a) > 0.

Define V (t) = I1(t) + I2(t). For € > 0, by (5.6), there exists a t; > 0
such that

1
So—e < Si(t) < So+e, 0<Ii(t) < Ee’“’Ts, forallt >t;, i=1,2.
Hence, by (2.1),

V(t) = I1(t) + Ia(t)

S11h Soly
= —(d+46 I + 1
ﬂSl+Il+ﬂS2+Iz (d+6 +a)(I; + I2)
OéIl(t*T)
M=o roy e S Uk R Ck)

OéIg(t — T)
+ e~ So(t — 1) + I(t — 1) [92(t =) + Lot = 7)]

S()—E 50—6
>
_B<SO—€+EII+ So—€+€I2>
—(d+ 6+ a)(I1(t) + I2(t))

OlIl(t — T)
e~ (So —¢) + 6_77—8(50 2
alz(t—T) (50—6)

178y —¢) +e e

ca (35

0

—<d—i-5~l—oz—,3’s’0_8

> 3
5 >V(t), t>t 47
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Since Ry > 1 implies ae?” + 38 > d 4+ § + «a, we can choose € > 0
sufficiently small so that ae?™(Sy — €)/(So) > d+d+a—B(So — €)/(So).
Then the solution of the linear delay differential equation u(t) =
ae"(Sy —€)/(So)u(t—7)—(d+5+a—LB(So — €)/(So))u(t) with positive
initial condition must converge to infinity as ¢ — oco. Therefore, a
comparison argument yields V(t) — oo as t — o0, a contradiction to
(5.6). Thus (5.5) holds. This completes the proof. O

6. Discussions. We have developed a delay SIS model that precisely
accounts for the transport-related infection. We have then shown that
the model is well-posed, even when the infection acquired during the
use of the transportation is large, while models developed in existing
literature do not allow large transport-related infection. We have
shown that the basic reproduction number characterizes the disease
transmission dynamics: if Ry < 1, there exists only the disease-free
equilibrium which is globally asymptotically stable; and if Ry > 1,
then there is a disease endemic equilibrium and the disease persists.

The basic reproduction number Ry = (8 4+ ae?™)/(d + 6 + a) clearly
describes the contribution of transport-related infection to a disease
outbreak. If an outbreak occurs when patches are isolated from each
other (8 > d + §), then it also does when the two patches are
connected by transport (8 + ae? > d+ 6 + ). As (ORy)/(0a) =
(e (d+6) — B)/((d+ 8§ + a)?), we note that transportation increases
Ry only when 8 < €77(d + §). In particular, if 8 > d + 6 and y7 <
In(8/d + §), then increases in transportation decreases Ry. Finally, we
remark that an outbreak can arise purely due to the transport-related
infection. Namely, if 8 < d + ¢ (no outbreak when both patches are
isolated) and if the transport-related infection e?™ > 1+[(d + § — )/,
then there will be a disease outbreak in both patches.
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