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MODELING AND ANALYSIS OF
A DELAYED COMPETITIVE SYSTEM
WITH IMPULSIVE PERTURBATIONS

ZHIJUN LIU, RONGHUA TAN AND YIPING CHEN

ABSTRACT. In this paper, a periodic delayed competi-
tive system with impulsive perturbations is proposed. By
using the property of globally asymptotic stability of a pe-
riodic single-species growth population model with impulse,
sufficient conditions for the permanence of the above impul-
sive system without delays are derived. Later, the existence
of positive periodic solutions of the above impulsive system
with delays is discussed. As an application, an example and
its numerical simulations are presented to illustrate the fea-
sibility of the main results. Biological interpretations on our
main results are also given.

1. Introduction. In [6], Golpasamy introduced the following
autonomous two-species competitive system with a single constant
delay

t—1)
t) = t[r —a t—T——c2y2( },
by MO0 e -
' t—1)
H(t) = t[r —a thf—clyl( },
() = 32(0) |72~ asmn(t 7)1 G
where r;, a; and ¢;, i = 1,2, are all positive constants, and 7 is a

nonnegative constant. From system (1.1), it is easy to see that one
species is governed by the following well-known Wright equation, see
[7], when the other is absent

(1.2) y'(t) =y —ay(t —7)).
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In general, in system (1.1) the intra-species and interaction terms
may have different delays, see [6, 16, 19], and any biological and
environmental parameters are naturally subject to fluctuation in time.
So it is realistic to consider a periodic competitive system involving
multiple delays modeled by

y1(t) = y1(t) [ﬁ(t) —ay () (t — 11 (t)) — ca(t)y2(t — o2 t))]

(
1+ ya(t — oot
c1()yi(t —ou(t )]
1+yi(t—o1(t))

where 7;(t), a;(t), ci(t) € C(R,(0,00)), 7(t), oz € C(R,[0,0)),
1 = 1,2, are w-periodic functions.

<
o~
—~
o~
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(1) [ (1) — as(O)ya(t — (1)) —

On the other hand, an ecological system can often be affected by
human activities. In many practical situations the population of the
system may increase by stocking or decrease by harvesting. If two
species of system (1.3) will be harvested, a corresponding delayed
periodic competitive system with harvesting can be written as
(1.4)

vi(t) = (1) [a(t) (Ot — (1)) —

Y5 (t) = ya(t) [rg(t) — as(t)ya(t — 2(t)) — c1(t)y

Here the functions E;(y;) and E2(y2) are nonnegative and represent
the effects of harvesting on y; and yso, respectively. If Ey(y;) = E1,
Es(y2) = E, are positive constants, the terms represent constant time
rates at which y; and ys, respectively, are harvested from system (1.4).
If E1(y1) = 0, Ez(y2) = 0, the terms represent no harvesting. If
Ei(y1) = Eiy1, F2(y2) = Eays, the terms represent that harvesting
is proportional to the current density of y; and ys, respectively.

Model (1.4) has invariably assumed that human activities occur
continuously, whereas it is often the case that the harvesting of two
species is seasonal or occurs in regular pulses. Based on the above
facts, the continuous activities of human are then removed from the
model and replaced with impulsive harvesting. Such a revised version
is subject to short term perturbations which are often assumed to be
in the form of impulses in the modeling process. Consequently, the
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impulsive differential equation provides a natural description of such a
system. Equations of this kind are found in almost every domain of
applied sciences. Numerous examples are given in [1]. Some impulsive
equations have been recently introduced in population dynamics in
relation to: chemotherapeutic treatment of disease [8], vaccination [11,
21], population ecology [6-8] and integrated pest management [17, 18],
etc.

In this paper, with the idea of impulsive perturbations, we consider
the following delayed periodic competitive impulsive system
(1.5)

0 =120 [ ()~ (Ot~ n () - HELT)]

b b k N’
. ) e am [T
A0 = 12(0)[r2(8) — ax(t)n(t — a(t)) — AL ]
y1(t) = (1+ bur)ya (k)

y2(ty) = (1 + bag)y2(tk)

},t_tk,ke/\/

with

yi(t) = ¢i(t), for —r <t <0, ¢; € L([-r,0],[0,00)),

(1.6) $:(0) >0, i=1,2,

where L([-7,0],[0,00)) denotes the set of Lebesgue measurable func-
tions on [—7,0], r = max;<j<z max,co ) {7i(t), 0s(t)}, and N is the set
of positive integers. When b;;, > 0, the perturbations stand for stocking
while b;; < 0 means harvesting.

Now, we consider the following four hypotheses and two definitions.

(H1) 0 < t; < ta < ... are fixed impulsive points with limy_, ot =
00,k € N;

(H2) {b;x} is a real sequence and by, > —1,i=1,2, k € N

(H3)

(H4) r;(t), a;(t) and ¢;(t) are positive w-periodic functions, 7;(t),
oi(t), k = 1,2 € ([tg, ), [0,00)), are Lebesgue measurable periodic
functions of period w and ¢t — 7;(t) = o0, t — 0;(t) — o0 as t — oc.

[To<t, <+ (1 +bix) is a periodic function of period w;

Here, in the sequel we assume that a product equals a unit if the
number of factors is equal to zero.
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Definition 1.1. A function y(t) = (y1(t),y=2(t)) € ([-r, 00), [0, 0))
is said to be a solution of equation (1.5) on [—r, c0) if

(I) y(t) is absolutely continuous on each interval [0,¢1] and (¢, tg+1],

keWN;

(II) For any t, k € N, y(t]) and y(t;) exist and y(t;) = y(tx),
i=1,2;

(III) y(t) satisfies (1.5) for almost everywhere in [0,00)\{tx} and
satisfies y; (t]) — yi(tk) = biryi(ty) for t =ty, i = 1,2, k € N.

Definition 1.2. A function y(¢) is an w-periodic solution of equation
(1.5) if it is a solution of equation (1.5) and satisfies y(t + w) = y(t).

2. Permanence. In this section, we will discuss the permanence of
system (1.5). To do this we need the following Lemmas 2.1 and 2.2.

Lemma 2.1 [10, Lemma 4.1]. Consider the following a single species
impulsive system

y'(t) =y@®)lg(t) —h)y(t)] t#tx, kEN,
(21) +) — b

y(ti) = (L+ bi)y(te),
where g(t) and h(t) are all w-periodic functions and h(t) > 0 for all
t > 0. by > —1 is a real constant and there exists a positive integer q
such that tyrq =tk +w, bptq = bi. If

q w
2.2 1 +bk 6‘[0 g(t)dt > 1.
(2.2) I1¢ )

k=1

Then system (2.1) has a unique positive w-periodic solution y*(t,ys)
for which y*(0,y5) = v and y*(¢,y5) > 0, t € [0,400), and y*(t,ys)
is global asymptotically stable in the sense that lim;_, o |y(t,y0) —
y*(t,y8)| = 0, where y(t,yo) is any solution of system (2.1) with positive
ingtial value y(0,yo) = yo > 0.

Remark 2.1. The above result is motivated by the work of Liu and
Chen [12]. In [12, Theorem 2.1], g(¢) > 0 is also assumed; recalling the
whole proof carefully, the conclusion holds if we only require h(t) > 0



A DELAYED COMPETITIVE SYSTEM 1509

(for detailed studies, we refer to [12] and references cited therein). From
the biological viewpoints, the net birth g(t) is not necessarily positive,
since the environment fluctuates randomly; in some conditions g(¢) may
be negative.

From Theorem 1.4.3 of [9], the following comparison theorem for the
impulsive equation is obvious. See also [3, Lemma 2.2].

Lemma 2.2 [3, Lemma 2.2]. Suppose that y(t) is the solution of
system (2.1) with initial value yo > 0 and s(t) satisfies the following
inequalities

s'(t) < s(t)[g(t) — h(t)s(t)] t#th, kKEN,
(2.3) s(t)) = (1 + bx)s(tx) t = tg,
s(0) <o

The variable m(t) satisfies the reversed inequalities in system (2.3).
Then

Now, we will establish sufficient conditions for the permanence of
system (1.5) when all delays are zero, that is,

vi(t) =1() [ﬁ(t) —ar(t)ya(t) — %}
()1 (8) t#£ty, KEN,
2(t) = a®y(t)
(2.4) h(0) = 320 [ra(®) ~ az(t)pa®) - mm}

yi(th) = (1+bag)yr(tr)
, b=t
y2(ty) = (1 + bar)y2(tk)

From Theorem 2.1 of [4], we can know that assumption (H3) implies

that there exists a ¢ € N such that tx 1 = tx +w, bj(ktq) = bir, kK € N.
From Lemma 2.1, it is easy to see that if

q q
) I +buw)e 0 (Or TT(1+bak)e a0t 1),
k=1 f=1
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then system (2.4) has a semi-trivial w-periodic solution (yj(¢),0) (or
(0,y3(¢)), where yi(t) and y;(t) are respectively the unique positive
w-periodic solution of the following systems (2.6) and (2.7).

{ () =i (®)[ri(t) —ar(Wya(t)] ¢ # t, k€N,
0=

(26) ( 1 + blk)yl (tk) t= tk.

Ua(0) = 1 ()lra(t) — ar(B)alt)] ¢ £ tar k€N,
27) { 2(7) = (1 -+ b ya(t) t=ty.

Theorem 2.1. If there exists a positive integer q¢ such that ty4q =
tk +w, bi(ktq) = bir and

|+ bug)edo (rO=exOu O/ (Lruzemde Ly

1+b2,c N CIOROHONEHONE RS 1

[T
(2.8) j
then system (2.4) is permanent, that is, there exist constants A > § > 0
such that for each solution (y1(t),y2(t)) of system (2.4), there exists a
constant T > 0 such that § < y1(¢t), y2(t) < A fort > T. Here y;(t)
and y5(t) respectively satisfy systems (2.6) and (2.7), k € N.

Proof. From system (2.4), we have

“@‘mﬁﬂm{ﬁP@%mww _ cala(e) }

1+ y2(s)
t € (th—1,tkl,
(2.9) ya2(t) = yz(tz 1) exp {fot [r (s) — a2(s)y2(s) — cll(j;ll(ss) }
t € (tk—1,tk],
yi(th) = (1 +bug)yi (t),
L yz(tg) = (1 + bag)y2(tr)-

It is easy to see that when ¢ > 0, if y;(0%) > 0 and y2(0%) > 0, then
we have y1(t) > 0, y2(t) > 0, and further y; (0") > 0, y2(0") > 0, then
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y1(t) > 0,y2(t) > 0. Suppose that (y1(t),y=(¢)) is a positive solution of
system (2.4) with positive initial value (y1(0),y2(0)); we consider the
following impulsive system

m!(t) = m(6)[r1(t) — ar()m(e)] ¢ £ ty, k €N,
(210) {m(tz') = (]. + blk)m(tk) m(O) = yl(O) > 0, t= tk,

and denote its solution by m(t). According to Lemma 2.1, we have
lim;, oo (m(t) — y7(t)) = 0, which implies that there exists a 77 > 0
such that m(t) < yj(¢) + oq for ¢ > T3, where the constant oy > 0 is
sufficient small. By Lemma 2.2, we have y;(t) < m(¢t) < yj(¢) + a; for
t>1.

Similarly, for y»(t), we can get that there exists a T > 0 such that
y2(t) < y3(t)+aq for t > Ty, where the constant ay > 0 is also sufficient
small. Thus, we obtain that there exists a T35 = max{T1, T2} such that

(2.11) yi(t) <yi(t) + e, y2(t) < ys(t) + o, for t > Ts.
Now, we consider the impulsive equation

ca(t) (y5(t) + az)
L+ys(t) +
t#ty, k€N,
s(t5) = (L4 bux)s(te), t =ty

s'(t) = s(t) |ro(t) — ax()s(t) —
(2.12)

Since the constant ao > 0 is sufficient small, and (y3(¢)/1 + y3(t)) is
a monotone increasing function with respect to y3(¢), from the first
inequality of (2.8) we can choose the constant ay such that

q

(213) (1 +bu)elo (O 20O e (i po e oy
k=1

Consequently, it follows from Lemma 2.1 that system (2.12) has a
unique positive w-periodic solution, and we denote the solution by
y1«(t). We denote the solution of (2.12) satisfying s(T3) = y1(T3)
by s(¢) and continue to choose a positive constant 8; > 0 such that
B1 < minggpo.] Y1«(t). By Lemmas 2.1 and 2.2, and the asymptotic
property of y;.(t), there exists a Ty > T3 such that

(2.14) Y (t) = B < s(t) S wult), t>Ty.
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Similarly, for yo(t), it follows from the second inequality of (2.8) that
we can choose the constant a1 > 0 to be sufficient small such that

q w * *
(2.15) H(l + b2k)ef0 (r2()—c1(®)(y1 () +en)/(Ityr (OFar))dt 4
k=1

Hence, there exist ya.(t), f2 and Ts which correspond to y1.(t), 81 and
Ty, respectively, such that

(216) 0< yg*(t) — ,82 < yz(t), t>Ts.

Let

0 = min {y1.(t)—B1,y2:(t) = B2}, A = max {y7(t)+a,ys(t)+az}.
te[0,w] te[0,w]

So we get & < yi(t), y2(t) < A for t > max{Ty,T5}. The proof is

complete. u]

3. Positive periodic solution. In this section, we will discuss the
existence of positive periodic solutions of system (1.5). To do so, we
first establish Lemma 3.1 which is motivated by Yan et al. [20]. This
lemma enables us to reduce the existence of solution of equation (1.5)
to the corresponding problem for a delay differential equation without
impulses (see (3.1)).

Now, let us consider the nonimpulsive competitive system with delays

(3.1)
A )

_ Ci)u(t —ou(?)) ]
1+ By (t)ui(t — o1(t))

(1) = us (1) [ (1) — Ag(t)uslt — (1))

with the initial condition which is similar to (1.6), where

(3.2)

Ay (t) = H (1 + blk)al (t), Az(t) = H (1 + bgk)ag(t),
)

0<ty <t—y(t) 0<ts<t—7a(t

Bl(t) = H (1 + blk): Bz(t) = H (1 + bgk),

0<ty<t—oy(t) 0<ty<t—o2(t)

Cl(t) = Bl(t)Cl(t), Cg(t) = BQ(t)CQ(t)-
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Lemma 3.1. Assume that (H1)—(H4) hold. Then

(1) If u(t) = (u1(t),ua(t)) is a solution of equation (3.1) on [—r, ],
then

v = TT a+omu@, T a+buo)

0<trp<t 0<trp<t
is a solution of equation (1.5) on [—r, co];

(2) If y(t) = (y1(t),y2(t)) is a solution of equation (1.5) on [—r, 0],
then

u(t)—( I (4o @, ] <1+b2k>-1y2<t))

is a solution of equation (3.1) on [—r,0].

Proof. Firstly, we prove (1). It is easy to see that
v = T[ a+owu@. [T 0+m0uo)
0<tp<t 0<tp<t

is absolutely continuous on the interval (tx,tx+1], and for any ¢t # t,
k € N, we have

ca(t)ya(t — Uz(t))]

(3.3)  yi(t) — yi(t) [rl (t) —ar(t)ys(t — mu(t)) — 1+ yo(t — o2(t))

= ] @+bw) [u’l(t) —u(t)

0<tp<t

X [rl (t) — a1(?) H (1 + bag)usr(t — 71(t))
0<tr<t—ri(t)
_ 02(t) H0<tk<t—az(t)(1 + b2k)u2(t - ‘72(t))]]
1+ H0<tk<t—02(t)(]‘ + bo)uz(t — o2(t))
~ T1 oo - u

0<tp<t

[rl(t) L Ay Bun(t— i (t)) - L2l — oa(t) H

1+ By(t)ug(t — oa(t))
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and

cr(t)y:(t — Ul(t))]

(3.4)  h(t) — ya2(t) [Tz(t) —ax(t)y2(t —72(t)) — 5 + y1(t — o1 (t))

=TI @b [u;(t) — uslt)

0<tp<t

x [m(t) —as(t)  J (14 bar)ua(t — ma(t))

0<t<t—y(t)
_ ci(t) H0<tk<t—01(t)(l + big)ua (t — o1 (t))ﬂ
1+ H0<tk<t701(t)(1 + big)ua (t — 01(t))

= ] @+bw) [u'z(t) — uz(t)

x [7«2 (t) = Az()ua(t = 72(8) — ¢ f ﬁ)(?)lﬁ(_t legtl)()t))ﬂ
=0.

On the other hand, for every ¢ € {tx}, we have

vi(ti)=lim ] Q+by)m@)= ] 1+ bij)u(te),

=t 0oty <t 0<t; <ty
yg(tﬁ) = hInJr H (1 + ij)UQ(t) = H (1 + b2j)U2(tk),
=ty o<t <t 0<t;<tp
and
vilte) = ] (4byuate), welte) = [ (1+boj)ua(ts).
0<t;<tp 0<t; <t

Thus, for every k =1,2,..., we have

(3.5) () = (L +bie)yi(tn),  ya(ty) = (14 bar)ya(tr).
It follows from (3.3), (3.4) and (3.5) that y(¢) is a solution of equa-
tion (L.5).

By a similar procedure as above, (2) can be proven, and hence we
omit its details. The proof is complete. a
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In the following, based on Mawhin’s continuation theorem, we shall
consider the existence of positive periodic solutions of system (1.5). We
will make some preparations.

Let X and Z be normed vector spaces, L : Dom L C X — Z a linear
mapping, and let N : X — Z be a continuous mapping. The mapping
L will be called a Fredholm mapping of index zero if dimKer L =
codimIm L < +o00 and Im L is closed in Z. If L is a Fredholm mapping
of index zero, then there exist continuous projectors P : X — X and
Q : Z — Z such that InP = KerL, KerQ = ImL = Im (I — Q).
It follows that L|Dom L NKer P : (I — P)X — Im L is invertible. We
denote the inverse of that map by K. If Q2 is an open bounded subset of
X, the mapping N will be called L-compact on Q if QN () is bounded
and K,(I — Q)N : Q — X is compact. Since Im @ is isomorphic to
Ker L, there exists an isomorphism J : Im @Q — Ker L.

Lemma 3.2 [4]. Let L be a Fredholm mapping of index zero, and
let N be L-compact on Q). Suppose

(a) for each A € (0,1), every solution x of Lz = ANz is such that
x ¢ 0%

(b) QNz # 0 for each z € QN Ker L and
deg {JQN, QN KerL, o} £0.

Then the equation Lr = Nx has at least one solution lying in Dom LN
Q.

Now we state the result on the existence of positive periodic solutions
of system (1.5).

Theorem 3.1. Assume that (H1)—(H4) hold, and further assume the
following inequalities

(36) Ty > Cq, T2>Cp

hold. Then system (1.5) has at least one positive w-periodic solution,
where 7; = 1/w [ ri(t) dt, & = 1/w [ ci(t) dt, i = 1,2.
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Proof. Let z1(t) = Inwu;(t) and z3(t) = Inwuy(t). Corresponding to
system (3.1), we have

Cs (t)ezz(t—ﬂz(t))
1+ By(f)ew(t o)
Cy (t)ewl(t—ffl(t))
14 B, (e o)

2 () = 7y (t) — Ay (£)e (=m0 _
(3.7)
(1) = ro(t) — Ag(t)e®2(t=m2(0) _

In order to use Lemma 3.2, we take
X=Z= {a:(t) = (z1(t),z2(t)) € C(R, R?),z(t + w) = m(t)}

Then X and Z are Banach spaces when they are endowed with the
norms ||z|| = max,c, ) |[71(t)] + max,cpo,w) [v2(t)| for any z € X (or
Z). Set

N[i;] _

and

02 (t)exz(t—a'Q(t))
1% By(f)ems (72D
Cl(t)ezl(tfo'l(t))
1+ By (t)exr(t—ou(t)

r1 (t) — Al(t)ewl(t_n(t)) —

T‘Q(t) — A2(t)ez2(t77—2(t)) —

1 [ 1 /v
Lz =12, Pm:—/ z(t)dt, r € X; Qz:—/ 2(t)dt, z € Z.
w Jo w Jo

Obviously,

w

KerL ={z |z € X,z = h,h € R?}, ImLz{z\zeZ,/z(t)dtzo},
0

and dim Ker L = codim ImL = 2. Since Im L is closed in Z, L is
a Fredholm mapping of index zero. It is easy to see that P and @
are continuous projectors such that InP = Ker L, KerQQ = Im L =
Im (I — @). Moreover, the generalized inverse (to L) K, : InL —
Ker PN Dom L is given by K,(z) = fot z(s)ds — 1w [ fg z(s) ds dt.
Thus,

QN:v:l/ Nz(t) dt,
wJo
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K,(I - Q)Nw = /Ot Na(s)ds — i/ow /Ot Na(s) ds dt
- (é _ %) /Ow Na(s) ds.

It is obvious that QN and K,(I — Q)N are continuous. Moreover,
QN(Q) is bounded and K, (I — Q) (Q) are relatively compact for any
open bounded set 2 C X. Hence, N is L-compact on ; here  is any
open bounded set in X.

Corresponding to the equation Lz = ANz, A € (0,1), we have

2a(t—oa(t)
A0 = A|r(0) — dy(gen ) 2200 |

L+ By(t)er2(t-7:(0)
Cl (t)ewl(tfo'l(t))
1+ By (t)ezl(t—al(t))} '

(3.8)

xh(t) = A {7‘2(15) — Ay(t)em2(tm2(®) _

Suppose that (z1(t),z2(t)) € X is a solution of system (3.8). By
integrating (3.8) over the interval [0, w], we obtain

w w zz(t O'z(t))
Ar(t)em ) dt + / ol dt = 7w,

Je
1 + Ba(t)ex2(t=0o2(t))
(39) 0 0 + 2)( )6

wA t zo(t—T2(t)) dt ¢ ( eml(t o1(£) dt =
/0 2(t)e +/0 T+ By (e @ = Fow.

It follows from (3.8) and (3.9) that we have

(3.10) / (@, (1)) dt < 2710, / (b (1)) dt < 2Fa0.
0 0
Besides, from (3.9), we have
(3.11)
/ Ay (t)ezl(t_n(t)) dt < Mw, / Az(t)ewz(t_m(t)) dt < Fow.
0 0

Since z(t) € X, it follows that there exists a & € [0,w] such that
x;(&;) = mingepg o) 24(t), ¢ = 1,2. Then, from (3.11) we have

312) ) <« Y g) <o i=1,2,
(812) e [y Ai(t)dt zi(&) nfo A;(t) dt '
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which, together with (3.10), lead to
(3.13)

w

riw def .
z;i(t) < (&) +/ lzi(t)|dt <ln ———— +2Fw:= M;, i=1,2.
0 Jo As(t)dt
On the other hand, there exists an 7; € [0,w] such that ml( i) =
maxye(ow] Ti(t), « = 1,2. Notice that C;(t) = B;(t)c;(t), j = 1,2,
so from (3.9) we obtain
(3.14)

e - © o C(t)eri(tmai®)
zi(n:) . > ey — J
‘ /0 Ailf) di > Tie /0 1+ B-( Jemr )

e (t=0; (1)) o
>W_/ Bij( ezJ(t oy &= (T = &),

i,7 =1,2 and i # j. By this and assumption (3.6) of Theorem 3.1, we
have

Ty — Cj)w . .,
(3.15) zi(n;) > In W, 1,7 =1,2 and i # j.
0 3

As a consequence, by (3.10) and (3.15) we have

¢ (7 — ¢j)w Jdef 7%
z;i(t) > zi(n;) 7/0 |z (t)| dt > lnm 2riw := M,

i,j =1,2 and i # j.

(3.16)

Equations (3.13) and (3.16) imply that

(3.17) e fos(t)] < {|Mil, |} E R, =12
€

)

Obviously, M;, Z\//fl and F; are independent of A, respectively. Denote
F = Fy + F; + fo, where fy > 0 is taken sufficiently large such that
each solution (v}, v3) of the equation

ﬁw_/ Aq(t)e™ dt—/ e 0,
0 0

(3.18)
_ w w Cl(t
— [ As)edt— | g =
Tow /0 a2(t)e /0 15 By(t)en 0
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satisfies |vf| + |v3]| < fo. Now we take Q = {(z1,22) € X : ||z|| < F}.
This satisfies condition (a) of Lemma 3.2. When (z1,22) € 9Q N
Ker L = 0QNR?, (21, T2) is a constant vector in R? with |z1|+|za| = F.
If equation (3.18) has one or many solutions, then QN (x1,z3) # 0. If
equation (3.18) has no solution, then it is natural that QN (z1,22) # 0,
which implies that condition (b) of Lemma 3.2 is also satisfied.

In the following, we define ® : Dom L x [0,1] — X by

_/ TGy,
0 ]. + 32 t)ezZ

7710.)—/ Al(t)e”“ dt (

— 0

,U) w +p _/w Cl(t)ez‘l 5 ’
0

Tow — / Aq (t)€I2 dt

0

Q(IbIZa

where p € [0, 1] is a parameter. By a similar analysis as above, we can
show that when (z1,72) € QN Ker L = 0Q N R?, ®(z1,x9,p) # 0.
Taking J = I : Imn@Q — KerL, (21,22) — (21,22) and using the
property of topological degree, we have
deg {JQN(acl, z2),Q2NKer L, (0, 0)}
— deg {@(xl, 22,1), 2 N Ker L, (0, 0)}
= deg {<I>(ac1, z2,0),Q2 N Ker L, (0, 0)}
= deg {rlw — / Al(t) dte*,
0
Tow — / As(t)dte™,QNKer L, (0,0)}.
0
Obviously, the following system

riw — / Ay (t) dtett =0, Tow — / Az(t) dtet? =0
0 0

has a unique solution (uf, u}). Hence,

deg {JQN(z1,23), Q2N Ker L, (0,0)}

= Sign{/ Aq(t) dt/ As(t) dt@(ﬂﬁu;)}
0 0
=1z#£0.
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By now all assumptions required in Lemma 3.2 hold. It follows by
Lemma 3.2 that system (3.7) has an w-periodic solution. By the change
of z;(t) = Inw;(¢), 7 = 1,2, and Lemma 3.1, we obtain that system (1.5)
has a positive w-periodic solution. ]

4. An example and its numerical simulations. As an applica-
tion of our main results, we consider the following delayed competitive
system with impulsive perturbations

y1(t) = y1(t) |:2 +sinmt — (1 4+ 0.5cost)y1(t — 1)

B (1.5 + sinmt)ya2 (t — 0.5):|

1—|—y2(t—0.5) t#t
) k»

(4.1) ys () = ya(t) [2.5 + sinwt — (24 0.5 cos wt)y2(t — 2)

_ (2+ sinwt)y1(t — 1)]
L+yi(t—1)

vi(tf) =1+ ak)m(tk)}
, t=ty, kEN.

y2 () = (14 br)y2(t)

From Remark 1.1 of [20], we can know that assumption (H3) implies
Ht<tk<t+w(1 + bir) = 1, and hence we can choose ag, = —0.5,
asg_1 = 1, bop, = 1, bop_1 = —0.5, and initial value (0.05,0.09). It
is easy to verify that the assumptions (H1)-(H4) are satisfied, and
F1 =2 > ¢ = 1.5, 7o = 25 > ¢ = 2. Then system (4.1) has a
2-periodic solution. Numerical simulations show the feasibility of this
result. From Figure 1, we may observe that the two species tend to a
periodic coexistence, and there exists a positive 2-periodic solution of
system (4.1).

5. Discussion. In this paper, we establish a nonautonomous de-
layed two-species competitive model with impulsive perturbations. By
applying the property of globally asymptotic stability of an impulsive
single-species growth population model, sufficient conditions are de-
rived that guarantee the permanence of the above impulsive system
without delays. Later, we discuss the existence of a positive periodic
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FIGURE 1. Two species tend to periodic oscillation. (a) Time-series of the species
y1 with ¢ over [0, 100]. (b) Time-series of the species y2 with ¢ over [0, 100].
(c) Time-series of the species y; with ¢ over [450, 500]. (d) Time-series of the
species y2 with ¢t over [450, 500].

solution of the above impulsive system with delays by using both anal-
ysis technique and coincidence degree theory. Numerical simulations
are also presented to illustrate the feasibility of our main results. We
can see that the two species tend to a periodic coexistence, and there
exists a 2-periodic solution, see Figure 1.

Now, we give biological interpretations of our main results. From
the assumptions (2.8) of Theorem 2.1, we can see that if the impulsive
perturbations and the intrinsic growth rates are suitably large while the
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inter-specific competitive rates are suitably small, then system (2.4) is
permanent. The assumptions (3.6) of Theorem 3.1 may be interpreted
by saying that the intra-specific intrinsic growth rates are larger than
the inter-specific competitive rates. From Theorems 2.1 and 3.1, we
also can see that the intra-specific competitive rates have no affect on
the permanence of system (2.4) and the existence of positive periodic
solutions of system (1.5). Besides, Theorem 3.1 shows that system (1.5)
has at least one positive periodic solution irrespective of the sizes of the
delays, that is, the delays have no affect on the existence of positive
periodic solutions.

We expect to further discuss the permanence of system (1.5) when
7:(t) # 0 and o;(¢) # 0. Of course, the uniqueness and global stability
of positive periodic solutions of system (1.5) are also more important.
We leave them for future work.

Acknowledgments. We would like to thank the referee for helpful
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