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OPTIMIZATION ALGORITHM AND
ITS CONVERGENCE FOR
MICROBIAL CONTINUOUS FERMENTATION

XIAOHONG LI, ENMIN FENG AND ZHILONG XIU

ABSTRACT. Based on the producing 1, 3-propanediol from
microorganism continuous fermentation, we study the algo-
rithm and its convergence for the optimal model in this pa-
per. First, taking the zero of the optimality function as the
terminal criteria, an algorithm for the discrete time system
of the optimal model is given with the step-size determined
by Armijo line search and the search direction by gradient
method. By the result that the discrete time system con-
verges to the continuous time optimal model, the optimality
function of the discrete time system is a consistent approxi-
mation to the one of the continuous time optimal model and
an algorithm for the optimal model is given too. The con-
vergence of the algorithm is proved. At last, it shows that
the optimal model describes the experiment correctly and the
algorithm is feasible by comparing the computing value with
the dates in laboratory.

1. Introduction. 1,3-propanediol (1,3-PD) possesses potential
applications on a large commercial scale; especially as a monomer of
polyesters or polyurethanes, its microbial production has been given
worldwide attention for its low cost, high production and no pollution,
etc. It is considered to be one of the bulk chemicals, which is likely to
be produced by bioprocesses on large scales. If we can find an optimum
way to get a higher concentration of 1,3-PD by the mathematical
method (but not chemical experimentation), a lot of money and time
could be saved. A great contribution has been made by GBF (National
Research Institute for Biotechnology). A kinetic model for substrate
and energy consumption of microbial growth under the substrate-
sufficient condition was formed by Drs. An-ping Zeng and Deckwer
in 1995 [1]. In 2000, Xiu et al. modified the parameters in the
kinetic model by the least squares method [9]. Based on the modified
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model, many results were given. In particular, in 2003, Sun et al.
studied the phenomena and characterization of oscillation in microbial
continuous ferment [8]. The optimal control in microbial continuous
ferment was studied through numerical calculation by genetic algorithm
in 2004 [10]. Recently, the property, parameter identification and
optimal control of the impulse system in microbial fed-batch ferment
were analyzed [2-5]. Taking the final concentration of 1,3-PD as the
objective function, the optimal control in microbial continuous ferment
was discussed, and the optimality condition was given in 2006 [6]. In
the same year, we gave a discrete time system corresponding to the
continuous one and formed a discrete time optimal control model. Its
optimality function which was a consistent approximation to the one of
the continuous time optimal control model was defined [7]. Then, the
next problem was how to construct an effective algorithm by which
we can get the optimum operating condition. When the optimum
operating condition is taken in the laboratory, the higher concentration
of 1,3-PD will be obtained. In this paper, taking the zero of the
optimality function as the terminal criteria, an algorithm (Algorithm
1) for the discrete time system of the optimal model is given with the
step-size determined by Armijo line search and the search direction by
the gradient method. This algorithm is ready for Algorithm 2. By the
result that the discrete time system converges to the continuous time
optimal model, the optimality function of the discrete time system is
a consistent approximation to the one of the continuous time optimal
model; an algorithm (Algorithm 2) for the optimal model is given too.
The convergence of Algorithm 2 is proved by the above result. Finally,
it shows that the optimal model describes the experiment correctly
and the algorithm is feasible by comparing the computed value with
the dates in laboratory.

2. Optimal control model for microbial continuous ferment.
In 2000, a modified model was given by Xiu et al., see [2]:

)
)
z,u) = gsx1(t) — Dz3(t), te0,T]
)
)
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where

(2)
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The vector form of (1) is as follows:

#(0) = hela ) te 0T
? L) €= (0,000

where the elements of the state variable z(t) = (z1(t), z2(t),... ,z5(t))T
€ R are biomass, substrate, product 1,3-PD, acetic acid and ethanol
concentration in the reactor. The elements of the control variable
u = (D,z20)T € R? are dilution rate, substrate concentration in
the medium. ¢ is the initial value for the state variable. h.(z,u) =
(hi(z,u), ho(z,u) ...  hs(z,u))T. Let W be the solution set of (3),
ie., W = {z“(t) | *(t) is the solution of (3)}. The meanings of the
other parameters can be found in [9]. In 2006, by simple translation
we turned the time interval [0,77] to [0,1] and gave an optimal con-
trol model, taking the final concentration of 1,3-PD as the objective
function [6]:

(P): max J(u) = z5(1)
s.t #(t) = he(x(t),u), te€]0,1]
z(0) = ¢
z4(t) e W
u € U, ads

where 2%(1) is the final value of the third element of z“(¢), i.e., the
final concentration of 1,3-PD in the reactor. By defining some new
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functions, we give the equivalence form of (P) as follows:

(P min {f2)] fw) <0, j € ac},

where f0(u) is the intensity of 1,3-PD and it is the continuous function
of u. At the same time, the existence of the optimal solution and
the optimality condition of the problem (P1) are discussed and its
optimality function 6.(u) is defined.

(4) f.(u) £ min F.(u,v), u€ Uy,
v€Uad

where

Fe(u,v) & max { 2 (u,v) = f2 (u) = ve(w)+, Y(u,v) = ve(uw)+ )

Fo(u,0) £ £2(u) + (Vauf2 (w), v — u) +8/2[lv — u)?

F1(u,v) & max {¢](u,t) + (Vugl(u, t),0 = u) +§/2[jv — ul|*}
te[0.1]

Ec(uv U) 2 max fg(uvv)

J€Qe

Fe(u,v) £ max {fg(v) — f2(u) — y¥e(u)s, Ye(v) — te(u)+}
We(u)4 = max {te(u), 0}

te(u) £ max f1(u),

J€qc

where v,u € Ugg, J € Qc,7,0 € Ry

In [7], according to the continuous system, we gave the discrete-time
system:

. {xN(u,tk+1) —zn(u,ty) = 1/Nhe(zn(u, ty),u) k€N —1,
IN(U,O) :I(Oa)a

where N —1={0,1,... ,N — 1}, tx = k/N. Then an optimal control
for the discrete-time system was formed:

(CPN)  min {f2y(u) | f24(w) O, j € ac)
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and the optimality functions of (CPN) are defined as follows:

(8) e (u) = min Fon(u,v)

where

9)  Fen(u,v) 2 max{f y (u,v) = f2 (w) = Ve ()4, Pe v (u, 0)
— o ()4}

(10) FC,N(uv U) £ max{ng(v) - fS,N(“) - 7¢C,N(u)+7 wc,N(U)
— Ye,n ()4}

Other functions mentioned above can be found in [7].

Lemma 1. If 4 is the optimal solution of (P1), then 6.(4) = 0.

Lemma 2. Suppose {un}tnen € Uqq satisfies uy Mauas N — +-00.

Then 6. n(un) N 0.(u) as N — +oo, where 8.(u) is defined by (4),
and 0.,y (un) is defined by (8).

The proof of Lemmas 1 and 2 can be found in [7]. By [7, Theorem
6] and the definitions of F.(u,v) and F. n(u,v), we can get

Lemma 3. There exist constants Ly and Ny € N such that
(1].) Fc(ui,uiﬂ) SFQN(U,’U)%—Ls/N
holds for all N > Njy.

3. Optimization algorithm and its convergence. Taking the
zero of the optimality function of (CPN) as a terminal criteria and
imitating the gradient method to get a search direction, an algorithm
for (CPN) is as follows:
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Algorithm 1.

Parameters 4,7 > 0,a,8 € (0,1].

Date ug € Uyy.

Step 1. Set N =0,

Step 2. Compute the optimality function value according to (8):

HN = min FC7N(’U,N,’U,),
u€Uqq

where F, y(u,v) is defined by (9).
If Oy > —¢, stop.

Else compute hy = uj — up, with

uy = arg min F, n(un,u).
u€Uqgq

Step 3 Compute the step-size

(12) Ay = glg\?;{,@k | Fon(un,un + B%hy) — BFafn < 0}.

Step 4 Set un41 = un + Anhy, replace N by N + 1, and go to
Step 2.

Theorem 1. Suppose {uN}}":oO 18 a sequence constructed by Al-
gorithm 1 in solving (CPN), with the same values of the parameters
v,a, 8,8, with § > 0 as in the definition of 0.(u). If the accumulation
point @ of {un} >, satisfies 0.(i) < 0, then there exists an Ny € N
and a p > 0 such that

Fen(un,uns) < —p
for all N > Njy.
Proof. According to Lemma 1, there exists a —0.(4)/2 > 0 and

N; € N such that

01\] = ec,N(UN) - 90(’&) S 766(’[\14)/2
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for all N > N;. This means

0u()

On < 5

By (12) in Algorithm 1, we have that

0.(t
Fen(un,uni1) < BFalfy < ﬁka¥ £-p<0. @

By Lemma 1, we see that the problem (P1) can be solved by the
following algorithm in which Algorithm 1 defines the “inner” loop. For
every N € N, we can get a sequence {uy}}>, with uyn satisfying
0. n(un) = 0. The inequality (13) in Algorithm 2 assures that every
accumulation point @ of {uy} 1>, satisfies 6,.(@) = 0.

Algorithm 2.

Parameters «,8,w € (0,1), v,d,0 > 0, constant Lg > 0, € > 0.
Date ug € Uyq, Ny € N.

Step 1 Set ¢ =0, N =0, go to inner loop.

inner loop Step 1 Set N = N;, uy = u;.

inner loop Step 2 Compute the optimality function value according
to (8)
= min F, .
On Jnin. e,N (un, u)
and the search direction Ay = u}y — un, with u}, computed according
to

uy = arg min F, y(u;,u).
u€Ugq

inner loop Step 3 If 0 > —¢, set u)y = uy, and go to inner loop
Step 5.

Else, compute the step-size Ay according to

Ay = lglea;;{ﬁklfc,zv(w, un + B¥hn) — B¥abn < 0}.
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inner loop Step 4 Set u}, = uny + Anhn.

inner loop Step 5 If

(13) FcyN(uN,u}kV) S —0’(L,5'/]\f)W

go out inner loop, go to Step 2.
Else, set N; = min{N’ € N'| N’ > N} and go to inner loop Step 1.

Step 2 Set u;+1 = uly, if |lui — uiy1]] < e, stop. Else, set
Nit1 =min{N’ € N'| N' > N}, replace i by i+1 and go to inner loop
Step 1.

Theorem 2. If {u; ;;og 18 a sequence constructed by Algorithm 2
in solving (P1), then every accumulation point @ of {u;};5 satisfies
0.(4) = 0.

Proof. First we know that, by Lemma 2,
(14) Fo(ujyuipr) < Fon(uiyuiz1) + Ls/N
holds for all N > Ny. Consequently, we conclude from (13), that
Fulus,uis1) < —o(Ls/N)* + Ls/N = —(Ls/N)*( — (Ls/N)\™*).
Because 1 — w > 0, there exists ip € N T,
(15) Fe(uiyuipr) <0,

which holds for all 7 > 4.

Now suppose that, for some K C N, u; K i, as ¢ — 400, and that
0.(a) < 0.

By Theorem 1, there exist iy € K, p > 0, for all 1 € K, ¢ > i1, such
that

Fen(uiyuip1) < —p <0.

Inserting this into (14), we have that

Fe(ui,uip1) < Ls/N — p.
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Since Lg/N — 0 as N — +o00, there exists 12 > iy,
p
(16) Fc(ui,ui_,_l) < —5 < 0,

which holds for all i > 5.

Now we must consider two cases.

Case (i). If ¥.(u;) > 0 for all ¢ > 45, then ¥ (u;)y = Yc(u;) > 0. By
the definition of F,(u;,u;+1) and (16), we know that

<0.

[N

Ye(tiv1) — Ye(ui)y = Ye(tir1) — Ye(wi) < Fe(uiy uipr) < —

This means that the sequence {¢.(u;)};% is monotonically decreasing,

and ¥.(u;) — —oo as i — —+oo, which contradicts the fact that
Ye(u;) > 0 for all i > is.

Case (ii). There exists an i3 € N*, i3 > is, such that 1.(u;,) < 0.
Then 9. (ui;)+ = 0. It follows (15) that 9. (uiz+1) < 0 and ¥c(u;) <0
for all ¢ > i3. Then, according to (16), we have

fg(“i+1) - fg(ui) —YYe(ui)y = fg(ui+1) - fg(ui) < Fe(us, uig1)

P
<—-—=<0.
- 2

This means that the sequence {2 (u;) ;L=°Z°; is monotonically decreasing,

and fO(u;) — —oo as i — +o0o, which contradicts the fact that, by
continuity of fO(u), f(u;) % f2(d) as i = +o0. O

4. Numerical example and analysis. Taking parameters:
a =05 8=05 w=05vy=16 =1, 0 =1, Ny = 28,
Ls = 100, € = 107%, the computing values and the dates in the lab-
oratory are listed in Table 1. Where the first column is the initial
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TABLE 1. Comparison between the results in laboratory and computing.

=~

up date in laboratory | computing value u
0.1, 1568 638.16 733.876 0.116, 1565.72
0.1, 1883 555.11 732.83 0.131, 1581.05
0.1, 1287 505.28 728.32 0.122, 1570.33
0.45, 607 124.38 587.69 0.093, 1520.32
0.15, 1443 484.35 730.78 0.122, 1568.45
0.35, 1395 127.4 698.35 0.098, 1566.58
0.5, 861 93.6 728.65 0.112, 1565.55
0.08, 152 53 691.23 0.125, 1577.26
0.47, 435 170 634.76 0.112, 1654.34

value ug in the algorithm, it is the initial date in the laboratory too. The
second column is final concentration of 1,3-PD in the laboratory. The
third column is the computing concentration of 1,3-PD, and the fourth
column is the computing value of optimal control 4, i.e., the optimal
operating condition. From Table 1, no matter how to choose the initial
value ug, the computing value 4 is around u = (0.1, 1568); meanwhile,
the highest final concentration of 1,3-PD is obtained. From the date
in laboratory (the first and second column in Table 1), the highest
final concentration of 1,3-PD is obtained when the initial date is v =
(0.1,1568). This illuminates the fact that the computational optimal
controls are convincing, and the model describes the experiment in
essence; the algorithm is feasible.

While the appropriate control 4 is chosen, the computing values of
concentration of 1,3-PD (the fourth column) can be obtained. Obvi-
ously, the concentration of 1,3-PD is higher than one in the laboratory
in Table 1. This shows that the appropriate control can improve the
final concentration of 1,3-PD and the appropriate control can be com-
puted by the model and the algorithm. This indicates that model and
the algorithm are valid too.
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