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DYNAMICAL BEHAVIOR OF AN EPIDEMIC MODEL
WITH COINFECTION OF TWO DISEASES

JIANQUAN LI, LADI WANG, HUIWEN ZHAO AND ZHIEN MA

ABSTRACT. We have formulated a simple epidemiological
model with two diseases that can coinfect a single host. The
first disease is assumed to be chronic, the second one acute.
For infectives infected only by the first disease, we introduce
the age of infection. For these two diseases, we obtain their
reproduction numbers, respectively, and establish conditions
for the existence and stability of the disease-free equilibrium,
the boundary equilibrium, and the positive (coexistent) equi-
librium. For infectious individuals infected only by the first
disease, when some transfer rates depend on the age of infec-
tion and the corresponding model is governed by partial dif-
ferential equations (PDEs), we give a sufficient condition for
the existence of positive equilibrium, and its stability is deter-
mined by a transcendental equation; when all the associated
rates are independent of the age of infection, the correspond-
ing models are ordinary differential equations (ODEs). We
obtain complete results on dynamics, find that the coexistent
equilibrium of two diseases is globally stable if they exist, and
find that the boundary equilibrium is globally stable if it is lo-
cally stable. Finally, we find that there is a difference between
PDE and ODE models.

1. Introduction. It is well known that a carrier of human
immunodeficiency virus (HIV) or a patient with tuberculosis (TB)
commonly suffers with a slow progressing disease which lasts for a few
years [4, 5, 6, 9, 17, 20], i.e., these diseases are chronic. Generally,
infecting ability of a patient with the chronic disease may vary with
the change of the age of infection (the time lapsed since infection) [9,
13, 18]. Thus, to formulate the spread of infection, it is necessary to
incorporate the age of infection into an epidemic model with a chronic
disease. On the other hand, a patient infected by a chronic disease may
also be infected by other acute diseases [1, 8] such that coinfection of
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two or many diseases occurs in a single host. But, the introduction
of the age of infection is not necessary for formulating the spread of
an acute disease. Therefore, epidemic models with chronic and acute
diseases generally include partial differential equations (PDEs) and
ordinary differential equations (ODEs). Recently, on the immunological
level and with mathematical analysis, coinfection has been studied by
some researchers [3, 7, 10, 13, 14, 16].

In this paper, based on the classical SIR epidemic model with bilinear
incidence, we establish and investigate an epidemic model with coinfec-
tion of two diseases in a single host. We assume that the first disease is
chronic and the second one is acute. The age of infection is introduced
for the first disease. In [12, 15, 18], it has been shown that the age of
infection can cause qualitative changes in dynamics for some epidemic
models with a single disease. Although the model discussed here is rel-
atively simple, we can also find the difference between models with and
without an age of infection. That is, it is possible that the boundary
equilibria are bistable for a model with the age of infection, but the
bistable case is impossible for a model without the age of infection.

This paper is organized as follows. In Section 2, an epidemic model
with coinfection of two diseases is introduced. In Sections 3 and 4,
we investigate the existence and stability of boundary and positive
equilibria, respectively. In Section 5, we consider the case that all the
mutation rate for the first disease is independent of the age of infection,
and the global stability of the corresponding model is discussed. In
Section 6, we discuss the difference between models with and without
the age of infection, and an example is given to illustrate the main
results.

2. Model formulation. Assume that two diseases are spreading in
a population. The first disease is chronic, and the second one is acute.
After a susceptible individual is infected by the first one, he (she) may
also be infected by the second disease or recover. And the second one
can also infect susceptible individuals directly. Thus, individuals in
the population are divided into four classes: the class S susceptible
for two diseases, the first infected class I; infected only by the first
disease, the second infected class I infected by the second one and
from either S or Iy, the recover class R which is from I; and I; and
has permanent immunity for two diseases. Let S(t), I1(¢), I2(¢) and
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R(t) denote the numbers of individuals at time ¢ in classes S, Iy, I
and R, respectively. Since the first disease is a slowly progressing one,
for class I; we introduce the age of infection, 7, and the distribution of
infectives infected only by the first disease at time ¢, i1 (¢, 7). Clearly,
Ii(t fo i1(t,7) dr. A susceptible individual is infected by the first
dlsease at a rate 81(7). The second disease is transmitted by the class
I to the susceptible class at a rate B2. An individual already infected
with the first disease can be coinfected by the second disease at a rate
g(7). The individuals in class I; die of the first disease or recover at
rates ay(7) and 71(7), respectively. The individuals in class I die of
two diseases or recover at rates as and 79, respectively. Let bA be the
input flow into the susceptible class, b the natural death rate. Here,
parameters as, 82 and vy, are nonnegative whereas b and A are positive.
Functions B1(7), y1(7), a1(7) and £(7) are nonnegative, continuous and
bounded.

Under the assumptions above, we have the following epidemic model:

%(f)_bA—bS( [/ Br(r)i(t, T)dT+5212()]

3ilg ) 7) n 82'1(’5 ) _ —b+ai(r) + ()i (t, 7) — e(r)ir (¢, 7) L2(t),
Zl t 0 / ﬂl Zl t 7_)

i1(0,7) =

dl>(t)

22 = BaS(HIa(t) — (b+ az +72) 2(t) + Lo (¢) /OME(T)il(t,T) dr,

— = / 71 (7)i1 (¢, 7) dT + Y22 — bR,

where the initial distribution ¢(7) is assumed to be integrable and
compactly supported in [0, 00).

Since the dynamics of R(t) do not affect the evolution of S, iy and
I,, we omit the equation for R(t) when studying the development
of two diseases. Again, for simplification of notation, let m(r) =
b+ ai(7) + v1(7) and n = b+ as + 79; then, we will consider the
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following system:

(2)
B —sa-us0) - 50)| [~ At ar + st
(91'1;1; ,T) N 3i1(t T) = —m(7)iy(t,7) — e(r)ir(t, 7)I2(t),
21 t 0 / /81 21 t T
i1(0,7) = ¢(7)
dIz()

— BS()a(t) — nLy(t) + La(t) /0 " (i (b, 7)

Using lim,_, 41 (¢, 7) = 0, which implies that there are no individuals
with infinite age of infection, and integrating the second equation of (2)
give

dI
i = /ﬂl )i (t, 7) d

7/0 m(7)iq (¢, 7) deIQ(t)/O e(r)iy(t, 7)dr.

Let N(t) = S(t) + I1(t) + I»(t), then

AN _ 4 by - /0 " m(P)ia(t,7) dr — nly(t)

dt
b[A = S(t) — In(t) — I2(£)] = b[A — N(2)],

where m(7) > b and n > b are used. It follows that limsup,_, . N(t) <
A. Therefore, for S(t), I1(t) and I2(t), we will consider (2) under the
case S(t) + I (t) + I2(t) < A.

We note that, by standard methods, it is possible to prove the
existence and uniqueness of solutions to the system (2) [19]. Moreover,
it is easy to show that all the variables remain nonnegative and bounded
for ¢ > 0 for nonnegative initial data.
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We introduce the following quantities which will be used throughout
this paper:

mi(r) = e Jo md <

mo(T) =€ Joewdn oy

R, = A/Oooﬁl(T)ﬂ'l(T) dr,

A
Rzzﬂz ,
n

- /0 “e(rym () dr,

V=2 [ Bmmn (A0 1 g

where R, and R are the reproduction numbers of two diseases, respec-
tively.

3. Existence and stability of boundary equilibrium. With
respect to the existence of boundary equilibrium, it is easy to get the
following theorem:

Theorem 1. System (2) always has the disease-free equilibrium
Ey(A,0,0). When Ry > 1, system (2) has the boundary equilibrium
E1(A/Ry,bAmi(7)(1 — 1/R1),0). When Ry > 1, system (2) has the
boundary equilibrium F3(A/Rs,0,bA(1 —1/R5)/n).

With respect to the stability of boundary equilibrium, we have the
following theorem:

Theorem 2. For system (2), the disease-free equilibrium Ey is
asymptotically stable if max{R;, R2} <1 and unstable if min{R;, R2}
> 1. The boundary equilibrium E; is asymptotically stable if Ry > 1
and k < (n(Ry — Rz)/bA(Ry — 1)), and unstable if Ry > 1 and
k> (n(Ry — R2)/bA(Ry — 1)). The boundary equilibrium Es is asymp-
totically stable if Ry > 1 and k' < 1, and unstable if Ry > 1 and k' > 1.
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Proof. Linearizing system (2) about equilibria Ey, E; and E2, we can
obtain systems

3) 2(£) = —bat [/ Bu(F)y(t,7) dr + Bax(t) |,
3y(t T) n 8y(t T)

= —m(7)y(t,7),
y(t,0) A/ Br(m
2'(t) = n(Rz — 1)z(t),
(4)
z'(t) = —bR1z(t) / Bi(T)y(t, ) dr — —522( )s
3ygft, T) n (9y((915T,T) = —m(r)y(t,7) — bA (1 - I%)E(T)M(T)Z(t),
(t 0) = b R1 — 1 / 51
2 (t) = n(g—j — 1> (t) + bAk<1 - Ri1>z(t),
and
(5)
z'(t) = —bRox(t) — —/ B1(T)y(t, ) dr — nz(t),
3ygt >7) 6@’“ )~ (et ) — % <1 - Ri2>g(7)y(t,7),
/ B1(T)y(¢, T) dr,
'(t) = b(Ry — 1)z(t) bA( Pl) /Oooa( )y(t, 7) dr
respectively.

For (3), (4) and (5), let 2(t) = woe™, y(t7) = p(r)ei),
2(t) = zpeM. We have
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©  w=-teo-a] [T aipree ™ i+ g
p(r) = —m(r)p(r),
= Hp(t)e > dr
p<o>—A/0 By ()p(r)e " dr,
Azp = TL(RQ - 1)Z07

and

(7) Az = —bRyzo — Ril /000 Bi(r)p(r)e T dr — Rilﬂmo,
p(r) = —m(r)p(r) - bA(1 - Ril)s(r)m(r)e”zo,

p(0) = b(R1 — 1)zo + Ril /000 By (T)p(r)e " dr,

R 1
Azp = n(R—j — 1>z0+bAk<l R—1>zo,

A oo
(8) Azg = —bRaxo — R_/ B1(T)p(T)e™ " dr — nzy,
2 Jo

and
() = —mr)plr) ~ 2 (1 - et

A 1 oo
Azg = b(Ry — 1)zo + - <l - —> / e(r)p(r)e 7 dr,
n Ry /) Jo

respectively.

(1) From the second equation of (6), we have

p(r) = p(0)m (7).

Substituting it into the third equation of (6) gives

p(0) = p(0)A /0 By ()m (r)e dr.
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It is easy to see that all the roots of equation 1 = A [ 31 (7)m1(r)e *dr
=: Aj()\) have the negative real parts if R; < 1, and that equation
A;(A) = 1 has a positive root if Ry > 1, since A1(0) = Ry > 1
and limy_, o, A1(A) = 0. Again, (6) also has an eigenvalue, A =
B2A — n = n(Ry — 1), which is negative if Ry < 1 and positive if
Ry > 1. Therefore, the disease-free equilibrium Ej is asymptotically
stable if max{R;, Rz} < 1 and unstable if min{R;, Rz} > 1.

(2) From the fourth equation of (7), we obtain an eigenvalue of (7),
A = n(Ry/Ry — 1) + kbA(1 — 1/Ry), which is negative if Ry > 1
and k < (n(Ry — R2)/bA(R; — 1)), and positive if Ry > 1 and k >
(n(R1 - Rg)/bA(Rl - 1))

The other eigenvalues of (7) are determined by the following equations

A oo
9) Azg = —bRixo — —/ Bi(7)p(r)e " dr,
R1 0
p'(r) = —m(r)p(7),
A o0
p(O) =b(Ry = Do + 1 [ u(rp(r)e "
1.Jo
From (9), we obtain the associated characteristic equation

A o0
A+bR = (N + b)R—1 / B1(T)m (T)€7>\T dr,
0

which is equivalent to the following equation

(10) A;”fl A4 /0 By (r)mi (r)e > dr.

1

We claim that all roots of equation (10) of A\ are with negative real
parts. If not, we have

A
1 d —
>1, an i

A+ bR,
A+b

/°° ﬂl(r)m(T)e*)‘T dr| <1.
0

Thus, a contradiction occurs. Therefore, the boundary equilibrium E;
is asymptotically stable if Ry > 1 and k < (n(R; — R2)/bA(R; — 1))
and unstable if Ry > 1 and k& > (n(R; — Ry)/bA(R; — 1)).
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(3) From the second equation of (8), we have
p(T) = p(o)m(T)[WQ(T)](bA/n)(l—(l/Rz))'

Substituting it into the third equation yields the characteristic equation

(11) 1= A /oo Bi(7)e A ry (7)o (7)|CA/M A=/ B) gr .= Ay (N).
Ry /g

It is easy to see that all the roots of Az(A) = 1 have the negative real
parts if Ry > 1 and k' < 1 and that equation Ay(\) = 1 has a positive
root if Ry > 1 and k' > 1, since Ay(0) = k' > 1 and limy_, o, A2(N) = 0.

The other eigenvalues of (8) are determined by the characteristic
equation A2 + bRy + nb(Ry — 1) = 0. It is obvious that all roots
of it are with the negative real parts for Ry > 1.

Therefore, F» is asymptotically stable if R, > 1 and k' < 1, and
unstable if R, > 1 and &’ > 1.

The proof of Theorem 2 is complete. ]
Regarding global stability of Ey and E3, we have

Theorem 3. Assuming that Ry < 1, the following results are true.
(1) If Ry < 1, then Ey is globally asymptotically stable.
(2) If Ry > 1, then Es is globally asymptotically stable.

Proof. Neglecting the term dependent on Iy for the equation of
i1(t,7), it follows from (2) that

ail(t,T) + 6i1(t,7’)

< —m(1)is(t, 7).

ot or —
Integrating this inequality along characteristic lines we have
it ) < {zl(t —1,0)m(7) T <t .
d(r —t)(mi(r)/mi(T —¢t)) T >+t

Since S < A, then, from the third equation of (2), we get

i1(1,0) SA[ [B@in=romrar+ B R (?t) ar).
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Moreover, we have

lim supi;(¢,0) < A/ Bi(r)mi(r) dr,
t—o0 0

tlg(r)lo supi1(¢,0) = Ry tlg(r)lo sup i1 (¢, 0).

So limy o supiy(t,0) = 0 since Ry < 1 and lim; o supi;(¢,0) <
0o. This implies that lim; ,o,%;(¢,7) = 0 for every fixed T and
lim;_, oo fooo i1(t,7)dr = 0. It follows that

oo oo

lim e(7)i1(t, 7)dr = 0 and tlim Bi(r)ii(t, ) dr = 0.
—00

t—o0 0 0

Then, system (2) has the following asymptotically autonomous limiting
system

450) _y 4 bs(t) - BS(E) (1),
(12) Py
_ggzzﬂﬁ%ﬂb@)—nb@)

For (12), it is easy to know that equilibrium Ey (A, 0) is globally stable
as Ry < 1 and equilibrium F3(n/B2,bA(1—1/Rs)/n) is globally stable
as Ry > 1. Then the theory of asymptotically autonomous systems [2]
implies that, for R; < 1, the asymptotic behavior of (2) is the same as
that of (12). Therefore, Theorem 3 holds. o

4. Positive equilibrium. An equilibrium of system (2) (S, 41(7), I2)
satisfies the following equations

(13) bA—bS—S[/OO 51(7')2'1(7') d7'+/32-[2 :07
0
dil(T)

i —m(7)iy (1) — e(7)i1(7) 12,
MWZSA Bu(7)ix (7) dr,

ﬂzSIz 771]2-{-_[2/ 6(T)i1(’7’) dr =0.
0
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To find the positive equilibrium, assume that ;(0) # 0 and I # 0
for (13); then, from the second equation of (13) we have

i1(1) = i1 (0)m (1) [ma (7)] 2.

Substituting it into the other equations of (13) gives

bA
W O Am T dr Bl
1
W) s ol d
and
1 oo

(16) S=% (n - n(O)/0 e(r)mi(7)[m2(7)]" dT)-

From (14) and (15) we have

my(7)]" dr

(1
a0 [ <o
/ ()] dT(bA— L bt pels )
= f(Z

Jo Bu(r)mi(7)[ma(r)])2 dr

From (15) and (16) we have

~ Oo Lgr — oy B2
i2(0) / M dr = o
= g(I2)
£(0) = kbA(l - Ri1>

Let I and I, denote the zeros of functions f(I2) and g(I5), respec-
tively.
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Define function

bA 1
fill2) := b+ Boly  [° Bu(r)mi(r)[ma(r)]2 dr

then
f(I2) = (b+ B212) /0 e(r)mi(r)[ma(7)]"2 dr f1 (1)

For the function fi(l2), it is easy to show that fi(I3) < 0, f1(0) =
A(l —1/Ry) and limy, ;o f1(I2) = —00. So, Iy is a positive number
when R; > 1. Further, when R; > 1, f(I2) > 0 for 0 < Iy < Iyy;
f(IQ) < 0 for I, > Igf and f’([g) <0for0< Ir < Igf.

Since

vy B fy Bi(m)m(7)lma (7)) Inma () dr
9U) = 1 O m () (P dr)p. O

and limy, ,o g(I2) = —oo then, when R; > R,, Iy, is a positive
number. And, when R; > Ry, g(I2) > 0 for 0 < I, < Izg and g(Iz) <0
for Iy > Iy,.

From the inference above, for positive equilibrium E*(S*i1(7),I3),
we know that I3 < min{lf, I5,} when Ry > 1 and Ry > Ros.

Define function

n 1
)= G, B mm @ mnE

Notice that I and I, are also the zeros of fi(I2) and gi(I2), respec-
tively.

When Ry <1, bRy/(b+ B212) < 1, that is, bA/(b+ B212) < n/B2. It
follows that g1(I2) > f1(l2), then Iy > Iof as Ry > 1> Rs.

When Ry > 1, fi(I2) > g1(I2) for I < bA(1 — 1/Ry)/n =: I, and
f(I2) < g(I2) for Iy > I. Notice that

g1(I2) := é!]

filly) = g1(D) = i(l_ %)

then, when &’ < 1, f]_(fg) = gl(fz) <0, it implies Ipy < Iy < I5; when
kK> 1, fl(Ig) = gl(Ig) > 0, it implies Igg > sz > 1.
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According to the monotonicity of f(I3) and g(I2), equation f(I3) =
g(I2) of I, has at least one root if [f(0) — g(0)][I25 — I24] < O.

On the other hand, when R; > 1, f(0) < g(0) if and only if
< (n/bA)(Ry — R2)/(Ry — 1). Therefore, regarding the existence
of positive equilibrium of (2), we have

Theorem 4. System (2) has at least one positive equilibrium if one
of the following conditions holds:

(l) Ry >1> Ry and k > (n/bA)(R1 — RQ)/(Rl — ]_)
(2) Ry > Ry > 1, k' < 1, and k < (n/bA)(R1 — RQ)/(Rl — l)
(3) Ry >Ry > 1,k >1,k> (n/bA)(R; — R2)/(R; — 1).

Remark 5. Condition (2) in Theorem 4 also implies that the boundary
equilibria, F; and Fs, both exist and are locally stable.

Linearizing system (2) about positive equilibrium E*(S*,i1(7),I3),
we can obtain system
(17)
() = — / Br(r)y(t,7) dr — 5*Baz(t),
8y(t T) ay(t ) 1 dii(7) .
+ = nw) dr y(t,7) — e(7)ir(7)z(t),

/ Bi(m)y(t,7)dr +° 10 x(t),

S*
() = Balialt) + I / e(r)y(t,7) dr,

where 1/(¢1( W(dir(1)/dr) = —m(r) — e(r)IF and (i1(0)/S*) =
I5” Bu(r)ix(r) dr are used.

Let z(t ) = zoe, y(t,7) = p(7)ert=7) | 2(t) = zpeMt; it follows from
(17) that

(18) ATy = —f;—ilxo - S*/ B1(T)p(T)e™ " dr — S*Bazq,
0
)

T = ) e
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p(0) =S /0°° Bi(r)p(T)e™ " dr + “550) o,

Azg = Bolizo + I2*/ E(T)p(T)ei)\T dr.
0

From the second equation of (18), we have

p(r) = p(0) —i1(7)20 /OT e(v)er dv.

Substituting the third equation of (18) into the equation above, we
have

19w =1 [ s+ 1

-
- il(T)Zo/ e(v)er? dv.
0
We simplify these notations by defining the functions

M) = [ e ar

My(r) = /0 " e(r)p(r)e " dr,

Ni(N) = /Ooo i1(7)Br(T)e A dr

No(A) = /0 h il(T)ﬁl(T)e—M< /0 " () dv> dr,
Ny(A) = /0 i ()e(r)e> dr

Nu()) = /0 h il(T)e(T)e“< /0 " e()e dv> dr.

Multiplying p(7) by B1(7)e~*" and &(7)e~*7, respectively, and then
integrating from 0 to co yields
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(20)
_ i1(0) Ni(A) .
MI(A)—mm—S*Nl(A)[ 50 - 0]
(21)
M [ (?)Jlo] —N4(>\)Zo
z(o 3V Na () N5(N)S*
5 (0) — S M [il(m “sne) NM]

Substituting (20) and (21) into the first and fourth equations of (18),
we obtain the characteristic equation

[t o (A )
=55 25t ) [mol s e + 4

and have the following result.

Theorem 6. The positive equilibrium of (2) is locally asymptotically
stable if all roots, A\, of the characteristic equation (22) have negative
real part.

5. Constant mutation rates. Because equations (22) and
f(I2) = g(I2) (here, f(I2) and g(I2) are defined in Section 4) are both
transcendental equations, it is difficult to solve roots of f(I2) = g(I2)
and to determine whether the positive equilibrium is stable. To gain
insight into the transmission dynamics of the disease governed by sys-
tem (2), we consider the special case where all the associated rates are
independent of the age of infection. For (2) we define these constant
rates as [1(7) := 61, m(7) :=m and e(7) :=e.

Notice that I;(t) = fo i1(t,7)dr. Integrating the equation for
i1(t,7) in (2) with respect to 7 and using the initial condition %, (¢, 0)
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reduces the system of PDEs to the system of ODEs,

(23) S"=bA —bS — (B111 + Ba12)S,
Il = B1SI — mIy — el I,
I, = 38Ty — nly + el I
(m >b,n>0b)

Adding the three equations in (23) gives
(S+Il +I2)I :bAbefmfl 777,_[2 S b[A* (S+Il+12)],

then the region Q = {(S,I1,I5) : S > 0,I; > 0,1 > 0,S+ 1) + I» <
A} is a positively invariant set of (23). It is easy to see that the
reproduction numbers of two diseases for (23) are Ry = (81 4)/m and
Ry = (B24)/n, respectively.

Correspondingly, for (23) k£ and &’ become

9 R1 1
k=— and k' =—*
m o Ry 1+ (bAe/mn)(1 — (1/Ry))’

respectively.

5.1. Boundary equilibrium of model (23). According to
Theorems 1 and 2 in Section 3, for (23) we have
Theorem 7. Let

mn €o €o
=—(R —R =— = :
0 bA( 1 2)7 €1 lel’ €2 Rz*l

3

System (23) always has the disease-free equilibrium Eq(A,0,0), which is
asymptotically stable if max{R;, R2} <1 and unstable if min{ Ry, Ry} >
1. When Ry > 1, (23) has the boundary equilibrium E1(A/Ry,bA(1 —
1/R1)/m,0), which is asymptotically stable if ¢ < &1 and unsta-
ble if ¢ > €1. When Ry > 1, (23) has the boundary equilibrium
E5(A/R2,0,bA(1 — 1/R2)/n), which is asymptotically stable if € > &9
and unstable if € < €.

For Theorem 7, the existence of boundary equilibria can also be
obtained by direct calculation; their stabilities are also proved by
linearizing (23) about them. So the proof is omitted.
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With respect to the global stability of boundary equilibrium we have
the following results.

Theorem 8. (1) When max{R1,Ro} < 1, the boundary equilibrium
Ey is globally asymptotically stable in €.

(2) When Ry > 1 and ¢ < g1, the boundary equilibrium E; is globally
asymptotically stable in €.

(3) When Ry > 1 and € > €2, the boundary equilibrium E is globally
asymptotically stable in 2.

Proof. (1) Define function V; = I + I>. Then differentiating V; along
solutions of (23) gives

Vilesy = 1i(B1S — m) + I3(B25 — n)
< m(R1 — 1)11 + ’I’L(Rz — 1)]2 < pVi,

where p = max{m(R; —1),n(Ry—1)}. It follows that V;(¢) < V1(0)e”*
where V1(0) = I1(0) + I2(0). Therefore, we have lim; ,o, Vi(t) = 0
since p < 0 for max{R;,Rs} < 1. According to Theorem 7, the
boundary equilibrium FEj is globally asymptotically stable in Q as
maX{Rl, RQ} <1

(2) For boundary equilibrium E;(SM, 1V 0) = (A/Ry,bA(1 —
1/R;)/m,0), we consider the Lyapunov function

s I
Va = (S —sW gy W) + <11 R I(—1)> + I
1

Notice that

S =bA—bS — (BuI + Bo5)S
=b(SM = 8) + B [TV (5D — §) + UM — I)] — B 158,
I = L(B1S —m —el) = L[5 (S — SW) —ely),
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and

Ié = IQ(,BZS —-n +€Il)
= D[By(S = 8Y) t+e(h — 1) + 6250 —n +-eI}V)]

=1 [52(5 ~SWY pe(n — 1MW) + n(% _ 1) L eba <1 _ L)]

1 m

bAR; —1
= B[pa(s - 50) +en - 1) + L1 )]

Then differentiating Vo with respect to time yields

§S—sw -1V

V2’|(23) = g S+ T, I+ 1,
b+ s (a2 , PAR -1
— 5 (S —8SWH) + m R (e —e1)ls.

Thus, when Ry > 1 and € > €1, V3|23 is less than or equal to zero
with equality only if S = S and I, = 0; when R; > 1 and ¢ = ¢y,
V3l(23) is less than or equal to zero with equality only if S = S,
The invariant set of (23) on set {(S,I1,15) € Q : § = SW. I, = 0}
or {(S,I1,I5) € Q: 8 = SW} is the singleton {E;}. It follows from
LaSalle’s invariance principle [11] that the boundary equilibrium F; is
globally asymptotically stable in 2 as R; > 1 and ¢ < €;.

(3) For boundary equilibrium EQ(S(Z),O,I2(2)) = ((A/R3),0,bA (1 —
(1/R3)))/n, consider the Lyapunov function

S I
2 2 (2) (2) 2
Vs = (SS()S( )lns(2>> +1 + <1212 — 1, lnI2(2)>.

Similar to the inference in (2), we can also obtain

bA Ry —1
+_

_ g(2))2
(S —5%) " R,

(e2 — )14,

! b+6212(2)
Vs |(23) = T g

and know that the boundary equilibrium FE5 is globally asymptotically
stable in Q when Ry > 1 and € > e5. a
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5.2. Positive equilibrium of model (23). The positive equilib-
rium E*(S*,I7,13) of (23) satisfies equations

(24) bA — bS — (BIII + BQIQ)S =0,
BlS—m—sIQ :0,
B2S —n+el, =0.

From the last two equations of (24) we obtain

mn

e(Buli + Bol3) = Bin — fam = —

(Rl — R2) > 0;
then the necessary condition for the existence of the positive equilib-
rium is Ry > Ra.

Solving equations (24) gives

A
s = 2 I;‘:T< Fae 1>, I;:3<1 P >
e+ep e \e+¢ep € o

Under the condition Ry > Ra, IF > 0 is equivalent to e(R; —1) > o,
e, e/er > 1,and I > 0 is equivalent to e(Rs — 1) < €9, i.e., g/ea < 1.
Notice that €3 < 0 for Ry < 1 and that I > 0 implies that R; > 1;
then, with respect to the existence of the positive equilibrium E*, we
have

Theorem 9. System (23) has a unique positive equilibrium E* if
one of the following cases holds.

(1)R1>R221and51<5<52.
(2)R1>1>R2 and € > €1.

Remark 10. Conditions (1) and (2) in Theorem 9 correspond to
conditions (1) and (3) in Theorem 4, respectively. But condition 2 in
Theorem 4 is impossible for the case where mutation rates are constant.
In fact, under this case, k¥ < (n/bA)(R1 — R2)/(R1 — 1) is equivalent
to e < e1, k' < 1is equivalent to € > €5 and g1 < e for Ry > Ry > 1,
so there is no value of ¢ which satisfies k < (n/bA)(R; — R2)/(R1 — 1)
and k' < 1.
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Theorem 11. For system (23), the positive equilibrium E*, if it
exists, is globally asymptotically stable in 2.

Proof. Define the Lyapunov function

I I
Ve (S—s -5 mo )+ L-I'-ITht )+ (L-E-Em>2).
S I; I

From (23) we have
S' = bA —bS — (BiL + Bolz)S
= (8" = 9)(b+ Bul{ + Ba13) + B1(I1 — 11)S + Ba2(I3 — I2)S,
I{ = Il(ﬂlS —m — 8]2)
= LB (S = 5%) —e(l2 — I3)),
and

Ié = IQ(ﬂQS —n—+ EIl)
= L[32(S = 57) +e(li - I7)];

then differentiating V' along solutions of (23) gives
S-S, LI

V'|(23) = 5 S'+ I I + 1
5_5*2
Z—%(b-i-ﬁlff‘FI;)
_ (5-57)%b4
N S S*’

Thus, V’|(23) is less than or equal to zero with equality only if S = S™.
The invariant set of (23) on set {(S,I;,I2) € Q : S = S*} is the
singleton {E*}. It follows from LaSalle’s invariance principle [20] that
the positive equilibrium E* is globally asymptotically stable in € if it
exists. u]

The results obtained for (23) are summarized in Table 1.
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TABLE 1.

E, | B, | By | E*

R <1, R:<1 GAS N N N
R <1< R, US N GAS N

e<e US | GAS | US N
1<Ry<R;|e1<e<ey| US US US | GAS
€>eq US US |GAS| N
Ry <1< Ry e<e US | GAS N N
€>e US US N GAS

In Table 1, N denotes does not exist, US denotes unstable, GAS
denotes globally stable, where €1 and €2 are defined as in Theorem 7.

6. Discussion. In this paper, we have formulated a simple
epidemiological model with two diseases that can coinfect a single host.
The first disease was assumed to be chronic, the second one acute.
For infectives infected only by the first disease, we introduce the age
of infection. For these two diseases, we obtained their reproduction
numbers, respectively, and established conditions for the existence and
stability of the disease-free equilibrium, the boundary equilibrium and
the positive (coexistent) equilibrium.

For the infectious individuals infected only by the first disease, when
the incidence rates are 31(7) and £(7) and the disease-related death
rate a;(7) and the recovery rate v, (7) depend on the age of infection,
the corresponding models are governed by partial differential equations
(PDEs), we gave a sufficient condition for the existence of positive
equilibrium, its stability determined by a transcendental equation;
when all the associated rates are independent of the age of infection,
the corresponding models are ordinary differential equations (ODEs),
we obtained complete results on the dynamics and found that the
coexistent equilibrium of two diseases is globally stable if it exists, and
that the boundary equilibrium is globally stable if it is locally stable.

Also, we find that there is a difference between PDE and ODE models.
This difference is shown in Remarks 5 and 10. It is possible for a model
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with the age of infection that the boundary equilibria are bistable,
but the bistable case is impossible for a model without the age of
infection. In fact, for the PDE model, we can choose parameters as
follows: B2 =16.6,b=2.0,m=2.8,n=2.6,e=0.6, A=1 and

Bu(r) = {72.1(1.5 —7)r 0<7<15,

0 elsewhere;

then, Ry = 7.5311, Ry, = 6.3846, k' = 0.9889, k(bA(R;—1)/
n(Ry — Rz)) = 0.9249, that is, Condition 2 in Theorem 4 is true. Fur-
ther, besides the disease-free equilibrium Py, the other equilibria are
E1(0.1328,1.7344e 287 ,0), F2(0.1566,0,0.6487), E*(0.1419,1.1982 -
e~ 29327 (.22), respectively, and the boundary equilibria E; and E,
both are stable. But, for the ODE model, the case for two boundary
equilibria to be bistable is impossible. Therefore, incorporating the age
of infection into the epidemic model with chronic disease is necessary
for modeling the disease spread.
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