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TIME-LIMITED MANAGEMENT STRATEGIES OF
A SINGLE-SPECIES WITH ALLEE EFFECT

HONGJIAN GUO, LANSUN CHEN AND XINYU SONG

ABSTRACT. Two kinds of time-limited management stra-
tegies of a single-species with Allee effect, described by the im-
pulsive differential equation with initial and boundary value
conditions, are presented according to the initial density of the
species. By means of the comparison principle and the meth-
ods of upper and lower solutions, boundary value problems
of impulsive management models are discussed. According to
the initial density of the species, there are two kinds of models:
the model with impulsive release and the model with impul-
sive harvesting. The corresponding sufficient conditions under
which the corresponding model has a solution or no solution
are obtained. If the models have a solution, the corresponding
management strategy can be performed successfully. For the
model with impulsive release, if other parameters are given,
the population of release can be estimated. For the model
with impulsive harvesting, the times of impulsive harvesting
can also be estimated. Finally, some discussions and corre-
sponding numerical simulations about the results obtained in
this paper are given.

1. Introduction. Many biological and mathematical models
suppose that the density of a species always increases if the density
doesn’t reach the carrying capacity of environment no matter how
exiguous it is. But it isn’t true for some cases because, for a lot
of species (such as white-flag dolphin (Lipotes vezillifer) and Chinese
sturgeon (Aclpenser Sinensis Grdy)), the population density of species
will decrease and tend to zero when the density reaches a very low
level. The causations from outside are usually attributed to the
over-exploitation of biological resources (especially to those with great
economic value) and the destruction of the natural habitats of rare
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species by human and other activity. Some causations also exist inside
the species. First, some animals are not social. The opportunity of
copulation is small when density is exiguous. This will make the density
of the species decrease and tend to zero. Second, the sparsity of the
species results in reproduction by inbreeding, depresses the quality
of species and even leads the species to be extinct. Besides, even
though the species has strong ability of reproduction, due to human
activities its population decreases rapidly. For example, the sparrow
(Passer montanus saturatus) has a stronger ability of reproduction and
were dispersed widely in China a few decades ago. But, because the
sparrows feed on corn, they are considered pests and have been heavily
killed. This make the sparrow almost extinct in some areas. On the
other hand, the sparrow plays an important role in controlling pests,
especially Lepidoptera. So, for such a species, we need not only control
the population but also prevent it from extinction according to the
practice. Therefore, we should consider the Allee effect (Sparse effect)
when we investigate management strategies of a single-species.

This paper aims to study management strategy of a single-species
with Allee effect by the mathematical method. Many researchers
have investigated systems with the Allee effect (for example, [3-5,
8, 12-14]) and obtained lots of excellent results. Traditional math-
ematical models always suppose that the control process is continuous.
With the advance of impulsive differential equations, impulsive differ-
ential equations are used to describe the evolving process of species
which makes the models more reasonable (for example, [7, 10, 11]).
These models are considered in infinite time. But, in practice, when
initial population density of the species is less than a critical value,
the density will decrease to zero, which requires us to take protective
strategies to restore the species in a given time. On the other hand,
when the initial population density is larger than the critical value, the
density will increase and has a trend to infinite or carrying capacity
of the environment, the species might be harmful to the environment,
industry and agriculture, so we need to control its density to a lower
level at which the species doesn’t harm the environment or to the level
which is lower than economic injury level (EIL) (or economical thresh-
old ET) in a given time. However, there have been just a few studies
on finite time.
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The main purpose of this paper is to discuss two kinds of different
management strategies for a single-species with Allee effect in a given
time (or in a finite time) according to the initial density of the species,
that is to say, how the species reach a certain level and live through
the sparse term by artificial release and how to control the density so
that the species don’t become harmful in finite time.

The present paper is organized as follows. In Section 2, two single-
species models with Allee effect and artificial control (impulsive har-
vesting and impulsive release at fixed moments) are formulated accord-
ing to the initial density. In Section 3, by using the comparison principle
and the method of upper and lower solution, the existence and nonexis-
tence of solutions of the models given in Section 2 are investigated, and
the corresponding sufficient conditions are given. In Section 4, some
discussions and numerical simulations on the two control measures are
provided.

2. Model formulation. We first suppose that our object is one
kind of single species with Allee effect. The single species model with
Allee effect can be written as follows [2]:

dx
=2 (b(@) - d(2)),

where z is the density of the species, b(x) represents the birth rate of
the species, and d(x) is the death rate. Since the natural birth rate is
usually the function of the density, we consider b(z) = bz /(a + =) and
d(z) = d in this paper. Then the above model can be rewritten as

dx < bx >

— =z —d).

dt a+x
It is clear that « = 0 and « = ad/(b—d) are two equilibria and z(t) > 0,
t > 0, since dz/dt = 0. z = ad/(b — d) is a positive equilibrium when
b > d; otherwise, the system has no positive equilibrium. Furthermore,
x = 0 is stable and = ad/(b — d) is unstable when b > d. Obviously,
the density z(t) decreases and tends to zero as t — oo when the initial
density x(0) is less than h, h = ad/(b — d), and increases when z(0)
is larger than h. If we don’t take any measures, the species will be

extinct when the initial density is less than h (the sparse term). In
view of biodiversity, artificial release is required to restore the species
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in this case. When the initial density is larger than h, the species
will increase. Though there exists intracompetition and the population
does not reach the carrying capacity of environment, the species might
have been a harmful one. So corresponding control measures should be
taken to decrease the population of the species.

For the case of z(0) < h, if no artificial measure is taken, the density
of the species will be decreasing. The reduction of the per capita growth
rate of a population of a biological species at densities smaller than a
critical value, e.g., h, is known as the Allee effect [5]. Our aim is to
increase the density by impulsive release at fixed moments such that
the species begins to increase after a given time 7', which is finite. The
process can be described by the following model:

( z(t)/dt) = ba*(t)/(a + x(t)) — da(t) t#ir,
(t) p t=ir,

=A<h, (T)+p>h,

:1,2,...,n, nt <T,

(2.1)

where p is the population of release at fixed moments 7 and 7 is the
period of artificial reproduction and release. z(T) + p > h represents
that, if there have been n times releases before the moment 7', we
only add one time release at the moment 7" and can make the density
x(T™") larger than h. This implies that the population of the species
will increase and the goal of restoring the species will be achieved.

For the case of z(0) > h and z(0) larger than a value (for example,
ET or EIL) at which the species might be considered a harmful one,
we want to decrease the density or population by impulsive harvesting
at fixed moments and make z(7T}) < B. The process can be described
by the following model:

(da(t)/dt) = ba?(t)/(a + =(t)) — da(t) t#im,
22) Az(t) = —Ex(t) t=im,

z(0) =C > B> h,z(T1) < B,

Z':].,2,... , Ny, NTy STl,

where 0 < E < 1 represents the fraction of the density which decreases
due to a certain artificial measure. 7; is the period of impulsive
control. In order not to make the density drop back to below h when
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t € [0,T1], E should be less than 1 — h/B. T; > 0 is a given moment.
Equation (2.2) shows that, after the time of control experiences from
0, z(0) = A, to T}, the density of the species z(17) is less than or equal
to B, B > h.

In the following, we will discuss the existence or nonexistence of
solutions of (2.1) and (2.2) under the condition b > d.

We will use a basic comparison result in [6]. For convenience, we
state it in our notations.

Lemma 2.1 [6, 9]. Let V : Ry x Ry — Ry and V € V. Assume
that

(2.3) { D*V(t,z) < g(t,V(t,z))  t#nr,

V(t,z(th)) < ¢, (V(t,z(t)) t=nT,

where g : Ry X Ry — R is continuous in (n7,(n+ 1)7] X R4 and for
ve Ry andn e Z4,

lim t,y) = g(nt™,v
oy 9(by) = )

exists and vy, : Ry — Ry 1is nondecreasing. Let r(t) be the mazimal
solution of the scalar impulsive differential equation

g( u(t))  t#nr,
= ((t)) t=nr,

\j\_/

(2.4) (t

ezisting on [0,00). Then V (01, zq) < ug implies that V (t,z(t)) < r(t),
t > 0, where z(t) is any solution of (2.3).

A similar result can be obtained when all the directions of the
inequalities in the lemma are reversed. Note that if we have some
smoothness conditions of g(t) to guarantee the existence and uniqueness
of solutions for (2.3), then r(t) is exactly the unique solution of (2.3).

3. The existence of solutions. Since the expression of the solution
of (2.1) or (2.2) is complex, which adds difficulty to the study on the
boundary value problem especially in the process of iteration in finite
time, we will use the comparison principle and the method of upper
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and lower solution to discuss and give some sufficient conditions under
which (2.1) or (2.2) has a solution or no solution.

3.1. The existence of solutions of (2.1). We first introduce the
following theorem:

Theorem 3.1. Let m; = Aexp(—dr), 1, = bm;/(a+m;)—d, b > d.
1) Suppose T =nr, if m; +p > A and

1 — exp(r,T)

> h.
L. exp(ryT)

(3.1) my exp(ry(T — 7)) +
Then (2.1) has a solution which satisfies the boundary value problem.
2) Suppose T > nr, if my +p > A and

exp(ry(T — n1)) — exp(ryT)
1 —exp(ry7)

(3.2) myexp(ry(T —7)) +p +p>h.

Then (2.1) has a solution which satisfies the boundary value problem.

Proof. Since f(z) = bx/(a + ) — d is an increasing function, then
(2.1) has a series of lower solutions z,(t) when t € ((: — 1)7,i7],
i =1,2,...,n. For simplification, we denote bm; ,/(a +m; ;) — d
byr,i=2,...,nand r; = —d.

In fact, when ¢ € [0, 7], z(t) > z,(¢), where z,(t) satisfies

(dzy(t)/dt) = —dz, (t) = r12,(1),
(33 Lo a0~ 8
and

(1) > z,(1) = my = Aexp(—dr), te€]0,7].

When A exp(—dr)+p > A, it is clear that m;+p > A. Whent € (1, 27],
x(t) > z4(t), where z,(t) satisfies

{ (dzo(t)/dt) = (bmy/(a +my) — d)z,(t) = 1oz, (1),

B et =m, +p,
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and
T(27) > 25(27) = my = (my +p) exp(ry7), t € (T,27]

Since ry > r; and Aexp(—dr)+p > A, we have my, +p > m; +p > A.
Similarly, we can obtain that when t € ((n—1)7,n7], then z(¢t) > z,,(¢),
where z,,(t) satisfies

(di, (1) /) = (b /(a+ m,y) — d)(t) = 7z (8),
(3:5) {xn«n — 1)) = my 4D,

and
z(nt) > zo(n7) =m,, = (m,,_; +p)exp(r,,7), t € ((n— 1)1, n7].

Since r, > -+ > 1y > r; and Aexp(—dr) + p > A, we have
m, +p>--->my+p>m;+p>Aand z(nr) > z,(n7) =m,.

m,, = (m,,_; +p)exp(r,7) = m,_, exp(r,7) + pexp(r,T)

= m, exp((ry + 7"3 ~+1,)7) +pexp((ry + 13+ +1,)7)
+ pexp((rs + )T) + -+ pexp(r,T)
> m; exp((n — 1)7"27') +pexp((n — 1)ry7) + pexp((n — 2)r,7)

+ -+ pexp(ryT).

If T = n7, when the conditions of the theorem hold and we have

1 —exp(r,T)

h.
L exp(ryT) >

(3.6) z(T) +p > m, exp(ry(T — 7)) +p

Then (2.1) has a solution.
If T > nr, then z(t) > z,,,(t), t € (n7,T], where z,,,,(t) satisfies

{ (dz,41(t)/dt) = (bm,,/(a +m,) — )T 11 = Tpi1Zniis
z,41(n7T) = m, +p,

and then

2(T) 2 2p41(T) = (m, + p) exp(r,, 41 (T — n7)).
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Furthermore,

exp(ry (7' — n7)) — exp(r,7)

z(T)+p > m, exp(ry(T — 7)) +p 1 — exp(ryT)

+p > h.
The proof is completed. a

Remark 3.1. When other parameters except p are given firstly, from
(3.1) and (3.2) we can estimate the population of impulsive release:

(3.7)
s gy ML= exp(rar)) +1m_1(ee;<§(<£z§)> — e =7) g
(3.8)

p>p)= P(L = exp(ry7)) + my(exp(r,T) — explry(T = 7))

exp(ry(T — n7)) — exp(ryT) + 1 — exp(r,y7)

equation (3.7) (or (3.8)) implies (T") + p > h when p > p; (or p > p}),
that is to say, after the given moment 7', the density of the species will
be larger than h if the density of impulsive release p is larger than p;

(or p}).
Similar to the discussion above, we have the following theorem:

Theorem 3.2. Let 7y = bA/(a+ A) — d, my = Aexp(T17), b > d.
1) Suppose T =n7t. If m,; +p > A and
(3.9) my +np < h,

then (2.1) has no solution which satisfies the boundary value problem.

2) Suppose T > nt. If m; +p > A and

(3.10) m1 + (n+1)p < h,

then (2.1) has no solution which satisfies the boundary value problem.
Proof. Similar to the proof of Theorem 3.1, (2.1) has a series of upper

solutions Z;(t) when t € ((i—1)7,i7],7 =1,2,... ,n. For simplification,
we denote b(m; 1 +p)/(a+M;_1+p)—dby T, i=2,...,n.
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In fact, when ¢ € [0, 7], z(t) < T1(¢), where Ty (t) satisfies
(3.11)
and

z(1) < Z1(1) =My = Aexp(fi7), te€]0,7].

When A exp(—dr)+p > A, it is clear that m;+p > A. When't € (1, 27],
z(t) < Zo(t), where To(t) satisfies

{ (dz2(t)/dt) = (b(my + p)/(a + My + p) — d)T2(t)
(3 12) = ’FQ.TQ(t),
f2(7-—i_) = m1 +p7

and
z(27) < 22(27) = M2 = (M1 + p) exp(re7), t € (7,27].

Since 7y > 71 and Aexp(—dr)+p > A, we have s +p > M1 +p > A.
Similarly, we can obtain that when t € ((n—1)7,n7], then x(t) < Z,(¢),
where 7, (t) satisfies

{ (dZn(t)/dt) = (b(Tp—1+p)/(a + -1+ p) — d)Tn(t)
(3.13)

Zn((n—1)7") =Mp_1 +p,
and
x(nt) < ZTo(nT) = My, = (Mp-1 + p) exp(r,7), t € ((n — 1)7,n7].

Since 0 > 7, > -+ > T > 71 and Aexp(—dr) +p > A, we have
Mp+p>--->Mme+p>my+p>Aand z(nt) < Zp(nt) =m,.

my = (mn—l +p) eXp(FnT) =Mnp-1 eXp(FnT) + pexp(FnT)

=mmyexp((Fe + 73+ -+ 7n)7) + pexp((Fo + 73 + -+ + 7 )T)
+pexp((Fs + -+ 7n)7) + - + pexp(FpT)
< my exp((n — l)rn )+ pexp((n — 1)7,7) + pexp((n — 2)7,7)

+ -+ pexp(FnT).
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If T = n7, when the conditions of the theorem hold, we have
(3.14) z(T)+p <my +np < h.
Then (2.1) has no solution.

If T > nr, then z(t) < Tp41(t), ¢t € (n7,T], and Tp,11(t) satisfies
{ (dZn11(t)/dt) = (b(Mn +p)/(a +Mp +p) = d)Tni1 = Tny1Zni1,

i‘n+1(n7'+) =mn +p,

and then
LL'(T) S jn+1(T) = (mn + p) eXp(Fn+1T).

Furthermore, when the conditions of the theorem hold, we have
z(T)+p<mi+(n+1)p<h.
The proof is completed. a
Remark 3.2. When other parameters except p are given firstly, from

(3.9) and (3.10) we can also estimate another population of impulsive
release:

(3.15) p<py= ——m17 T = nr;
n
h —my
3.16 =——— T ;
( ) p < p2 n -+ 1 ) > nrt;

(3.15) (or 3.16) implies z(1T') + p < h when p < py (or p < ph), that
is to say, after the given moment 7', the density of the species will be
less than h if the density of impulsive release p is less than ps (or p}).
Furthermore, our aims cannot be achieved.

Remark 3.3. From Theorems 3.1 and 3.2 and Remarks 3.1 and 3.2,
we know that if other parameters are given, there must exist a po
(p2 < po < p1) such that (T) + p > h when the population of
impulsive release p > pyp and T = nr. Similarly, there must exist a
Py (Py < py < pY) such that z(T") + p > h when the population of
impulsive release p > p; and T' > nr. Therefore, we can estimate the
population of impulsive release from Theorems 3.1 and 3.2.
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3.2. The existence of solutions of (2.2). In the following, we
discuss the cases of 2(0) > h and x(0) = C' at which the species might
be harmful for either the environment or humans. It is a requirement
that the density should be controlled to a lower level in a given time T}
because it will have no practical meaning if the population is controlled
in infinite time. On the other hand, in order not to make the density
below h again when ¢ € [0,7}], we restrict £ <1 — h/B.

Theorem 3.3. Let s = b(1 — E)B/(a+ (1 - E)B)—-d, M, =
Cexp(st), E<1—h/B,b>d.

1) Suppose Ty = nry, if (1 — E)M; < C and
(3.17) (1— E)""'Cexp(sTh) > B.

Then (2.2) has no solution which satisfies the boundary value problem.
2) Suppose Ty > nry. If (1 — E)M, < C and

(3.18) (1 - E)"Cexp(sT1) > B,

then (2.2) has no solution which satisfies the boundary value problem.

Proof. Similarly, (2.2) also has a series of lower solutions y.(t) when
t € ((¢ — )r,im], i = 1,2,...,n. For simplification, we denote
b(l - E)Mi—l/(a + (l - E)Mz—l) —d by Si» 1= 25 cee T

When ¢ € [0,71], 2(t) > y, (t), where y, (t) satisfies

(i, (0)/d6) = (060 (a-+ ©) ~ (1) = 5,3,(0),
1) {gl(w) —2(0)=C,

and
z(r) 2y, (m) =M, = Cexp(s;m1), t€0,7]

Since (1 — E)M, < C, then when t € (71,271], z(t) > y,(t), where
y,(t) satisfies
(dy,(t)/dt) = (b(1 — E)M, /(a + (1 — E)M,) — d)y,(t)
(3.20) = 55¥,(1),
Y,(ri") = (1 - B)M,,
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and
z(2m1) > y,(2m) = My = (1 = E)M, exp(sym1), t€ (71,271].

Since (1 — E)M; < C, then (1 - E)M, < (1 - E)YM; < C and
Sy < 8;. Similarly, we can obtain that when ¢t € ((n — 1)m,nm],
then z(t) > y (t), where y () satisfies

(dy,(8)/dt)=(bQ—-E)M,, _,/(a+ (1-E)M, ,)—d)y, (t)
=5,y (1),

(3.21)
y,(n=1)r") =1~ E)M,

and
z(nmi) > y,(nm) = M,, = (1-E)M,,_, exp(s,,71), t € ((n—1)71,n7].

Since (1 - E)M,; < C, thens, <--- <sy <8y, 1 —E)M, <---<
(1-E)M, < (1-E)M, <C and z(nm1) >y (nm1) =M

-

M, =(1—-E)M,_;exp(s,T1)
= (1= B)"""M, exp(sy + 53 + - + 5,)71)
> (1 - E)" "M, exp((n —1)s,,71)
> (1 E)" M, exp((n — 1)s)

If T, = nmy, when the conditions of the theorem hold, we have
(3.22) z(T) > (1 — E)" 'M, exp((n — 1)s71) > B.

Then (2.2) has no solution.
If Ty > nry, then x(t) > Qn+1(t)’ t € (n7y,T1], and Qn+1(t) satisfies

(dy, ,,(0)/dt) = (b(1 — E)M,,/(a+ (1~ E))M,) ~d)y,
= §n+1gn+la
nr') = (1 - E)M

"’

gn-{-l(

and then

z(Th) 2y, ,(Th) = (1 — E)M,, exp(s,,11(T — nm)).
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Furthermore, when the conditions of the theorem hold, we have
z(Ty) > (1 — E)"Cexp(sTy) > B.
The proof is completed. a

Remark 3.4. When other parameters except n are given firstly, from
(3.17) and (3.18) we can obtain the times of impulsive release:

(3.23) n<ng = [%@] +2, Ty =nm;
(3.24) n < nll = [%H(_Béf)] +1, Ty >nm.

w »

where [-] represents the maximum integer which isn’t larger than
Equation (3.23) (or (3.24)) implies (T) > B whenn < ny (orn < n})),
that is to say, at the given moment 77, the density of the species will
be larger than B if the impulsive times n is less than n; (or n}). Here,
we should notice that the period of impulsive control 7; varies with n
since Ty = n1y (or Ty > n1y) (here, we only give the estimation of n).

Similar to the discussion above, we have the following theorem:

_ Theorem 3.4. Let M = Cel’=D™ 5, = bM/(a+ M) —d, b > d,
My =Cexp(s1m1) and E < 1— h/B.

1) Suppose Ty = nry. If (1 — E)M; < C and
(3.25) (1—- E)"'Cexp(5:T1) < B,

then (2.2) has a solution which satisfies the boundary value problem.
2) Suppose Ty > nry. If (1 — E)M, < C and

(3.26) (1 - E)"Cexp(5:T1) < B,

then (2.2) has a solution which satisfies the boundary value problem.

Proof. There exist a series of upper solutions ¥;(¢) of (2.2) when
t € (¢t = Dry,im], ¢ = 1,2,...,n. For simplification, we denote
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bMi_l/(a + Mi—l) —d by gi, i = 2, , . Since bI/(a + CE) < b,
then z(t) < y(t), € [0, 71], where y(t) satisfies

{ (dy(t)/dt) = (b — d)y(?),

y(0%) =z(0) = C,

and z(t) < y(t) < M = Celb=Dm,
Therefore, when ¢ € [0, 7] and z(¢)

<%
{ (dy,(t)/dt) = (bM /(a + M) — d)y, (t) = 517 (¢),
7,(0%) =2(0) = C,

(t), where 7, (t) satisfies
(3.27)

and o
z(m1) <7y(m1) = M1 = Cexp(s1m1), t€[0,7]

When ¢ € (71,2m1] and z(¢) < y,(t), where y,(t) satisfies
(dga(t)/dt) = (bM1/(a + M1) — d)F,(t) = 5205(1),
oo {0
and
CL’(2T1) S ?2(27'1) = MQ = (1 — E)Ml exp(Eng), t e (Tl, 27'1].

Since 52 < 31 and (1 — E)M; < C, we have (1— E)M2 < (1—E)M; <
C. Similarly, we can obtain that when ¢ € ((n — 1)71,n7], then
z(t) <7, (t), where 7, (t) satisfies

(@7, (8)/d) = (V1 /(@ + Mn_s) = )T (8) = 5T (D)
(3.29) {Mn S D) = (1— B)Maes,

and

z(nm1) <y,(nm) =M, = (1—E)M,_1exp(3,71), t € (n—1)71,n71].

Since 5, < -++ < 52 < 51 and (1 — E)M; < C, we have (1 — E)M,, <

o< (1-E)M3 < (1 - E)M; < C and z(nm) <7, (nm) = M,.
M,y = (1= E)M s exp(5um)

(1—E)" 'Myexp((S2+ 53+ - +5n)71)

=(1-B)" 'Cexp((51 +52 + - +5n)71)

< (1 — E)"'Cexp(ndi71).



A SINGLE-SPECIES WITH ALLEE EFFECT 1417

If 71 = nry, when the conditions of the theorem hold, we have
(3.30) z(T) <M, <(1—-E)"'Cexp(5,T1) < B.

Then (2.2) has a solution.
If Ty > nry, then z(t) <7, ,1(t), t € (n71,T1], and 7, (t) satisfies

{ (AT 11 (8)/dt) = (M /a + Mp) = )Gy sy = Sns1Tni1s
yn—ﬂ—l(n’rl—i_) = (l - E)an

and then
2(T1) < Jpya(Th) = (1 = )My exp(5pr1(T1 — n71)).
Furthermore,
z(Ty) < (1 — E)"Cexp(5:11) < B.

The proof is completed. i

Remark 3.5. When other parameters except n are given firstly, from
(3.25) and (3.26) we can obtain another time of impulsive release:

§1T1 - IH(B/C)
In(1/1 - E)

r §1T1 — ln(B/C)
(3.32) n>nh= [m

where [-] represents the maximum integer which isn’t larger than
Equation (3.31) (or (3.32)) implies #(71) < B whenn > ns (or n > n}),
that is to say, at the given moment 77, the density of the species will
be less than or equal to B if the impulsive times n is larger than or
equal to ny (or nj).

(3.31) n2>ng = |: :| +2, T\ =nmn,

:|+]., Ty > nm,

“,on

Remark 3.6. From Theorems 3.3 and 3.4 and Remarks 3.4 and 3.5,
we can know that if other parameters are given, there exists an ng
(n1 < ng < n2)such that (7T}) < B when the times of impulsive release
n > ng and T} = n7y. Similarly, there exists an ny (n] < ng < nb)
such that z(71) < B when the times of impulsive release n > n{, and
T1 > nmy.
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FIGURE 1. Time series of (2.1) when b=0.9, T =6, a = 20, A =5, d = 0.4 and
T=1Lp=15<p2; II: p2 <p=3.1<p1; Il p=4.5>p;.

4. Discussion. Two kinds of time-limited management strategies of
a single-species with Allee effect, described by the initial and boundary
problem of impulsive differential equation, are discussed by means of
the comparison principle and the methods of upper and lower solution
in this paper. Theorem 3.1 gives sufficient conditions for the existence
of the solution of (2.1) when the initial density is less than h, which
implies that the goal of management can be achieved and the species
can be restored. When the conditions of Theorem 3.2 hold, we cannot
achieve our aims. From Remarks 3.1, 3.2 and 3.3, we can estimate the
population of impulsive release. For example, we take b = 0.9, T' = 6,
a =20, A=5d=04and 7 = 1, then h = 16, p; = 4.471182708
and p; = 1.712486573. Figure 1 (I, I and III) shows the times series
of (2.1). There must exist a pg (p2 < po < p1) such that z(T)+p > h
when p > pg.
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FIGURE 2. Time series of (2.2) when b = 0.9, T1 = 6, a = 12, C = 30, d = 0.4,
E=0.35and B=15. : n=4,II: n =5, IIl: n = 8.

Theorem 3.3 shows that the density of the species cannot be con-
trolled if the conditions of Theorem 3.3 hold. Theorem 3.4 gives suf-
ficient conditions for the existence of the solution of (2.2) when the

initial density is larger than h. From Remarks 3.4, 3.5 and 3.6, we can

also estimate the times of impulsive harvesting. For example, we take
b=09,T1 =6,a=12,C =30,d=0.4, E =0.35 and B = 15, then

h = 9.6, ny = 4 and ny = 8. Numerical simulations can be seen in
Figure 2 (I, II, III) which shows the time series of (2.2). There must
exist an ng (n1 < ng < ng) such that z(7) < B when n > ny.

The results obtained here can be verified by corresponding numerical
simulations (Figures 1, 2). We still have a lot of problems on the subject
which should be explained in mathematical terms. For example, how
can the species be restored if people cannot be provided with enough

species’ population to release? Does a periodic solution exist for long-

term management, etc.? These will be the subjects of our future work.
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