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ON MAXIMUM MODULUS POINTS AND ZERO SETS
OF ENTIRE FUNCTIONS OF REGULAR GROWTH

IOSSIF OSTROVSKII AND ADEM ERSIN UREYEN

ABSTRACT. Let f be an entire function. We denote by
R(w, f) the distance between a maximum modulus point w
and the zero set of f. In a previous paper, the authors
obtained asymptotical lower bounds for R(w, f) as |w| — oo
for functions of finite positive order and regular growth. In
this work we extend those results to functions of either zero
or infinite order and show that our results are sharp in sense
of order.

1. Introduction. Let f be an entire function. We call a point
w € C a mazimum modulus point if

[f(w)] = M(Jwl, f),

where

M(r, f) :== max|f(2)|.

|z|=r

We denote by R(w, f) the distance between a maximum modulus point
w and zero set of f, i.e.,

R(w, f) := inf{|w — 2| : f(z) =0}.

Lower estimates of R(w, f) play an important role in Macintyre’s
version [7] of the Wiman-Valiron theory and its further generalizations,
see [4, Chapter 1, Section 4] and [11].

Theorem A [7]. (i) The following inequality holds

lim sup M

Jw|—o00 | ‘

(1og M(ju], ))"/2 > 0.
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(ii) For each e >0

tim inf 25 (1og r(Ju], £))@/2+ > 0,
ex

where fAE dlogt < co.

The results of Macintyre are in terms of log M (r, f), and they are
valid either for a sequence of values of |w| or outside of an exceptional
set. In [8] the authors considered functions of finite and positive order
and obtained lower estimates for R(w, f) valid for all sufficiently large
values of w. The results are in terms of some smooth majorant of
log M (r, f) and up to a constant factor unimprovable.

It is well known that, in almost all applications of the entire functions
theory, see e.g., [6], one deals with functions of regular growth. It
is worth mentioning that lower estimates of R(w, f) for some special
families of regularly growing entire functions of exponential type (so-
called “grand partition sums”) are important for the theory of phase
transitions, see e.g., [10].

We proved in [8] that, for f of regular growth with respect to the
majorant, the decay of R(w, f) as w — oo is slower than in the general
case, and the slower the more regular the growth is. Nevertheless,
the question about sharpness of the obtained results remained open.
Moreover, in [8], we had restricted ourselves by functions of finite
positive order. Functions of either infinite or zero order were considered
later in [12] but without assumption of regular growth.

In this paper we extend the results of [8] related to regularly growing
functions to the case of either infinite or zero order and also show that
they can be considered as sharp in some sense.

Our results are stated in terms of proximate orders, therefore we need
the related preliminaries.

2. Preliminaries. According to the classical definition of Valiron,
see e.g., [6, page 32], a prozimate order (p.o.) is a positive function
p(r) € CY(R;) satisfying conditions:

(i) there exists a finite limit p = lim,_, o p(7);

(ii) p/(r)rlogr — 0 as r — oo.
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Further, we denote

(1) Vir)= ().

Valiron’s theorem, see [6, page 35] shows that p.o.s form a scale of
growth of entire functions of finite order in the following sense: For
each function f of finite order p, there exists a p.o. p(r) — p such that

: log M (r, f)
2 0<o:=limsup ———"—"+<
® TR TV

If (2) holds for f, then we shall write f € [p(r), o].

For our purposes we need p.o.s having more regular asymptotic
behavior than is required by Valiron’s definition; nevertheless, they also
form a scale of growth of entire functions of finite order. Moreover, we
need analogues of p.o.s forming a scale of growth of entire functions of
infinite order in the same sense as in Valiron’s theorem. The smooth
majorants mentioned above are functions V' of the form (1).

For functions of finite order we use a subclass of the class of strong
p.o.s introduced by Levin [6, pages 39-41]. According to Levin’s
definition, a strong p.o. is a function p(r) € C?*(R.) representable
in the form

Y1 (logr) — 92(logr)

3 - > 1
(3) p(r)=p+ logr , r>rg>1,

where 0 < p < 0o, and 9; are concave functions of C?(R.) satisfying
conditions, (j =1,2):
lim ¥;(z) = oo; lim 9;(z)/z = 0;
Tr—»00

4 Tr—r00
@ 9 (x) = o(¥;(x)), x — oo.

For 0 < p < oo, we denote by A, the class of all strong p.o.s p(r)
satisfying the additional condition

(5) lim 97’ (z) = 0.

T—r0o0

For p = 0, we introduce more restrictions. Denote by Ag the class of
all strong p.o.s representable by

0 plr) =SB

) TZT0>]-7
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with 9 satisfying conditions:

(7) lim z1e?® = oo, lim =z '9(z) = 0;
T—00 2500

(8) 9" (x) + (¥ (2 ) 0, @ >mo>0;

9) 9"(z) = O ([9'(2)]*), z— .

We introduce (8) because in the case of zero order Levin’s condition
(4) is not sufficient for convexity of e”.

For studying entire functions f of zero order but not of too slow
growth, namely such that

1
(10) lim sup 0—2’ = 00,
r—oco log”r

we will also use the subclass Aj of Ay consisting of p(r) satisfying
additional conditions:

29" (z) + (9'(2))* >0, x>z >0;

(11) ~2,9(x) _

lim sup x 0.

T—r 00

Using arguments close to Levin’s proof [6, pages 39-41] for strong p.o.s,
it can be readily shown that the class A,, for 0 < p < oo, forms a scale
of growth of entire functions of order p in the same sense as in Valiron’s
theorem. For Aj this is true for functions of zero order satisfying (10),
see Lemma 5.1 below.

For the case of infinite order the following definition of p.o. naturally
arises from results of Earl and Hayman [2]. A function p(r) € C3(R;)
is called an infinite p.o. if it is representable in the form (6), with ¢ a
positive convex function satisfying conditions:

(12)  lim ¢'(z) =o00; 99 (z) =o([¢9'(2)), z— o0, j=2,3.

T—>00

We denote by A, the class of all infinite p.o.s.

The main result of [2] implies that A, forms a scale of growth
of entire functions of infinite order in the same sense as in Valiron’s
theorem.
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Definition 2.1. We say that a p.o. p(r) is admissible if

(13) pir)e |J A

0<p<oo
We say that a p.o. p(r) is strongly admissible if it is admissible and,
moreover,

(14) p(r) & Ao\ Ap.

Note that if a p.o. p(r) is admissible, then function V' defined by (1) is
convex in logr. Note also that admissible but not strongly admissible
p.o.s, i.e., p.o.s belonging to Ag\ A}, form a rather small class connected
with very slowly growing entire functions which do not satisfy condition
(10).

3. Statement of results. The following theorem was proved in [8]
when 0 < p < 0o and in [12] when p =0 or p = oco.

Theorem B. Let p(r) be an admissible p.o.
() If £ € [o(r), o], then

1
liminf R Vv’ > —.
iminf R(w, )V ([w]) >

Jw|— 00

(ii) There exists f € [p(r), 0] such that

lim inf R(w, f)V'(|lw]) < Z.
|w|—oc0 o

The bound in Theorem B (i) is worse than Macintyre’s bounds but
it is valid for all sufficiently large values of w. In addition, part (ii)
shows that this bound is sharp up to a constant factor and Macintyre’s
bounds cannot be valid without exceptional sets.

As it was mentioned in the introduction, in almost all applications of
the entire function theory, one deals with functions of regular growth,
i.e., functions for which the following limit exists:

. log M(r,f)
o= lim —=——"1°2,
r—»00 V(r)
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Therefore, the problem of lower estimates of R(w, f) for such functions
f arises. For functions of finite and positive order, this problem was
considered in [8].

Theorem C [8]. Let f € [p(r),0], 0 < p < 00, and let V be defined
by (1). Assume that

logM(r,f)=aV(r)+0(0(r)), r— oo,

where O(r) > 0 is a nondecreasing function such that

(1) 6(r)

o(V(r)), r — oo,

(15) lim inf w f(Jw))V(Jw]) > 0.

Taking into account that, for 0 < p < oo,
(16)  V(r) = erlosrtialiosn)=vzllosn) = v "(r) — (p+ 0(1))V (r),

it can be readily seen that Theorem C gives a better estimate than
Theorem B (i). Moreover, bound (15) depends on 6 and the smaller
6 is, the better the bound is. In particular, if 6(r) = O(1), r — oo,
then the bound (15) is just Macintyre’s bound in Theorem A (i) with
lim sup replaced by liminf and log M (Jw|, f) replaced by V(|w|). So,
generally speaking, for functions of “very regular growth” Macintyre’s
bound is valid without any exceptional set.

We obtain here more general results dealing not only with functions
of finite positive order, but also with functions of either zero or infinite
order. To state our results we need the following definition.

Definition 3.1. We say that an entire function f € [p(r),0] is a
function of (V, 0)-regular growth if

(17) log M(r, f) = oV (r) + O(6(r)),
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where 6 is a positive nondecreasing function on R, satisfying condi-
tions:

(18) (0) 8(r) = o(V(r)), r— oo,
(19) (ii) 0 (rexp{V (r)/(rV'(r))}) = O(8(r)), 1 — oo.
For each strongly admissible p.o. p(r) and each 6 satisfying (18)—(19),

there exist functions of (V,0)-regular growth. This is implied by the
following result of Clunie and Kévari [1, Theorem 4, page 19].

For any function ¢ representable in the form

(20) o(r) = /:d;(t) dlogt, 7 >mry>1,

where v is a positive increasing function satisfying condition

(21)  ¢(er) —4(r) > 1, for some c>1, and forall r >rg>1,
there exists an entire function f such that

(22) log M(r, f) = ¢(r) + O(1), r — oo.

It can readily be shown that, if p(r) is a strongly admissible p.o., then
condition (20)—(21) is satisfied by ¢(r) = V(r).

If p(r) is admissible but not strongly, i.e., belongs to Ag\Ajf, then
(22) with ¢(r) = V(r) is not valid in general, see Theorem 3.4 below.
Meanwhile, another result of [1, Theorem 2, page 13] implies existence
of entire f of (V,0)-regular growth under additional assumption 6(r) >
1/3logr, r > ry > 1. In this case, f does not satisfy the condition (10),
i.e., it is of very slow growth.

Our main result is the following theorem.

Theorem 3.1. Let p(r) be an admissible p.o., and let V be defined
by (1). If f is of (V,0)-regular growth. Then, for all sufficiently large
values of |w|, the following inequality holds

(23) R D) ) { C__ [v(u) }

|w] V() | 6(Jw])

where C is a positive constant.
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The following corollary is immediate.

Corollary 3.2. If the conditions of Theorem 3.1 are satisfied and,
moreover,

(24) lim inf rV"(r) 3((:)) >0,

then the following inequality holds

. , 0(|wl)
(25) mggR@hﬁVﬂM)‘de>0

We note that if p(r) is strongly admissible then (24) holds for § =1
and hence for any nondecreasing positive #. This is obvious when
p # 0. When p = 0, condition (11) implies that e?/2 is convex and
e?@n)/2 [z, — oo for some sequence z, — co. Since V(r) = e?(los7),
we have

rV'(r)

= 27‘(6‘9(10“)/2)/ —> 00, as T — oo.
Vi(r)

Therefore Corollary 3.2 implies

Corollary 3.3. If the conditions of Theorem 3.1 are satisfied and,
moreover, p(r) is a strongly admissible p.o., then (25) holds.

In the case when f is of finite and positive order condition (19) can be
written as 0(2r) = O(6(r)), r — oo, and using (16) the inequality (25)
can be written as (15). Thus, Theorem C is contained in Corollary 3.3.

We conjecture that admissibility of p(r) implies (24) and therefore
Corollary 3.3 remains true for all admissible (even nonstrongly) p.o.s
p(r). The reason is that entire functions of very slow growth cannot be
“of very regular growth” in the sense that the function 6 in (17) has
growth restrictions from below. This shows the following result which
is of independent interest.
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Theorem 3.4. Let p(r) be an admissible p.o., and let f be an entire
function satisfying condition

(26) log M(r, f) = o(log?r), 7 — oco.
If f is of (V, 0)-regular growth, then

(27) lim sup rV'(r) ‘6;(7") > 0.

r—00 (7')

For example, if V(r) = log” 7, 1 < 8 < 2, then there is no entire
function f of (V,6)-regular growth with 6(r) = o(log?> # ), r — oco.
For 8 = 2 there are functions of (V,8)-regular growth with § = 1, as
the result of [1] mentioned above shows.

To consider the question whether the bound (25) is improvable or
not, we need examples of entire functions f for which

(a) |log M(r, f) — oV (r)| is relatively small,
(b) maximum modulus points of f are extremely close to its zero set.

For part (a) we can use results of Clunie and Kévari [1] mentioned
above. Unfortunately, the method of these authors does not permit
locating the positions of zeros and therefore provide (b).

Nevertheless, when 6(r) is not of very slow growth and has some
special form, then we can prove that (25) is sharp.

Theorem 3.5. Let p(r) be a strongly admissible p.o., and let V be
defined by (1). Given 1/3 < a < 1, define
0(r) =V (r)(rV'(r))>~".
There ezists an entire function f of (V,0)-regular growth such that

. ' O(wl)
(28) 1lgr‘grgR(w,f)V(lwl) V() <.

4. Proof of Theorem 3.1 (Case of infinite order). Let p(r) be
a proximate order belonging to A.,. We remind the reader that in this



592 IOSSIF OSTROVSKII AND ADEM ERSIN UREYEN

case V(r) = rP(") = ¢?(1°87) where 9(r) is a positive convex function
satisfying condition (12). (We won’t need the condition about the third
derivative of 9, we will require it only when we prove Theorem 3.5.)

Note that since the function 7(g) := gexp{—1/%(logg)} is an in-
creasing function of g, there exists an inverse function such that

g(r) = rexp{1/9'(log g(r))}-

The following properties are easy to verify, see [12], and we omit their
proofs:

(29) g(r) >r and Thj& @ =1,
¥ (logr)

(50) A Siflog o(r))

(31) V‘(/g(sg)) <e

Lemma 4.1. There exists a positive constant D such that if
(32) |[R—r| <g(r) -
then

(33) 0<V(R) - V(r)— (R r)V'(r) < D<§ - 1) 92(log 1)V (r).

Proof. We assume r < R. Since by (12), r2V"(r) = 9%(logr)V(r)
(1 + o(1)), for some ¢ between r and R we have

V(R) = V(r) ~ (R-)V'(r) = S (R~ r)V"(0)
< %(% - 1) 92 (log R)V(R)(1 + o(1)).
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Using (30) and (31), we obtain (33). When r > R, reasoning as before,
we find

r

V(R)—V(r)—(R—r)V'(r) < 1<R}g > 92 (log )V (r)(1 + o(1)).

-2
Because of (29), R/r — 1 as r — co. Thus, we obtain (33). o

We define the function K(r, f) as

d
K(T‘,f) = T%IOgM(va)

= log M
dlogr %8 (r, f),

where, for definiteness, we take the right derivative. Note that K(r, f)
is nonnegative and nondecreasing.

Lemma 4.2. If f is of (V,0)-regular growth, then

K(r, f) = o' (log 1)V (r) + O (9 (log r)y/8(r)V (1)) , 7 — ox.

Proof. Let

1 6(r)
' (logg(r)) || V(r)

We set R :=r(1+4d(r)). By condition (19), for sufficiently large values
of r and for some constant E;, we have

(34) 5(r) =

(35) log M(R, f) —log M(r, f)] — [V (R) — aV(r)] ‘ < E6(r).

Since

R
log M(R, f) — log M (r, f) :/ @dt > K(r,f)logg,

we obtain

K(r, f) < Tog(R/7) [0V (R) — oV (r) + E.6(r)].
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Because condition (32) is satisfied when r is sufficiently large, using
Lemma 4.1 we find that

K(r,f) < m{aé(r)ﬁ’(logT)V(r) + 0O (1) (log 1)V (1)
+ Ele(T‘)}
Thus,
(36)

K(r, f) < ad' (logr)V(r) + O (6(r)9*(logr)V(r)) + O (8(r) /5(r))
(50 ¥ (logr)V(r) + O (ﬁ'(log r) G(T)V(r)) , T — 00.
For the reverse inequality, we set

s:=r(l—4(r)),

where §(r) is defined in (34). We have
tog M (r,7) —tog (s, ) = [ 0T e < K, 108
s s

Using inequality similar to (35), for sufficiently large values of r and
for some constant Fs, we find

1
K(r, f) > W

Using Lemma 4.1 like previously, we obtain (36) with reversed inequal-
ity. O

[cV(r) —oV(s) — Ea0(r)].

We now prove Theorem 3.1 for p(r) € Ax. Let w be a maximum
modulus point. We define, see [7, 8],

) i W) k(ulp)z
7 () = L0 ,
and
(38) P(h,w) := max |Qy,(2)].

|z|<h
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If we set |w| = r and Re z = ¢, then
t — p—
(39) log P(h,w) < _max (log M(re’, f) —log M(r, f) — K(r, f)t)
We have
log M(re', f) —log M(r, f) — tK(r, f)

-/ UK f) - K )]

u

= [ ) - o9 gV (w)] - (K, )~ o9 (g )V ()]

+ U/Te [¢ (log u)V (u) — @' (log )V ()] dZu

Using Lemma 4.2, for some constant F; we obtain

(40)
'I"et du
< ! —
log P(h,w) < _max ‘/T F1¥' (logu)y/V (u)b(u) "
'I"et du
! —_—
+ max | / Fd(10g r) 7 (r)8()
£y _ !
+o _max ‘V(re )=V (r) —td(log r)V(r)‘
=: 51+ Sy +0955.
We set

1
9'(log g(r))/V(r)6(r)

Let us estimate S1,S52 and S3. Note that when r is large enough we
have ref~ < g(r). Hence, using (31) and (19) we obtain

S1 < Fih, ¥ (logreh™)/V (reh)8(retr) = O(1), 7 — oco.
Evidently,

Sy = Fyh, 9 (logr)\/V(r)f(r) = O(1), r — oo.
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Finally, since

S; = max |V(re') — V(r) — (e — )¢ (logr)V(r)

—hp<t<h,

+ (et —t — 1) (log )V (r)

?

using Lemma 4.1 we find
< t _ 2.9/2
S3 < _max {D(e" — 1)*9"*(logr)V(r)
+le" —t — 1| (log )V (r)}
< Bh29?(logr)V(r) = O(1), 7 — oo.

Hence,
(41) log P(hy,w) = O(1), r — oo.

The following lemma is implicitly contained in [7]. For the reader’s
convenience we repeat the proof here. Note that this lemma is appli-
cable to an arbitrary entire function f Z 0, without any additional
assumption.

Lemma 4.3. Let f # 0 be an entire function and let w be its
arbitrary mazimum modulus point. Define P(h,w) by (37) and (38).
The following inequality holds:

Rlw. 1) 2 ol (1= expl= i) )

Proof. We write P := P(h,w). Let

P(Qu(z) - 1)

(2= g

Evidently, |7, (2)] < 1 when |z| < h and n,,(0) = 0. Using Schwarz’s
lemma we find that |9, (z)| < |z|/h when |z| < h. Hence,

Plow(z) -1 < AP -0, < Bp2 141006 1), <
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This implies

[2l/h(P? — 1)

(42 2u(:) -1 < T,

2| < h.

When |z| < h/P, righthand side of (42) is less than 1. Therefore,
Qu(z) #0 for |z| <h/P.

Hence,
f(we*) #0 for |z| <h/P.

Thus,

a

. . h
Rlu,f) 2 min = we'| =ul (1 _ exp(—m>).

Using Lemma 4.3, (41) and (30), we obtain (23).

5. Proof of Theorem 3.1 (Case of zero order). The following
lemma can be viewed as a supplement to Levin’s result related to strong
proximate order.

Lemma 5.1. (i) Every transcendental entire function f of order zero
has a p.o. p(r) € Ap.

(ii) Every transcendental entire function f of order zero satisfying
(10) has a p.o. p(r) € Aj.

Proof of (i). We follow the idea of Levin’s proof [6, page 39]. We
write z = logr, y = ¢(x), where ¢(x) = loglog M (e*, f). Since

p(z)

lim sup —— =0,
T—00 k4

for arbitrary ¢ > 0, the curve y = @(z) lies below the line y = ez,
for sufficiently large values of x. Consider the smallest convex domain
containing all the points of the curve y = ¢(z) and the positive z-axis.
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Let us denote by y = 9(z) the boundary of this domain. It is easy to
see that 1 has the following properties:

(a) () is concave.

(b) lim, o ¥(z)/x = 0.
(©) p(z) < 9(z).

(d) lim,_, o, e¥®) /2 = oco.
(

e) At extreme points, i.e., points not lying inside any line segment
of the curve y = ¢(x), one has p(z) = ¥(z).

(f) There exists a sequence of extreme points tending to infinity.

We now construct 9 piece by piece by joining together some smooth
majorants of 1.

Let (Ip) be a line of support of ¢. On the line (Iy) take a point (xo, yo)
and consider the curve

(43) ()s y=cf +i(@—m0) +log (v -z + ), >,
that is tangent to the line (ly) at the point (xg,yo). Then
1
Cél) = 4/ a’ C(()l) =Y — log 7/ 0’
Yo —C1 Yo — G
where y; is the slope of the line (Ip). The parameter cgl) will initially
be chosen to be y,/2. We have

_ 1 1
yl_cl + (1) Yy - (1) 29
T —To+Cy (m—xo—i-cz)

so that 3" + y'2 > 0 when = > x.

If the abscissa xg is sufficiently large, then that part of the curve (I;)
lying to the right of z¢ is above the curve y = ¥ (z). Choosing (/1) in
this manner and then decreasing cgl) while keeping the point (o, yo)

fixed, we can find cgl) > 0 such that this curve touches the curve

y = 9¥(z) from above. To see this, consider the continuous function

g(cgl), x) = c((]l) + cgl)(x — x9) + log (m — 0+ cél)> —Y(z),

0< cgl) <wy,/2, > xp.
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If cgl) > 0, then g(cgl),m) — 00 as £ — 00, so that we can define

m(cV) == min g(c{”, ), 0< i <yp/2.

r>T0

Clearly, m is continuous and m(y;/2) > 0. Also, because of (d), for
arbitrary large values of M, we have

(44) ¥(z) > M +logx, when zx is large enough.

ThU.S, hmw—)oo g(oa 117) = —0 and, by Continuity of g, 1imc(1)_)0 m(cgl)) =
1

—00. Thus, there exists cgl), 0 < cgl) < y4/2, such that m(cgl)) =0
and therefore the curve (I;) touches ¢ at some point (o, yp). Since
(I1) contains no line segments, the touching point (Zg, Jo) must be an
extreme point of ¥. This finishes the first step of the construction.

For the second step we initially set 052) = cgl) /2 and choose a point

T1,Y1), £1 > xg + 1, on (I1) far enough so that the part of the curve
(T1,y1), ) g p
lo :y:c(2)+0(2)w—w1 + log a:—m1+c(2) , & 2>T1,
0 1 2

(this curve is tangent to the curve (I;) at the point (z1,y1)), lying to
the right of this point, lies above the curve y = ¥ (z). Then, without
changing the point (x1,y;), we decrease c§2) so that (I3) touches the
curve 9. As in the first step, we have c§2) > 0. Next we set 653) = cgz)/Q
and take a point (z2,¥2), z2 > x1 + 1, on (I3), and form a curve (I3),
etc.

Now we form ¢ from the segments of the curves (lp), (l1),... taken
between the points of contact, i.e., 9(z) = l;(z) when z; ; < z < zj,
j >1,and ¥(z) = lp(z) when 0 < z < zg. Clearly, ¢ satisfies (7). Also
¥(z) > ¥(z), with equality holding for a sequence of extreme points of
¥ tending to infinity. Using (c¢) and (e) we deduce that

log M(r, f)

eV(log ) =1

lim sup
r—00

Evidently, ¥(x) is twice continuously differentiable and satisfies (8) and
(9) except at the contact points x;. It is easy to see that we can smooth
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¥ in such a way that all the properties mentioned above are preserved.
This completes the proof of part (i).

Proof of (ii). The proof is similar to part (i) with a few modifications
listed below. We change property (d) mentioned in the proof of part (i)
with

(d') limsup,_, ., €¥®) /2% = co. We change (43) with

(1)

(1) iy =)+l (@~ w0) + 210g (2~ wo +§), &> a0,

so that 209" (z) + 9'?(x) > 0. We change (43) with

zn) > M +2logx,, for some sequence . o

We proceed to prove Theorem 3.1 for the case p(r) € Ag. We remind
that in this case V(r) = r?(") = ¢%(°87) where 9 satisfies (7), (8) and
(9). (At this point we don’t need condition (9); we will require it only
when we prove Theorem 3.4.)

The following lemma is an analogue of Lemma 4.1.

Lemma 5.2. There exists a positive constant D not dependent on r
such that if

R 1
45 loge—| < ——
(45) 8= 49'(logr)’
then
(46)

V(R) — V(r) — log(R/r)¥ (log T)V(T‘)‘ < Dlog?(R/r)9"?(logr)V (7).

Proof. Assume first that » < R. Note that (8) implies

(47) 0" ()] < 0" (),
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when « is large enough. We have, for some ¢ between logr and log R,
(48)

YI(log R) — ¥(logr) — log(R/r)¥ (logr)| = %log2(R/r)\z9”(c)|

L log(R/r)9™ (c)

<
-2
< %log2(R/r)19'2(logr).
Since (45) implies
1
(49) 9(log R) — #(logr) < log(R/r)¥ (logr) < ,

there exists a positive constant D; such that
(50) |e?UesR)=0(logr) 7 _ (¥(log R) — I(log r))‘
2
< Dy (9(1og R) — (9(log)) )
< Dy log?(R/r)0"*(log ).

Combining (48) and (50) we find
eVlog B)=d(logm) _ 1 _ 1o0(R/r)¢ (log r)‘ < Dylog?(R/7)¥"*(logr).

Noting that V(r) = €”(1°87) we obtain (46).

Now we assume that » > R and (45) is satisfied. Since

r(h) := hexp{1/(29'(logh))}

is an increasing function of h, there exists an inverse function h(r) such
that

r 1
h(r) ~ 20'(logh(r))’

(51) h(r) <r and log

We will need the following property:

(52) ¥ (log h(r)) < 29'(logr).
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To see this, note that for some ¢ between log h(r) and logr, we have

¥'(logh(r)) — 0'(logr) _ log(r/h(r))[9"(c)| 1) __[9"(c)] 1)

1
¥ (log h(r)) ¥ (log h(r)) 29"2(log h(r)) 2’

The inequality

1 1
< <
~ 49'(logr) ~— 29 (log h(r))’

and (51) implies that h(r) < R < r. Therefore, using (52) we find
(53) ¥ (log R) < 29'(log ).

log(r/R)

Thus, we have
(54)

Y(log R) — ¥(logr) — log(R/r)¥ (logr)| < % log?(R/r)9"?(log R)
< 2log?(R/r)¥"*(log ).
Since

(

19(1og R) — 0(logr)]| < log(r/R)(log R) < 2log(r/ )9 (logr) <

1
57
there exists a positive constant D3 such that

(55)

e?os M)=0(1oxm) 1 — (y(log R) — 9(logr) ) \ < Dy log?(R/r)0" (log ).

Using (54) and (55), we see that (46) is also valid in the case R < r. O
The following result is a counterpart of Lemma 4.2.

Lemma 5.3. If f is of (V,0)-regular growth, then

K(r, f) = o0 (log 1)V (r) + O (9 (log 1)y V(1)8(r)) , 7 — ox.

Proof. Let R be such that

R 1 6(r)
(56) 08 " = Gillog )\ V()
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Using similar arguments as we did in the proof of Lemma 4.2, for
sufficiently large values of r, we obtain
1
K,<—(VR—V X )

1) < gty (V) = oV () + Eablr)

where E; is some constant. Applying Lemma 5.2 we find
1
K(r, f) < 7< log(R/r)9' (log 1)V
(1) < gty (1B B/ o ) V()

+ Dlog?(R/r)9"2(log )V (r) + E16(r) )
Thus,
K(r, f) < o9’ (logr)V(r) + O <19'(10gr) V(T)H(T)) T oo,

For the reverse inequality, we set

r 1 6(r)
log — i= ———4 | —%,
s V¥(logr)\ V(r)
and proceed like we did in the proof of Lemma 4.2. O

The remaining part of the proof is similar to the case p(r) € Awo.
With w as a maximum modulus point, ©,, and P(h,w) as defined in
(37) and (38) for some constant F', we have the following analogue of
(40)

T‘Et du

< ! —

log P(h,w) < _max, /T F¥' (log u)y/V(u)0(u) "
+ " P o) V) 2

_max : ogr o) =,

6 g
+o 7ingaéh ‘V(re ) —V(r) —td (logr)V(r)

= Tl + T2 + 0T3.

We set
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Note that h, < 1/(4¢ (logr)) when r is sufficiently large. Thus, using
(19), (49) and (53) we find

T, < Fh, ¥ (log(re="))1/V (ret)8(rehr) = O(1), r — oo.
Obviously, 75 = O(1). Finally, using Lemma 5.2, we find
T3 < DR29?(logr)V(r) = O(1), r — co.

Thus, log P(h,w) = O(1) as r — co. Applying Lemma 5.3 we obtain
(23). This completes the proof of Theorem 3.1. o

6. Proof of Theorem 3.4. First of all we observe that it suffices to
prove Theorem 3.4 for functions f with nonnegative Taylor coefficients.
We use the following result of Erdés and Kovari:

Theorem [3]. Let f be an entire function. There exists an entire
function f with nonnegative Taylor coefficients such that

By this theorem, log M (r, f) = log M (r, f) + O(1), r — oo, therefore
(V,0)-regular growth of f implies (V,0)-regular growth of f. Further,
we assume that f has nonnegative Taylor coefficients.

It will be convenient to change variables to r — e, z > 0, and denote
(57)

The point of the proof of Theorem 3.4 is the assertion (ii) of the
following Lemma 6.1. This assertion is a slight modification of a result
by Hayman [5].

Lemma 6.1. Let f be a transcendental entire function with nonneg-
ative Taylor coefficients.
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(i) The equations

klag) =k+e, k(bp)=k+1—c¢;

(58)
k=ko,ko+1,ky+2,...

where € € (0,1/2), ko = [k(0)]+1, uniquely determine positive numbers
(59)
ako<bk0<ako+1<bko+1<"'<ak<bk<'-'—>00, as k — oo.

(ii) The inequality holds

(logh(z))" > e for €A, := U [a, b]-
ke=ko

Proof. (i) Since f is transcendental, the function s strictly increases
to oo. Therefore, the numbers a; and by are uniquely determined by
(58), and (59) holds.

(ii) We have

h(z) = f(e®) = dpe®, dp >0, k=0,1,2,....
k=0

The following formula belongs to Rosenbloom [9]:

& ek:;z:
(60) (og h(e))" = S (k= n(a)* G
k=0
Its proof is a direct calculation:
w(2)  (log h(z)) = @) _ g~ kdie™
(z) = (log h(x)) W) ~ 2= h(z)
y W) (R (@) o= ke Nk diet?
s’ =5~ (557 ) =2 5 WL
kx
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In order to derive the assertion (ii) from (60), it suffices to observe that
for x € A, we have

Corollary 6.2. Let f satisfy conditions of Lemma 6.1 and be of
(V,0)-regular growth. Then there exists a positive constant C such that
(61)

Ct(bg) > %GZ(bk —ar)? + k(ag)(br — ar) — o(v(bg) —v(ag)), k > ko.

Proof. By the Taylor formula, we have for some ¢ € (ax, bg),

log h(bx) — log h(ar) = k(ak)(br — ag) + %(log h(ck))” (b — ax)?.
Using Lemma 6.1, we get
(62) log h(bg) — log h(ak) > k(ak)(br — ax) + %EQ(bk —ax)?.
Since f is of (V,0)-regular growth we have (in notations (57))
(63) log h(z) = ov(z) + O(t(z)), x — oo,
and therefore
log h(by) — log h(ag) < ov(by) — ov(ag) + Ct(by), k > ko,

where C' is a positive constant. Juxtaposing with (62), we get
(61). u]

Now we assume that the assertion of Theorem 3.4 is wrong, that is,

. 7
Jim rV'(r) V(r)
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Using notations (57), we can rewrite this in the form

(64) lim v'(z)y/ —=% =0.

)

The proof that (64) leads to a contradiction will be divided into several
steps.

Step 1. We show that

(65) lim v"(z) = 0.

r—> 00
By the definition of admissible p.o., we have the representation
(66) v(z) = e¥@),

where ¥ is a concave function. Therefore,

(67)  v"(x) = (9"(2) +9"(2)) v(2) < I (2)v(x) =

Since ¢(z) is a positive nondecreasing function, (64) implies that
v'"3(z)/v(x) = 0, as z — oo.

Step 2. We show that

(68) lim (b — ay) = oo.

k—o0

By Lemma 5.3 we have

ﬁ(m):av'(m)—i-O(v'(m) %) z = 0,

whence by (64),

(69) k(z) = ov'(z) +o(1), =z — oo.
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Therefore,

1 —2e = k(bx) — k(ag) = ov'(by) — ov'(ak) + o(1)

(70) = o0 (ck)(bx — ar) +o(1), Kk — oo,

where ¢, € (ag,br). Using (65), we get (68).

Step 3. We show that

(v'(br))? 1-2¢

(7].) (bk — ak) Z

+o0(1), k— oo.

Indeed, we have from (67) and (70) that

1-2¢+0(1) _ 1—-2:+0(1)

O'(bk — ak) = ’U”(Ck) > ’Ulz(Ck) U(Ck)
= % [v(br) — V' (br) (br — cx)]
v(b) 1 2 +o0(1)
> Py L) - gy (e
_ 1,)2(bk) (1—-2e+o0(1)) +o(bp —ag), k— oco.
v (bk)

Hence, (71) follows immediately.

Step 4. We show that
(72)  ov(be) — ov(ak) — kar)(bx — ak) = o((br. — ax)?), k — 0.
Using (69), we see that for some ¢ € (ax,br), ¢, € (ak,br)

ov(by) — ov(ag) — k(ak)(br — ax)
= ov'(ck) (b, — ax) — (ov'(ax) + o(1))(bk — ax)
= o(v'(ck) — v*(ak)) (b — ak) + o(bx — ax)
= o(cp — ag)v" (c),) (b — ag) + o(bg — ag,).

Taking into account (65) and (68), we obtain (72).
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Step 5. Now we will complete the proof of Theorem 3.4. Taking into
account (72), we derive from (61) that

Cit(by) > <%a2 + 0(1)> (b — ax)?, k- oo.

Hence, by (71), we obtain

v'2(by) 1/1 v'2(by)
v(bk’; tbr) > (552 + 0(1)) U(bk’g (b — ax)?
> é(%sz + 0(1)) <1 ;26 + 0(1)) (b —ak), k — oc.

Using (68), we obtain a contradiction to (64).

7. Proof of Theorem 3.5. We will prove Theorem 3.5 when
p(r) € A,, 0 < p < oo. The cases p(r) € A§ and p(r) € Ax can
be dealt with in a similar way, therefore we only outline corresponding
proofs.

Given 1/3 < a < 1, we set

1+«

73 = .
(73) g=1t0
Note that 8 > 2. We define
(74) P () == eV (7).

It is easy to see that v(r) is an increasing function when r is large
enough. By changing V(r) on a finite interval, we may assume that
v(r) increases for all » > 0. Let

(75) A=v!

be the inverse function of v. We set

0 =11 (1 <A(zk)>[kﬁ]>'

k=1
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(i) We first show that f satisfies (28). This is rather simple. Indeed,
since each point of the positive ray is a maximum modulus point, we
have

ROA(K), f) < 2\(k) sin %.
Therefore,
lim inf kﬁw <
Noting that
(77) KL = 0L (A(K)) = MRV (A(K)),

we obtain the desired result.

(ii) Now we will prove that f is of (V,0)-regular growth. This is
much more cumbersome. We have

log M(r, f) = glog (1 + (ﬁ)wﬂlﬁ)
. glog (ﬁ)w . kilog <1 N ()\(rk)> Uc‘ﬁ)
3 (i (1))

k=n-+1

=: 51+ S+ 53,
A(n) <r < A(n+1).

We will show that Sz = O(1) and S3 = O(1). For this we will first find
an upper bound for (A(k)/A(k + 1))*. Since (4) implies

(79) V) =" (L o),

we find

_ [ vAk+1) (_p
_/A(k) V(0 < Mk + 1) = Ak TS < +o(1)>.
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Therefore,
)\(;\c(—]:)l) S 14 1
(k+1) <ﬁ + 0(1)>
Thus,
- AME+1) _ B+1
> .
(80) hkn_1>1£fklog O

We choose C; and C3 such that

Ci=0C2 and e v <Oy <Cy <1
Because of (80), there exists ko such that

k
(81) <%> < Cp; when k> kq.

Let n > ko. We have (recall that 8 > 2)

52_§1og<1+<@>[kﬁ]>gk: (%)k
" k
:0(1)+k:kzo+1 (%) '

We divide the interval [ky + 1,n] into two parts. There exists n’
(depending on n) such that A\(k)/A(n) < Cy when kg +1 < k < n’
and A\(k)/A(n) > C5 when n’ < k < n. We have

s<om+ 3 (A9, 3 (AN e

k=n’+1

Evidently,
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We use backward induction to show that the following inequality holds:

MON ek
— <7 1<k<n-1.
() e weasksn

The base of induction holds because of (81). We assume

(M

n—j
<ci — (' )
) ) <04, j<n—(n"+1)

Since n —j > n' 4+ 1 we have A(n —j)/A(n) > Cs. Using (81) we obtain

Therefore,

Thus, S, = O(1),

Using similar arguments it is easy to show that, when n > ky,

)‘(n+1) k—m—1
— 7 < > .
( NG > Cy , k>n+2
Hence,
0o [kﬁ} 0o 0o
T A(n+1)
- 2 1°g<”<w~c>> )S 2 <( ) <2
k=n+1 k=n+1 k=0

Now, we are going to show that

_ V()
1= 5

(VE(r)), r—o00,  An)<r<An+1).
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‘We have

Let

By Euler-Maclaurin sum formula, we have
(82)
n n 1
Ur =Y w®) = [ w@dt+ 5 () + (1)
k=1 1

+ g ) - @) - [T a2

where B(t) is the second Bernoulli polynomial. We first evaluate
1 u1(t) dt. We have

n nﬁ+1 n
(83) / w(t)dt = " logr — / 7 log A(¢) dt + O(log 7).
1 1

B+1
Further,
(84)
n A(n)
/ t#log \(t) dt = / VP (s)log s dv(s)
1 A(L)
() logs M 1 /w V)
=—"2 - s
g+1 A1) p+1 A(1) &
p+1
_n logA(n)  V(A(n)) +0(1).
B+1 B+1

Hence, using (83) and (84) we find
(55) N § 1
/1 w(t)dt = 5 log A(Tn) + Bi’“)l - (V) ~ V)
+ O(logr).
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We will need the following two properties (recall that A(n) < r <
A(n +1)):

(86) /\(Tn) 1= 0<%>, n — o,
and
(87) V(r) —p as n— oo.

nB+1

To see (86) first note that A(n) < r < A(n+1) implies n = [v(r)]. Also,
using (79) we find that

(88) ’X((:)) :% (ﬂ:l +0(1)>.
Therefore,
rAm) 1l L (B M)
. = /[U(T)])\(t)dt— /[u(r)}< 5 + (1)) ; dt
_(B+D/p+o)r

We have (87) since
nfH = VP (A(n)) <VPHH(r) = V() (p + 0(1))
<P Am+1)) = (n+ 1)

We now estimate the term V(r) — V(A(n)) that appeared in (85).
Because

r2V"(r) = (* — p+ o())V(r),

we see that, for some ¢ between A(n) and r,

(89) V(r) =V(An)) = (r = A(n))V'(A(n))
1
:§<

>

3

\_/
€
<
=
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Thus, using (77), (85) and (89) we obtain
(90)

[roou= 75551 (1) )]+ 78
e
= Lowe).

We now estimate the remaining terms that appear on the righthand
side of (82). It is easy to see that (4)—(5) implies

(91) (log A1) ) = o(ti) j=12.
Therefore, for j = 1,2, we have
(92) ,
D DB+ g5 1 (1) sy0 G-D)
uy () = F(,B—j+l)t 7 log 0 > ;) () Qog A(®)Y

=0

FB+1) 5 r =i
= mtﬂ log@ +O(tP9).

Hence, using (86) we find

(93) D (n) = 0nP~i71) 4 0(nP~7) = 0(n’~9), j=1,2.
Also,
(94) uy(n) = nP log )\(Tn) =0(nf1).

Finally, using (92) we find

(95) ‘/lnu’l’(t)wdt

ol Ao
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Thus, using (82), (90), (93)—(95), we obtain

V(r)
B+1

U, =

(VE(r)).

Now we are going to estimate U,. Let

Then

S ZUQ(k) = /n UQ(t) dt + % (Ug(n) + UQ(I))
(96) k=1 '

+ [Cusent
where y(t) =t — [t] — 1/2. We have

/1" ()dt—tlog

(97) 9 log

S
/(Ll ))dt+0(logr)

>\ p

(86)

9 0(n).
Thus, using (86), (91), (96) and (97), we obtain
Uy =0(n) =00’ 1) =0 (V(r)).
This completes the proof of Theorem 3.5 for the case p(r) € A,

0<p<oo.

When p(r) is in A or Aj we define v, A and f as in (74)—(76). In
the case p(r) € A to prove that f is of (V, 6)-regular growth we first
write a formula similar to (78) and then show that

7l

+
= e )
o(1).
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In the estimation of S; we again use Euler-Maclaurin sum formula (82),
but now it is necessary to change (91) with

(98) (log A())D) = O(W)’ i=1,2,

which is a consequence of (12).

In the case p(r) € A} estimate (98) still holds because of (8)—(9).
Using this we can show that

_ Vi) Ve(r) _ B
S = B+1 + O<W>, Sy = 0(1), S3 = 0(1) o.
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