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FOURTH ORDER OPERATORS WITH
GENERAL WENTZELL BOUNDARY CONDITIONS

ANGELO FAVINI, GISELE RUIZ GOLDSTEIN,
JEROME A. GOLDSTEIN AND SILVIA ROMANELLI

ABSTRACT. Let Q be a bounded subset of RN with
smooth boundary 99 in C%, a € C4(Q) with @ > 0 in Q, and
let A be the fourth order operator defined by Au := A(aAu),
respectively Au := B%u, where Bu := V-(aVu)), with general
Wentzell boundary condition of the type

d(alAu)

Au+p o

+yu=0 on 01,

O(Bu)
on

<respectively Au+ B +yu =0 on 89) .

We prove that, under additional boundary conditions, if 3,v €
C3te(0Q), B > 0, then the realization of the operator A on
a suitable Hilbert space of L2 type, with a suitable weight on
01, is essentially self-adjoint and bounded below.

0. Introduction. Consider problems involving the Laplacian A on
a smooth bounded domain Q in R". The usual boundary conditions
are of Robin type, i.e.,

Oou

where (8(z),7(z)) is a nonzero vector for each € 02, the boundary
of 2, and n is the unit outer normal to 9Q. But by working in C'(£2)
rather than in LP(Q) one can use Wentzell boundary conditions of the
form

aAu+,3§—Z+7u:0,

where (a(z), B(z),v()) is a nonzero vector in R? for each x in Q. The
resolvent equation Au — Au = h on the boundary cannot distinguish
between u = 0 on 02 and Au = 0 on 92 when h = 0 on 9€2; such
functions h are dense in L%(2) but not in C(£2). In the previous work
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[6] we showed how to remedy this, replacing the ambient base space
L3(Q2) by H = L%*(Q) & L?(09Q,w dS) with a suitable weight function w
depending naturally on the boundary conditions.

In [6] we showed how to solve linear parabolic equations of the form
du/dt = Au (with A a second order elliptic operator) with boundary
conditions of the form aAu + S(0u/0n) + yu = 0 on 0. Here B is
positive and w = 1/8. In this paper we find the corresponding results
for a fourth order operator A of the type Au := A(aAu), respectively
Au := B?u, where Bu := V - (aVu)) with general Wentzell boundary
condition

Au + 66((1Au) +yu =0 on 01,
on
B
<respective1y Au + Ba(anu) +9u =0 on 89).

Indeed, we obtain essential self-adjointness and semi-boundedness of A
on H, when a suitable additional boundary condition is included in the
domain of A.

A classification of general boundary conditions for symmetry, semi-
boundedness and quasiaccretivity of the operator Au = u"” will be
studied in the paper [7].

1. The operator A(aA). Here we deal with the operator Au :=
A(aAu), where we assume that 2 is an open bounded subset of RV
with C* boundary and such that the following assumptions hold:

(A1) a € C*(Q), a(x) > 0 in ©Q,

(A2) B € C3t¢(0Q), B(z) > 0 for z € 9Q, v € C3t(0Q) (here
C**¢(A) denotes, as usual, the space of functions in C*(A) whose kth
derivatives are Holder continuous on A with exponent ¢ € (0, 1)),

(A3) H := L*(Q,dz)® L?*(0%, (dS/B)) = X, the completion of C(f)
with respect to the norm || - || x, associated to the inner product

— —— dS
(u,v)x, .:/Qu(m)v(x)dx—i-/mu(x)v(x)w.

Note that if u € H'(2), then u has a trace v € H'/?(99), and u can
be identified with (u,v) € H.
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In addition, we consider the following boundary conditions
(BC)1 A(aAu)(z) + B(z)(0(aAu))/In(x) + y(z)u(z) = 0 on 9Q,
(BC)3 T'1, Ty are open subsets of 92, 9Q =T UT,, Ty NIy = @, each

I\ Ty, i =1,2, is an S-null subset of 02, and
Au=0 on I'y
(Ou/On) =0 on Ds.

Then the following result holds.

Theorem 1.1. Under the assumptions (Al)—(A3), the operator A
with domain
D(A):={uec H*Q)NC*(QuUT,UTy): (BC); and (BC)y hold}
is essentially self-adjoint on H.
Proof. Let u € D(A), v € H>(Q) N C?(QUT; UT,) and evaluate,
using the divergence theorem,
— _ds
(Au,v)x, = | A(aAu)vdzr + A(aAu)v?
Q a

Q
= —/ V(aAu)-deJr/ AaAu) g
Q oo  On

_ds
+ /{m A(aAu)vF

(1.1)

(by (BC)1) = —/ V(aAu) - Vo dz —/ 'yuiﬁ
Q o0 B
0v ds
= | aAulAvdz — / alAu)—dS — UV —
/Q 09( ) on o ! B
(by (BC)2) = / aAuAvdz f/ (aAu)@de/ ’yuﬁﬁ.
Q I on o9 B

If also v € D(A), this becomes

(Au,v)x, :/Au(aAﬁ) dm—/ 'yuﬁﬁ
Q o0 B

= (u, Av)x,
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by (BC)2. Hence, (A, D(A)) is symmetric. To prove that (A4, D(A)) is
essentially self-adjoint, it suffices to show that the range of A\I + A is
dense for sufficiently large (real) A. To that end, let h be in the dense
set C41¢(Q), A > 0, and consider

(1.2) Au+Au=h in Q.

We seek a solution u € D(A) which satisfies (1.2). From (BC); and
(1.2), it follows that

0(alAu)

(1.3) B,

+A—7)u=h on 0.

We begin by finding a weak solution u of (1.2). Let v € H?(Q)NC?*(QU
I'; UT5); multiply (1.2) by 7 and integrate to get

)\/uﬁdxﬁ-/ A(aAu)Edw:/hEda:.
Q Q Q

Using the divergence theorem gives

O(alAu) 6§

on B

)\/ wu dr — / V(aAu) - Vodz + B

(1.4) Q Q o0

= [ hvdz.
Q

By using (1.3), (1.4) becomes

A/uﬁdw—/ V(aAu)-V?dac—i—/ ()x—'y)qwﬁ
Q Q 00 B

d
= / hv dx + / hE—S.
Q oo B
Again by the divergence theorem together with (BC)2, we obtain

A/uﬁdm%—/aAuAﬁdm—/ aAu@dS—i—/ ()\—'y)uﬁﬁ
Q Q I on o0 B

= <h,’U>X2.
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This reduces to
_ _ _ds
A wvdr+ | AulATadz+ (A —y)uv—
(1.5) Q Q o) B
= <h7 U>X2

449

if Ou/On = 0 on I';. Now suppose A > 0, A > max,ecan v(z) and

v € Dr,, where

(1.6) Dr, := {wECQ(QUFg)ﬂHZ(Q): g—::OOH Fg}.

To get the desired weak solution, we need to apply the Lax-Milgram
lemma. This is slightly complicated, so we recall how it is done in an

easier case.

As before, let Q be a smooth bounded domain in R" and let I'1,T'»

be as in (BC)3. Let

D,(A)

= {uEHQ(Q)ﬁCQ(QUIHUFz): u=0onT}, g—Z:OOHFZ}

and

D:={ve H*(Q)NC(QUT, UTy): v=0o0nT}.

For u € D,(A),v € D, and Au — Au = h € C(Q), we have

(Au — Au,v)12(0) = (h, V) L2(0),

whence 5
A/uﬁdw—i—/Vu-Vﬁdm—/ 5ds
Q Q a0 On
:/hﬁdac.
Q
But 5 9 5
U5 ds = —“ws+/ 2U5dS =0
oQ aTL T, 877/ T, n

since Ou/On =0 on 'y and v = 0 on I'y. Then

(1.7) /\/uﬁd:v—i—/VuVEdw:/hidx
Q Q Q
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holds for all u € D, (A) and for all v in the closure V of D in H*(£);
in the above set, the trace of v on 9N is a well-defined function. Under
the H'(Q2) norm, V is a Hilbert space, indeed, a closed subspace of
H(Q) satisfying

H{(Q) CcV c HY(Q).

V = H'(Q) when A has the Neumann boundary condition (T'; = &,
Iy = 99), and V = H}(Q) when A has the Dirichlet boundary
condition (T'; = 99Q, I'y = &). Rewrite (1.7) as

L(u,v) = F(v), u,veV.

For A > 0, L satisfies the hypotheses of the Lax-Milgram lemma;
thus, there is a unique u € V satisfying (1.7) for all v € V. If
h € C¢(Q), then by elliptic regularity, see [1, 9, 11, 12|, u €
H?(Q)NC?(QUI'; UT). Thus, the weak solution u belongs to D, (A),
so (A, D4(A)) is essentially self-adjoint on L?(£2).

We now return to (1.5). Let L(u,v), respectively F(v), be the left,
respectively right, hand side of (1.5). Suppose that h € X5. Let

0
(1.8) Vo= {u € HYQ)NCHQUT UT,) : a_“ =0 on 1“2},
n
Let K be the completion of V4 in the norm
llullx = [lullf, + 1AulF2 (0,040
Note that L is a bounded sesquilinear form on /C and F' is a bounded
conjugate linear functional on K. Indeed, if u,v € KC, then
|L(u, v)| < Allul|z2@)l|v][L2(0) + 1A% L2(0,0d2) | AV] L2(0,0d2)
+ (A — in ’Y(w)) lullz209,(as/8)) 1Vl 2200, (a5/8))
< C(/\77’aaﬂ)||u||lc‘|v||l€7
[F ()] < [Ih]lx. l[v]lx, < [IRllx, o]l

Moreover,
Re L(u,u) > col|ul|%,

where ¢g := min{\, A — max,coq (), 1} > 0. Thus, the Lax-Milgram
lemma gives a unique weak solution u in K satisfying L(u,v) = F(v)
for all v € K, provided that A is real and large enough.
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For h in a dense set, we want to show that our weak solution u € KC
is in D(A). We know

(1.9) u+ A(aAu) = h € C*4(Q),
(1.10) fﬂ%wAu) +A—7)u=h on ON.
)

—UZO on FQ,

1.11 Ay = r
(1.11) u=0 on T4y, o

with (1.10) holding in a weak sense and u € H1(£2). Moreover u satisfies
the uniformly elliptic problem

(1.12) A+ A(aAv) =h in Q,

(1.13) v==Fk on 09, ov _ ks on 01,

on
where k1 = u|aq, k2 = (Ou/0n)|pq. This implies that v = u € H2().
Next z := aAu satisfies

(1.14) Az =h— v € C*e(Q) + H*(Q) = H*(Q)
(1.15) g_z =e; on 09,
n

where e; = (1/8)(A\v — yv — h) € HY?(9Q). Therefore z = aAu €
H3/2(Q).

It follows that v € H*(2), and so v € C3T9(Q) if N = 1, v € C?**%(Q)
if N =2, and v € W32N/(N=2)(Q) if N > 3; here and below, § is
a positive constant that may change from line to line. The Sobolev
embeddings that we need, cf., e.g., [1, Theorem 5.4, page 17], are

wWkP(Q) c c*UH(@Q),  if p>N
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in which case § =1 — (N/p) > 0,

WhN(Q) c WEb4(Q) forany N < ¢ < oo,
kaP(Q) C Wk*l,Np/(pr) (Q) if » < N,

and u — ulpq continuously maps WP (Q2) into LP(99).

For N >3, v € C*t(Q) if N = 3, v € W?P(Q) if N > 4 where
p < oo is arbitrary if N =4 and p = 2N /(N —4) if N > 5. Thus, see
(1.14), (1.15), z € W22N/IN=4)(Q) if N > 5. For N < 5, z € C%(Q)
whence v € C*+%(Q) by (1.12). For N > 7, z € WL2N/(N=6)(Q) (or
z € WHP(Q) for any finite p if N = 6), whence e; € L2V/(N=6)(9Q),
see (1.15). Thus, z € W22N/(N=6)(Q), whence z € C%(Q) if N < 7,
and thus v € C**9(€Q) in this case. For N = 8, z € WP(Q) for all
p < oo and z € WH2N/(N=8)(Q) for N > 9. Then e; € L2N/(N-8)(90)
for N > 9. Continuing in this way, we conclude v € C**%(Q) in all
dimensions. It follows that u € C*(Q UT; UT5) and the assertion
holds. |

Remark 1.2. Notice that in the one-dimensional case for Q := (0, 1),
the condition (BC), reduces to either ?u/dz? = 0 or du/dz = 0 at each
endpoint in 9Q = {0,1}. Let us consider the operator Aju := (au’)"”
on C*[0,1], where

a€C*0,1], a(z)>0 foral ze€]l0,1].

We equip A; with general Wentzell boundary conditions (BC); ;, given
by
(BC)1,;  Aru(j) + Bjlau")'(5) + vju(j) =0, j=0,1

where 7; € R, fp < 0 < 31, and with boundary conditions (BC),, i.e.,

(1.16) u'(0)=0=14/(1) (T1={0}, Ty={1}),
(1.17) u'(0)=0=12"(1) (Ty={1}, T»={0}),

(1.18) u'(0)=0=4"(1) (I'y={0,1}, T[y=9),
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(1.19) W(0)=0=u(1) (I1=o, Dy=1{0,1}).

Then A; is essentially self-adjoint and A; > eI on H, for a suitable
¢ € R. In addition, ¢ > 0 if 79,71 < 0O and ¢ > 0 lf 'yo,’yl < 0.
Here H = L?(0,1) ® C2 with inner product (u, v) fo z)dr +
ijo wju(j)v(4), for u,v in the dense subset C[0,1] of ’H, and w; =
(=1)7+1/8;, j = 0,1.

Also, for a = 1, let us consider the operator B := d?/dz? on C?[0,1].
It is essentially self-adjoint in H if the boundary conditions are

Bu(j) + Bju'(§) + viu(f) =0, j=0,L
Then A, := B? on H has its boundary conditions

(1.20) u////( i) + ,Bju'"(j) + ’Yjull(j) -0, j=0,1
(1.21) u(§) + By’ () + vu(i) =0, j

All of these operators, i.e., Ay for a = 1 with (BC)1;, j = 0,1 and
(BC)a, and A; = B% with (1.20) and (1.21), agree on the same domain

C4(0,1) :={ueC0,1] : u®(j)=0, 0<k<4, j=0,1}.
Moreover, for any of these A’s we have
dim D(A)/C(0,1) < oo,
see the Appendix. Thus, if A € p(A;) N p(Asz), then
A=A —(A—A4y)7!

is a finite rank operator. Since A, = B2 has a compact resolvent (since
B does by [2]), so do all of our Ay.

Remark 1.3. When Ty =T} and I'y = T; in (BC); are disjoint and
00 =T, then we may use as domain

D(A) :={u e C*Q): (BC); and (BC), hold}.
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This is the case when (2 is an interval as in Remark 1.2 and when (2 is
an annulus, with, say, I'; being the inner boundary and I'; the outer
boundary. That is

Q:={zecR": 0<a<|z|] <b< oo},
with
I :={zcR":|z|=a}, To:={zecR":|z|=0}

When the boundary of 2 is connected, we normally take one of I'y, T'5
to be empty. To see why, take

Q:={rcR?: |z| <1}

and identify * = (z1,z2) in R? with z; + iz, in C. Using obvious
notation and identifications, let

I i={e?:0<0 <7}, Ty:={e: 7m<6<2r}

be the top and bottom half unit circle, respectively. Then 9Q = I'; UT'y,
'y NTy =@, and T; \ Ty, for i = 1,2, consists of two points, the right
point R = 1440 = (1,0) and the left point L = —1+i0 = (—1,0) = '™
If we wish to impose a boundary condition (as in (BC)3) at L and/or
R, it is not clear which one to use, or neither, or both. Since {L, R}
forms a null set in 012, it doesn’t matter for the X, theory. In this case,
it would be hard to prove that u € D(A) is C* at L or R; that is why
we used the complicated (but effective and usable) definition of D(A).

Remark 1.4. Concerning semi-boundedness, let us observe that

as
(A, 0) 5, = 8l gy~ [ 2l
[219]

and hence
(Au, u)x, 2 min { = max 9(2), 0[Jull%,.

The question of the N-dimensional Sobolev inequality without bound-
ary conditions is relevant. We have A > eI for some € > 0 if v < 0 on
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0f). Hence, in all cases the closure of the operator A is self-adjoint and
bounded below. By spectral theorem (—A, D(A)) generates a cosine
function, and the cosine function {C(¢) : t € R} is uniformly bounded
on R if v < 0 on 0Q2. This implies that the initial value problem for
the beam equation wy = (atyy )z With boundary conditions (BC); and
(BC)2 is well posed, even if v is not nonnegative on 92.

For the meaning of cosine functions and their relations with the well-
posedness of second order Cauchy problems, we refer to [10, Chapter
2 Section 8|.

2. The operator V - (aVBu) with Bu:=V - (aVu). Let us set
Au:=V - (aVBu), where Bu:=V-(aVu)

and assume that
(1) a € C4Q), a(z) > 0in Q;
as) B € C3T¢(99), B(x) > 0 for = € N, v € C3+¢(0Q).

az) H = L*(Q,dz) ® L*(09, (adS/B)) := X2, the completion of
) with respect to the norm associated to the inner product

(
(
o

(u,v)x, 1= / u(z)v(x) d:v—i—/ u(z)v(z) a(z) dS.
Q o0 B(z)
In addition, we consider the following boundary conditions
(be)1 Au(z) + B(x)(0(Bu)/0n)(z) + v(x)u(z) = 0 on 0N
(bc)y O = Ty UTy, Ty, Ty are open subsets of 9Q, I'1 N Ty = &,

T; \T; is an S-null set for each ¢ = 1,2, and

Bu =0 on I'y
Ou/On =0 on [s.

Then we have

Theorem 2.1 Under the assumptions (o1)—(as), the operator A with
domain
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D(A):={uec C*(QUTUTy) N H*Q): (bc)y and (bc)y hold}

1s essentially self-adjoint on H.

Proof. The proof follows similar lines as in the proof of Theorem 1.1.
Let us consider u € D(A), v € H?(Q) N C?*(QUT; UTl'), and evaluate

(Au,v)x, = / V - (aVBu)udx +/ Auﬁﬁ
Q o0 B

_ 0 _adS
=— /Q(aVBu) -Vudz + 89,8%(311)1; 5
ds
Auz 22
2
— _adS
= —/Q(VBu) - (aVv)dx — /89 YUT 5

by (bec); and the divergence theorem. Again applying the divergence
theorem and (bc)2 in the above equality, we have that

(Au,v)x, = / (Bu)(V - (V7)) dx — Bu@ adS — Yuv @.
Q Iy on o0 B

If also v € D(A), then we obtain

(Au,v)x, :/Q(Bu)(BE) da;_/a 'yugﬁ

Q B
= (u, Av) x,.

Hence (A, D(A)) is symmetric. Concerning the range condition, let us
assume h € C*1¢(Q) for some positive ¢ and for A > 0 consider

(2.1) AM+Au=h in Q.

If w € D(A), then, on 02 we have

(2.2) —B%(Bu) +(A=7)u=h on 00
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by (bc)1. Multiply (2.1) by v, for v € H%(2), and integrate to get

)\/uida:—i—/V-(aVBu)Eda::/hida:.
Q Q Q

Using the divergence theorem gives

(2.3) )\/uidw—/aV(Bu)-Vidw—&— 5@6@
Q Q oo On B

= / hvdzx.
Q

By (2.2), (2.3) becomes

(2.4) A/Quadxf/gav(gu).def/m(yfk)w%

:/hﬁdw—i—/ o 245
Q o0 B

Again using the divergence theorem and (bc)2, we obtain

(2.5) )\/uﬁdw—}—/(Bu)Bida:—/ Bu@adS
Q Q > on
as
- [ =2 = (o,

Now suppose A > 0, A > maxgecpq y(z) and v € Dr,, see (1.6). Let
L(u,v) be the lefthand side of (2.5), and let F'(v) = (h,v)x,. Let
be as in (1.8) and define K to be the completion of Vp, in the norm

ulllie = lullk, + [1BullZ2 (40"

We show that L is a bounded sesquilinear form on /C and F' is a bounded
conjugate linear functional on K for A > 0, A > max,cgq y(z). Indeed,
if u,v € IC, then

1, 0)| < max{ A, Dl el olllic+ ( mas () +AT) el ol

< C s a B)lulllc ol
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Also
|F ()| < |[h[lx | [vllx, < [|R]|x[l]]|x-

Finally, for A > 0, A > max,caq y(z), we have
. — 2
Re L(u,u) 2 min { A, min A= (), 1} |ull[}-

Thus, by the Lax-Milgram lemma, there is a unique u € K such that
L(u,v) = F(v) forall vek.

This u is our weak solution of (2.1) satisfying (bc); and (bc)s. By using
similar arguments as in the proof of Theorem 1.1, provided that we
replace (1.10) by (2.2), (1.12) by

Av+ V- (aVBv) = h,
and z := Bv, we conclude that v € D(A), so that v € D(A) and
(A, D(A)) is essentially self-adjoint on X5.
Remark 2.2. Concerning semi-boundedness, let us observe that

ads

(), = Bl gy~ [ ol 5
oN

and hence

(Au, u)x, > min{ - ;relggv(w),ﬂ}l\UIlgcz-

Thus, by the spectral theorem, the closure of the operator (—A, D(A))
generates a cosine function, and the cosine function {C(t) : ¢t € R} is
uniformly bounded on R if vy < 0 on 0€2.

APPENDIX
Let n € N and define

X = {u € 0m+10,1] - u?(0) = u? (1) = 0 for j =0, 1,... n}

We claim that C"*1[0,1]/X is finite dimensional.
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To show this, let

where @ is a C*°-function on [0, 1] such that ¢y =1 on [0,1/3] and ¢ =0
on [2/3,1]. Then u® (0) = aj and u® (1) = by,. Given f € C"[0,1],
let

aj = f7(0) and b = (), j=0,...,n.

Then for u as in (A), f — u is in X. Thus C"*1[0,1]/X is 2n + 2-
dimensional.
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