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LIFTING MCKAY GRAPHS AND RELATIONS
TO PRIME EXTENSIONS

MOHAMMED HASAN ALI AND MARY SCHAPS

ABSTRACT. We give an algorithmic procedure for con-
structing the quivers and homogeneous relations of the Brauer
correspondents of blocks of the abelian noncyclic defect group
in the almost simple groups in the ATLAS. This is one step
in a program to compute the structure of the indecomposable
projectives for these blocks. As an illustration, we determine
an explicit tilting complex for the nonprincipal 3-block of the
central extension of PSL(3,4) by Cb.

0. Introduction. One of the important outstanding problems in
the theory of modular group representations is the determination of
the structure of the projective indecomposables of blocks B in simple
or almost simple groups. Recent work on the Broué conjecture (the
conjecture that blocks of abelian defect group are derived equivalent
to the Brauer correspondent b, cf. [3, 12, 18] leads in many cases
to explicit tilting complexes P*, cf. [1]. In these cases, the desired
block is Morita equivalent to the endomorphism ring of P* in the
homotopy category of complexes of projective modules over the Brauer
correspondent b of the block B. Both the verification that the complex
P* is a tilting complex producing the desired block and the calculation
of the endomorphism ring of the complex in the derived category can
be done more efficiently if the structure of b is well understood. This
can be done in a particularly compact fashion by giving the quiver and
relations of the block b.

There is, furthermore, a natural grading on b, compatible with the
filtration by the power of the radical in the group algebra of the defect
group. It is induced by the image V of a splitting of Rad (b)/Rad?(b)
into Rad b, a homogeneous basis for the subspace of weight d being
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given by monomials of degree d in basis vectors of V. If we could find
a homogeneous basis for the endomorphism ring of the tilting complex,
then we could try to transfer the grading to the blocks B of the larger
group, as was done for the cyclic case in [24]. This would also mean that
the Donald-Flanigan deformation guaranteed in [11] could be made
homogeneous, with parameter-ring K[t].

In this paper we concentrate on the noncyclic case where the defect
group @ of bis Cy x Cy or Cy x Cy x Cy. This covers most of the
noncyclic blocks of abelian defect group in the ATLAS groups and their
subgroups [4]. We first note a general result about the construction of
the quiver of b in Section 2 and then give an algorithm for constructing
the relations in Section 3, followed by some examples. In Section 4 we
show that the differentials on the tilting complex can be chosen to be
homogeneous. Finally, in Section 5 we give an explicit tilting complex
for the nonprincipal 3-block of the central extension of PSL(3,4) by Ca.

1. Quivers and relations for blocks with normal defect group.
Before discussing the case of abelian defect group in particular, we first
review what is known in general about the quivers and relations of
blocks of normal defect group. By a fundamental result of Kiilshammer
[8], all such blocks are isomorphic to M, (K7[Q x G']), where K is a
sufficiently large field of characteristic ¢, @ is the defect group, G’ is a
q' group acting faithfully on @ and + is a Hochschild cohomology two-
cycle for G’ into K*. The matrix algebra does not affect the quivers
and relations, and we incorporate - into the group theory by passing to
a central extension G of G’ with kernel N, as in [14], where N is cyclic
of order equal to the order of v in H%(G’, K*). The original block is
thus Morita equivalent to one of the blocks of ) X G; these blocks all
have the same K-dimension and are in one-to-one correspondence with
the irreducible characters of the abelian group N.

We recall the definition of the McKay graph, which we will use to
obtain the quiver of the desired block of @ x G.

Definition. Let G be a finite group, let K be a sufficiently large
field of characteristic ¢ not dividing |G| and let X be any character
of G (not necessarily irreducible). The McKay graph D(G, X) is the
directed graph with
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(1) Vertices X; labeled by elements of Irr (G), i = 1,...,r.

(2) For each pair of vertices X;, X;, a number n;; = (X;, X - Xj)¢
arrows from X; to X;, where X - X; is the class function formed by
pointwise multiplication, that is, (X - X;)(g) = X(g) - X;(g) and n;; is
the number of constituents of X; in X - X;, i.e.,, X - X; = > . n;; X;.

We recall that the quiver of a block B is a directed graph whose
vertices correspond to the isomorphism classes of projective indecom-
posables [e;B], where the number of arrows from [e;B] to [e;B] is
dimy, e;((Rad B) /Rad (B)?)e;. This is sometimes called the Ext-quiver
of the block.

The main result of [20] states that if X is the character of the action of
Gon J/J? J = Rad (KQ) and char K { |G/, then the quiver of K[QxG]
is the McKay graph D(G,X). The connected components of D(G, X)
are in one-to-one correspondence with the blocks of K[Q x G]. Let
Y1,---,Ys be a complete set of primitive idempotents for KG, and let
Y1,---,Ym be a completion to a basis of KG using matrix units. Then
from [11] we know that there exists a subvector space V = (z1, ..., z,)
of K[Q] which is a G-module and is isomorphic as a G-module to J/J>.
If rq,...,r is a set of relations for K[Q] as a quotient of the free tensor
algebra on V', then a complete set of relations for the algebra K[Q x G|
as a quotient of the path algebra of the quiver is given by the relations
YiTjyk, where 1 <i<sand 1<k <mforj=1,... ¢t

In practice, when @ is not abelian, writing the relations of K[Q] in
terms of the basis of V' is not trivial because the basis elements of V' are
not simple linear compositions of group elements like h — e, but rather
are obtained by some Maschke averaging. Thus, it is not easy to convert
group relations to algebra relations. Howeyler, when @ is abelian, the
relations of K[Q)] are of the simple form 2! =0 and z;z; — zjz; = 0.
The algebra K[Q] has a homogeneous basis, given by the monomials
in the generators z1,...,z,. In the sequel, we will abbreviate K[Q] by

KQ.

2. Lifting McKay graphs. We consider the case of a McKay
graph D(G, X) where X is an irreducible character of G induced from
an irreducible character W of a normal subgroup H, where [G: H] =p.

Letting a be an element of G—H, and letting W; = W' ,i=0,...,p—1,
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we have X = Zf:_ol W;. We note that the permutation o of the
irreducibles induced by conjugation by a induces graph isomorphism
D(H,W)= D(H,W;),i=0,...,p— 1. The set of functions from the
conjugacy classes of H which are Z-linear combinations of irreducible
characters will be denoted by ZIrr (H).

Lemma 2.1. Let X € Irr(G) be a character induced from an
irreducible character W of H, i.e., X = WY. Then the McKay
graph D(G, X) is completely determined by the McKay graph D(H, W)
and the mapping of Irr (G) to ZIrr (H) induced by restriction. If
R',R" € Irr (G), then the number of arrows from R’ to R"” in D(G, X)
is the total number of arrows from summands of Ry to summands of

" in D(H,W).

Proof. By a result of Frobenius X - R’ = (W - R};)¢. We now apply
Frobenius reciprocity:

(R", X -R)g = (R",(W-Ry)%)c = (R, W Ry)g. O

In the sequel, in our situation of H < G and [G : H] = p a prime,
we let Irr (H) = Sy U Cy, where Sy are the characters fixed under
conjugation by G. Let Irr (G) = SgUCg be the corresponding partition
into characters which have split and characters which have collapsed.

Example 1. G = C5 x Cg, H = C5 x (4, the generalized quaternion
group.

G = <a,b | ad =b° :e,aflba:b2>,
H= <c,b | A= :e,cflbc:b*),
X:XQECG, W:X5ECH, degX:4, degW:Q.

Here ¢ = a2.

See Figure 1 for the diagram of the McKay graphs.

3. Lifting relations. The second author set up a database [19],
using GAP [5], of blocks of noncyclic abelian defect group with defect
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D(G,X)

D(H,W)

FIGURE 1.

at least 2 in the ATLAS groups and their subgroups. There are none
for primes ¢ > 13, and only 10 for ¢ = 11,13. For ¢ = 3,5, and 7, the
blocks are further subdivided. The main database, SortAt_q, located
at [19], consists of blocks with elementary abelian defect group. There
are 874 blocks in this database for ¢ = 3, 360 for ¢ = 5 and 81 for
q = 7. There is a separate list, CyclicSortAt_q, of blocks of abelian
defect group containing Cy2, most of which have cyclic defect, with the
remainder being products of cyclic blocks.

In the interesting case where the defect group @ is elementary abelian,
it usually has prime rank d(= 2,3), and d = 2 is much more common
than d = 3. Notable exceptions are the O’Nan group, whose principal
3-block is elementary of rank 4, and extensions of PSL(2,81). Since
|Q| = ¢¢, the integer d is the defect of the block.
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TABLE 1. Reynolds groups for 3-blocks in the database with elementary abelian
defect group, k(B) < 24.

d | k(B) | £(B) | # of blocks Reynolds group

2 6 2 15 (Cs X 03) : (Cg : C2),b2

2 6 2 8 (04 X (03 X 03) : Cz) : O2,b3
2 6 2 16 (Cs X C3) : Co

2 6 4 74 (Cs X 03) N

2 6 5 74 (C3 X 03) : Q

2 9 1 35 C3 x C3

2 9 2 48 Cs x S3

2 9 4 141 S3 x S3

2 9 5 182 (03 X 03) H D4

2 9 7 89 (C3 X 03) : (Cg : CQ)

21 9 8 4 (C3 xC3): Cy

3| 15 2 2 (C3)3: Oy

3 15 5 1 (03 X (03 X 03) : C4) : Cz
3 15 7 1 (C3 x (C3xC3):Q):Ca
3 18 4 4 C3 x (C3 x C3): Cy

3 18 8 4 S3 x (C3 X 03) :Cy

3 18 10 3 S3 x (C3 xC3):Q

4| 18 14 2 (C3)%: (C2.(C2)*) : Ds

4 24 14 1 (((Cg X C’3) : C4) X ((C3 X Cs) : C4)).C'2
4| 24 16 1 (C3)* : (C2.((C2)4) : D5).Co
4| 24 20 1 (C3)*: (Cso : C2),b2

4| 24 22 1 (C3)*: (Cao : Ca)

A study of the Brauer correspondents b of the blocks with elementary
abelian undertaken by Leabovich [9] and Berrebi [2] has determined
that in almost all cases either H is itself abelian, or the Brauer
correspondent is isomorphic to the principal block of the normalizer,
and thus we are reduced to the abelian case, or b— M;(b'), where
b 5 K[Q x G, with [G : H] = 2 and H abelian. For example, the
normalizer for blocks of the symmetric groups S, are of the form
(Q X G) X Sp—2p. Then b= M,(b'), where b is a block of K[Q x G] and
t is the degree of a block of S,,_5, of defect zero. In general, as was
shown by Reynolds [14], if b is a block isomorphic to M;(K7[Q x G']),
we can find a central extension G of G’ with cyclic kernel N such that
b is Morita equivalent to a block of Q@ x G. The group Q x G, with NV
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TABLE 2. Reynolds groups for 5-blocks.

d | k(B) | £(B) | # of blocks Reynolds group

2 10 6 1 (05 X 05) : (03 : (Cg : Cz)),b2
2 11 5 5 (C5 X 05) :Cz.(C4 X 04).02,1)2
2 13 10 8 (C5 X C5) : (Cs : Cz)

2 13 12 1 (Cs x C5) : (C3 : C8)

2 14 12 6 (C5 X C5) : C12

2 16 10 8 (C5 X 05) H (D4YC4)

2 16 12 9 (Cs X 05) : (S3 X C4)

2 16 14 1 (C5 X C5) : (QYC4)

2 20 14 19 (Cs5 x C5) : (Ca x C4) : C2

2 26 24 3 (Cs X 05) : 024

minimal, will be called the Reynolds group. These are listed in Tables
1, 2 and 3. When ¢ = 3 and d = 3, the Reynolds group is generally
a direct product. For nilpotent blocks, which are Morita equivalent to
KQ, we take the Reynolds group to be Q. Those blocks for which the
decomposition matrix was not known and no other information was
available are not included.

Let the Reynolds group of b be Q x G, where G is a ¢'-group
and the action of G on Q@ = C; x --- x C; induces an action on
Rad (KQ)/Rad?(KQ) with character X. In Table 1-Table 3, we give
@ x G, sorted as in the database by the invariants k(B) and £(B) of
the block B. If the block which is Morita equivalent to b is not the
principal block of K[Q x G], then we indicate the block by writing b;.
Note that in all cases given here K[Q x G] has at most three blocks.

In this paper, we treat the common case when one of the following
holds:

Case 1. The character X is a sum of linear characters.

Case 2. The group G has an abelian normal subgroup H of index p
such that Xg = ¢1 +- - - + ¢ is a sum of linear characters permuted by
G and KH has a set of primitive idempotents permuted by a, where
a € G is an element of p power order whose residue in G/H generates
G/H. Let N = ker(X).
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TABLE 3. Reynolds groups for 7-blocks.

d | k(B) | ¢(B) | # of blocks Reynolds group

2 16 12 1 (C7 X 07) : (03 X D16)

2 22 18 3 (C7 X C7) : (03 X (Cs : 04))
2| 22 21 1 (C7 x C7) : (C3 x Q)

2 25 18 3 (C7 X C7) : (53 X CG)

2 25 21 2 (07 X 07) : (03 X Dg)

2| 26 18 1 (C7 x C7) : (C3 x Cs)

2 26 24 3 (C7 X C7) : Cag

2 27 21 8 (07 X 07) : (03 X SL(2,3))
2 27 24 1 (C7 X C7) : (C3 X GL(2,3))
2 35 27 7 (C7 X 07) : (03 X (03 : D4))
2 49 48 3 (C7 x C7) : Cag

In Case 1, the relations are all of the form e;z? or e;(z;jzir — z;)
for j,k=1,...,p,i=1,...,[G: N], as described in [11].

Case 2 is the case treated in detail by this paper. Clearly,

N = ﬂ ker(¢;).

i=1

(Even if H had not been assumed abelian, since the derived group H' of
H is in each ker(¢;), we could have gotten H' C N, so that H/N would
have been abelian.) Since the ¢; are conjugate via a, ¢1(a?) = ¢;(a”)
forj=2,...,p.

Let e1,..., e, be the block idempotents for H. Since conjugation by
a is an automorphism, a permutes these idempotents of H. Any ¢;,
for j = 1,...,p, induces a permutation 7; on the linear characters 6;
of H by setting 7;(¢) = k if and only if ¢; - §; = 0. As was proven in
[11], this precisely corresponds to the condition

€iT; = T €k

Since 7; corresponds to multiplication by ¢;, the 7; commute be-
cause character multiplication commutes. In particular, in the relation
ei(zjxr — k), both monomials have the same idempotent e, acting
on the left, where ¢ = 7; o 73, (i) = 13 0 7;(3).
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The problem of finding quivers and relations for the case of H abelian
and G = H x C)p, was first treated by [13, Section 2]. We consider the
nonsplit case and also construct the relations in a mechanical, algo-
rithmic fashion which has been machine implemented for the case of
H abelian and p = 2. We recall that C'y is the set of characters of
H on which a acts nontrivially and refer to the set C'y of the cor-
responding idempotents as “collapsing idempotents.” Similarly, Sg is
the set of fixed characters, and the set S containing the corresponding
idempotents will be called “splitting idempotents.”

To give the quiver and relations of K[Q x G], we proceed as follows:

1) Choose one primitive idempotent e; of each nontrivial conjugacy
class [e;] of idempotents of H under the action of a. For each idempo-
tent e in H, choose a natural number ¢(k), 1 — p < ¢(k) < p — 1 such
that e; = a t®erat®) | and set E,; = atk), E;, = a=tk),

2) Construct the quiver D(G,X) from D(H, ¢;1) by collapsing and
splitting as in Lemma 2.1, labeling each collapsed vertex by the idem-
potent e; representing its conjugacy class of idempotents.

3) For each splitting idempotent e;, let e;1, €2, - - -, €, be the idempo-
tents into which it splits. (If p = 2, we abbreviate e;; by ej‘ and e; by
e; .) Let 0 be a nontrivial lifting of 15. By standard results in Clifford
theory, if 0; is the character associated to e;1, then the character ¢;;
associated to e;; is a multiple of 8} by a power of #, and we may choose
the numbering so that §;; = 0071 is associated to €ij-

Lemma 3.2. Let QQ be an elementary abelian q-group of prime
rank p. Let G be a ¢'-group acting irreducibly on Q, and assume that
G is a p-extension of an abelian group H. Let R = {r;} be the set of
all relations of KQ, i.e., 2§ =0, { =1,...,p, and x,xs — z,x; = 0
for 1 <t < s < p. Each relation r; determines a unique permutation
o; such that eirj = rje, ;). Set k = 0;(i). Each relation e;rjey of
K[Q x H] determines the following relations of the quiver of K[Q X G]:

(a) If e; does not split and is a representative of its conjugacy class
and ey, does not split, then we get a relation e;r; E, ; = eirjae, where £ =
{(k) is chosen so that a~‘exa’ is the conjugacy class representative €,
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(b) If e; does not split and is a representative of its conjugacy class
and ey does split, we get a relation

€iTj€k,

which splits into p relations since ey, is splitting.

(c) If e; splits and ey, does not, then we get relations eigrjekae, where
¢ = ((k) is chosen so that a~*eja’ is the conjugacy class representative
61%.

(d) If e;, ex, are both splitting, we get the p* relations eyrjexs .

Proof. Let {r;} be the complete set of relations such that

K[Q]S K(z1,...,zp)/{r;},

as given in the statement of the lemma. Since the quiver of K[Q] is
just p loops, then by the lemma in [11, Section 5], substituting 0 for
the deformation parameter, we know that the relations of K[Q x H]
and K[Q x @], respectively, are obtained from {r;} by multiplying on
the left by a primitive idempotent corresponding to a vertex and, in
the case of K[Q x G], on the right by a matrix unit.

Fix a relation r; of K[Q]. If it is monomial in zy,...,z,, then we
get 0; as a composition of 7;. If it is of the form z,x; — z x5, then
0j = TyTs = TsTy. We previously defined a partition Irr (H) = Sy UCH,
according to whether the character was fixed under conjugation by G
and would thus split, or whether it had nontrivial conjugates, and a
similar partition of the idempotents {ey,...,e,} = Sy UCp. For any
primitive idempotent e; for which ¢ = i, we have the following logical
possibilities:

(a) If e;, ex, € Cpr, k = (i), then there is a relation e;r; of the quiver
of K[Q x H]. Let ¢ = £(k) be the integer such that e; = a ‘eia’. Then
the corresponding relation of K[Q x G] will be

— o — s
0= e/i\rJEkk =erja.

(b) If e; € Cy and e, € Sy, we multiply by the various idempotents
which split it. These relations are distinct since they end at different
points.
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(c) If e; € Sy and e; € Cp, then we proceed as in (a) to show that
the matrix unit given in the lemma of [11] is a power of a.

(d) If e;,ex € S, then there are p? possible relations.

Corollary 3.3. If a splitting idempotent e; € Sy can be inserted
in e;7j, then the a® at the end in cases (a) and (c) can be conjugated
forward until it reaches es when it can be converted into a coefficient.
Since H is abelian, case (d) occurs only when p = 2, and there are only
p nonzero relations in (d).

Proof. Conjugation by a introduces coefficients in two ways. First
of all, azpa™' = ¢1(aP) - z1. Second, when the power of a reaches
an element of Sy, it is converted into a coefficient by the formula
a-es =es-a=0(a)es.

We must show that when H is abelian, case (d) occurs only for p = 2,
and that then there are only p nonzero relations.

If r; is a relation for which case (d) occurs, and m(zy,...,zp) is a
monomial occurring in 7;, then we have ¢;(i) = m(7,...,7)(0) = k,
which on characters becomes m(¢1,. .., ¢p)-6; = 0x. Since 8;,0; € Su,

we get that m(e1,...,¢,) = 0; '0x € Sy, showing that m(¢; ..., o)
is invariant under the action of G.

This cannot occur for the monomial relation z7 = 0 because the
cycles in the McKay graph D(H, ¢1) are of length r dividing |H]|, so
o7 = ¢l for all ¢,t'. If we had ¢} invariant under the action of G so
that ¢f = ¢7,, then since |H| is a ¢’ integer, we would have ¢, = ¢p
for all ¢, a contradiction since the irreducibility of the action of G' on
Q@ implies that the restriction of this action to H is a sum of distinct
conjugates.

If r; is the relation z;z, — zsx¢, then ¢¢¢, is invariant. Then, acting
by a*f, we get ¢;¢s = ¢s¢as 1, s0, multiplying by ¢!, t = 25 — ¢
(mod p). Since p is a prime, ¢t # s, and 1 < s,t < p, we have 2t = 2s
(mod p) only when p = 2.

The monomial z;z2 is an eigenvector for G since z; and z, are
eigenvectors for H, with characters ¢; and ¢, while a lziz9a =
z2(d1(a?)zy) = ¢1(a?)z1ma. Thus, if 1 is the linear character of G
with 7 |H: ¢1¢2 and n(a) = ¢1(a?), then for any idempotent e;g
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with character ¢;s, we have e;sr; = rjegs, where s’ is so chosen that
N+ 0;s = Ogs. Thus, there is only one value s” of s’ for which the
relation e;srjexs is nonzero.

Example 2. Consider the Brauer correspondent of the principal
block of the Janko group J; for ¢ = 5. It is a semi-direct product of
Cs x C5 by Dg, the dihedral group of order 12, and the action of Dg
on J/J? is determined by the unique two-dimensional representation
without a kernel. The McKay graph is (see Figure 2).

Let ozoil, a2, a2i3 be the arrows with increasing exponent and ,BIiO, B21,
63*2 the arrows in the opposite direction. The relations are derived as
follows from the following cyclesin H, e;z1 = z1€;4+1 and e;x2 = T2€;_1.

elxi, elmg =0: 0‘3—10‘12(@—3@?2 — ag3035)B21 =0
€2}, €2z = 0: Biabar (Bioady — Bipegy oz = 0
erz] =0: a12(a33B83, — 0g3B33) 2181y = 0
625”;3”3 =0: /321(/3%0431 - Bi)aal)aua%% =0
623”? =0: (a;—?ﬁ;‘—z - a2_363_2)621(ﬂroaa—1 — Brog1) =0
ey =0: (51460‘(—{1 - 51_00‘51)0412(0‘;35;2 —a3B32) =0

=0 0‘0+1/Bfo =0, 0‘07151+0 =0

=0 /3;2‘)‘% =0, 5??20‘;3 =0
e1(z1Ta — Tax1) =0 a12f21 = Blyad; + Broo:

=0

ea(T12 — T2x1) Baranz = a5y B, + a3 55-

ea:(xlwz — Tox1)

63:3:(21)1372 — Tox)
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1 0+ 0 2
+ +
0 2 1 1 3 +3
+ +
1 3 +3 2 0+ 0 2 2
+ + +
0 2 2 3 +3 1 1 3 +3 1
+ +
1 3 +3 2 0+ 0 2 2
+ +
0 2 1 1 3 +3
+
2 0+ 0 2

P
o* 1

FIGURE 3.

The projective modules needed to build the tilting complexes and the
resolution of the Green correspondents in Okuyama’s method are then
constructed by laying out the zi, z in a grid. We give only Py+ and Py,
the other projective modules being similar. The Cartan matrix, whose
columns give the number of copies of every simple in each projective,
is

RN N O Ot
=R NN OO
= O Ot NN
= OO NN
00 © = = =
© 0O =

Note that our algorithm makes it quite natural to write the projec-
tives in the rectangular form which was used with such good effect by
Holloway [6] in his study of SL(2,q").
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4. Homogeneous maps in tilting complexes. Let us now
consider the indecomposable projectives in the case where p = 2 and
the normalizer of the defect group Q = Cy x Cy is of the form @ x G,
where G has a normal abelian subgroup H of index 2. (A sample case
with p = 3 was given in [20].) An examination of the Reynolds groups
for blocks in our database [19] given in the tables in Section 3 shows
that either GG is abelian or this condition is fulfilled with p = 2 for all
but three blocks of defect 4 with ¢ = 3, two blocks with ¢ = 5 and two
blocks for ¢ = 7. If Rad (KQ) = J, the action of G on J/J? is given by
X = ¢1 + ¢2. We assume that a is an element of order 2¢ of G not lying
in H, which permutes ¢; and ¢2. We let 1 and z2 be eigenvectors for
the actions of ¢; and ¢2 on J/J?. Set ¢ = ¢(a?) = ¢2(a?), where ¢
is a primitive 2¢' root of unity for some integer 0 < ¢’ < ¢. We may
choose the x; so that axy = (xza, r1a = axs.

Whereas in calculating the relations in S3 we found it convenient to
conjugate a to a splitting idempotent and convert it into a coefficient,
in giving a homogeneous basis of the indecomposable projectives it will
be more efficient to conjugate the element a to a collapsing idempotent.

Let A = K[Q x H, A= K[Q x G]. If, as before, we let ey,..., e,
be the block idempotents of H, which are primitive because H is
abelian, then the indecomposable projective e; A has a homogeneous
basis {eim{w’g}?’?:o.

— Jk —1 _ ~j
Lemma 4.1. If mj, = zix3, then amjra™ " = (Imy;.

Proof.

k

Tgka™" = (awra™t) (azoa 1) = (Cao)lzk = (abzd. o

arix
Definition. Let p;; = TfTZk, so that e;mjx = mjke,, (i)-

Lemma 4.2. Let eii be an idempotent corresponding to a splitting
character 0;. Then a homogeneous basis of the indecomposable projec-
tive eiiA s a union of the following sets:

1 j C
BY = {ief (mjk = ¢Tmija) | ep,0) € CH}

BY = {eimjrey | pin(i) = te0 € Sp} U{eimy;}.
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FEach element in these bases lies in a Peirce component ofzzlv with respect
to the primitive idempotents.

Proof. For any idempotent e; which splits into e;” and e, we have
1 1
el = 5(6 +a)e; = §ei(e +a)

and L
ei_ = 5(6 — a)ei = Eei(e — a).

Thus,

1 1 1 .
efmjp = Eei(e +a)mji = §ei(m]-k +amj) = 2¢i (mj = Imyja) .

Case 1. ( = pj;r(i) is the index of a collapsing idempotent.

Let ¢ be the index of the conjugate idempotent so that e, = aega™?.

Then
aeimjkegafl = (Ye;my; - (aepa™t) = leimyjep,

so we see that pg;(i) = ¢'. Thus,

1 . 1 ,
geii(mjk + (Ymyja) = §(mjk + Imyja)es.

Case 2. ¢ = pj;(i) is the index of a splitting idempotent. If
Jj =k, with ¢ = p;(i), then

—1 j —1
0 # ae;mjjea™ = (Te;mjj(aeea™ "),
so we conclude that e, € Sy, since otherwise we would have
eimjjeg(aegafl) =0.

Finally, if j # k and ¢ = p;x (i), then

1 1 .
eiimjkeei = Zeiimjk(e ta)e = Zeii(mjk £ Tamy;j)es.
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The two different + signs are independent, so these represent four
different maps.

Lemma 4.3. Let e; be an idempotent corresponding to a collapsing
character 0; with i = i. A homogeneous basis of the projective inde-
composable e; A is a union of the following sets:

1 , _
BiS = {E(eimjk + mkja)ezt | pik(i) =4, eg € SH}

Proof. The proof for By is similar to the previous lemma. As for BY,
if pjr(i) =4 = 7, the chosen representative of its conjugacy class, then
eimjr = e;m;y ends with the idempotent e,, whereas if pj(i) = £ # /
then we must multiply by a matrix unit, which is equivalent to a times
a constant since ¢ = ¢;(a?) is a constant. O

Now suppose that we have a tilting complex in which all the differen-
tials are homogeneous and the irreducible components have length 2,
as in the cyclic defect case or the elementary tilting complexes used by
Okuyama [12]. Then we can choose representatives of the endomor-
phisms which are homogeneous in each degree. Furthermore, the set of
homotopies also has a basis homogeneous in each degree.

5. The Broué conjecture for the faithful 3-block of the
covering group of PSL(3,4). We now give, as an application,
a verification of the Broué conjecture for a block with defect group
C3 x (5. To the best of our knowledge, guided by the list of proven
cases maintained at Bristol, this particular block has not been treated
as of the time of this writing. Let L be the central extension with kernel
C5 of PSL(3,4). Then @ is a 3-Sylow subgroup, isomorphic to Cj x Cs.
The centralizer of @ is Q X C2. The centralizer has two blocks, each
stable under the action of the normalizer. These correspond to the two
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blocks of the normalizer. In this case, since the defect group is abelian
and thus contained in the centralizer, we consider N (Q)/CL(Q), and
calculation shows that it is isomorphic to Qg, the quaternion group of
order 8. Both blocks of the normalizer are isomorphic as algebras, and
thus both are isomorphic to the group algebra of the unique semi-direct
product (C3 x C3) X Qg in which the center of Qg acts nontrivially.

We are considering the nonprincipal block of the normalizer. This is
the Brauer correspondent of the faithful 3-block B of L, i.e., the block
consisting of ordinary characters which are nontrivial on the center
Z(L) of order 2. A calculation of the decomposition matrix of this block
at L shows that it is identical, up to permutation of rows and columns,
with the decomposition matrix of the principal block of the Mathieu
group Msy. The centralizers of the cyclic subgroups of the defect group
Q@ are identical to the centralizer of @ itself, so the restriction map
induces a stable equivalence. Calculating the Green correspondent of
the simples of the block B with the C-MeatAxze developed by Ringe
produced modules for the Brauer correspondent b of dimensions 1, 1,
4, 4, 6, with the same structure as the Green correspondents of Ma,.
Thus, the same sequence of two elementary tilting complexes used by
Okuyama [12] to settle the Broué conjecture for Mse will work for our
block B.

We want now to give the tilting complex explicitly, as a complex of b
modules with homogeneous differentials. In the notation of Section 3,
we have G = Cy x C4 = (C2.Qs, H = C4 x (3, and the character X
is an irreducible character of G whose restriction to H is the sum of
two linear characters ¢; and ¢» with common kernel N = Z(G) = Cs.
The McKay graph D(H, ¢;) is the disjoint union of two cycles of length
four. The element a has order 8, and it acts on each of the two cycles
by leaving two antipodal points fixed and exchanging the other two
points. The element a? is in H, and we have

([51(@2) = ¢2(a2) = 7]..

Suppose 1 and 3 are the indices of the idempotents of the nonprincipal
block of H left fixed by a, and let 2 and 4 be the indices of the
idempotents interchanged by a. Choose 2 to be the representative
of its orbit under the action of a, so that 2 = 4 = 2. Then the
idempotents of G will be eit, e?jf and e;. These primitive idempotents
then determine four indecomposable projective modules of dimension 9,



390 MOHAMMED HASAN ALI AND MARY SCHAPS

which we will denote by Pli and P?,i, and a single indecomposable
projective module of dimension 18, which we will designate by P,. The
two Green correspondents G and G of dimension 1 are a pair of split
simples, which we will identify with eli. The two Green correspondents
of dimension 4, G;’ and G5 , have as tops a matched pair of split simples,
which we will identify with egt.

Using the rectangular representation of the projectives as in Section 3,
we see that in fact G5, which has composition factors 3%, 2, 37, is the
quotient of P; by a submodule whose projective cover is P;" & P, , and
similarly G5 is a quotient of P; . The Green correspondent G, with
composition factors 2, 17, 17, 2, is the quotient of P, by a submodule
with projective cover P;r @ P; . We can represent these as

3t 3 2
Gf = 2 Gy = 2 Go = Tel1”
3~ 3t 2.

We now apply Okuyama’s method of elementary tilting complexes from
[12]. For those who have difficulty obtaining this extremely important
paper, the method is outlined, with an extension, in [18]. We choose the
index set Iy = {3%,37}. Denote the right regular representation of b by
M. Letting g be the endomorphism corresponding to left multiplication
by 1, letting h be the endomorphism of M corresponding to left
multiplication by x2, and letting o be the automorphism of modules
given by left multiplication by a, we get a tilting complex T} =
EHW e (PHM e PV e (BHM e Y.

2 2
g°+h
2—h2:|
EHW: pfers Py
2 2
g°—h
2 2
]
PO™: Prory 5 Pp
[h—ag
) n _ h—l—ozg]
(PQ) : P3 @Pg S — Py
(PHM P

(P3_)(1) : Py
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The indecomposable projectives with indices in Iy occur in degree
(—1) and the indecomposable projectives with indices in {17,17,2}
occur in degree 0.

Each elementary tilting complex determines a linear combination of
columns of the decomposition matrix Dy of b, with those in odd degrees
multiplied by (—1). Multiplying negative rows by (—1) then produces
the decomposition matrix of By = Endps ) (T'), from which the Cartan
matrix can be calculated.

10000 1 0 0 0 0
0100 0 0 1 0 0 0
p_|001O0O0 -1 -1 -1 0 -1
*Z1o 00 10 -1 -1 0 -1 -1
0000 1 0 0 0 0 1
1111 2 -1 -1 -1 -1 0

l
O, RFROR
—_ O == O
—ooRrR OO
—o R OoO0OO
O FM=OO

By [12, Lemma 1.3 (i)], the images Gf(l) and Gl_(l) of G and G|
remain simple in B;. Furthermore, by [12, Lemma 1.3 (ii)], G;(l)
and Gy ™ are now simple. This leaves only to calculate the Green
correspondent Ggl), using the resolution method in Section 4 of [15].
A projective resolution over b of G2 begins with the map in PZ(I), and

thus a projective cover of this resolution in By has P2(1) as its top. The
projective cover of the Heller translate over By has (Py )M @ (P; )
as its top. Calculating the Cartan matrix from Dp, and noting that
there are unique maps in each direction between (P:,,i)(l) and P,, we
discover that Gél) has, as before, composition factors 2(1), 1+(1) 1=,
2=, The Heller translate of G;l) has socle 2(1) and all the other
simples as composition factors (with multiplicity 1), so it satisfies the
conditions of Lemma 1.3 (ii) [12]. Therefore, a second elementary
tilting complex with index set I; = {2} will complete the solution.
Taking mapping cones, we can represent the new tilting complex as a
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complex of projectives from b, with homogeneous maps:

p, "9 prr
P, "% p-
[hozg}
P;@P{ h:xg Py
Py p,

h—
P P,

Conclusion. We have concentrated here on an algorithmic construc-
tion of the indecomposable projectives of the Brauer correspondent. We
hope that by using the decomposition matrix to find combinatorial tilt-
ing complexes, we will get a method for obtaining quivers and relations
for the group blocks themselves in the abelian defect case. The method
we are pursuing is outlined in [18]. However, it requires a solid knowl-
edge of the projective modules of the correspondent to which this paper
is intended to contribute. It also involves questions of “folding” tilting
complexes, as described in [16, 21, 22, 23, 24]. We hope that, as in
the cyclic case [17], the Green correspondent will aid in choosing the
proper “folding.”
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