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CONJUGACY CRITERIA FOR THE HALF-LINEAR
SECOND ORDER DIFFERENTIAL EQUATION

M.Z. ABD-ALLA AND M.H. ABU-RISHA

ABSTRACT. In this paper, some conjugacy criteria for the
half-linear second order differential equation

(10 OF g0y’ ®) + OO sny®) =0, p>1

are obtained.

1. Introduction. We are concerned with the zeros of solutions of
the half-linear second order differential equation

(1) (6@) +eolu(®) = 0

where ¢(t) is a continuous function on R and ¢(s) is the real function
defined by ¢(s) := |s|P~lsgns, with p > 1. In the case p = 2, equation
(1.1) reduces to the linear equation

(1.2) ¥ (t) + c()y(t) = 0.

The investigation of qualitative properties of (1.1) was initiated by
Elbert who proved that the zeros of linearly independent solutions of
(1.1) interlace and that the Sturm comparison theorem extends to half-
linear equations [7]. Moreover, he had attracted the attention of many
authors for an expected similarity between the qualitative properties
of (1.1) and (1.2).

As in the case of linear equations, equation (1.1) is called disconjugate

if it has a solution without any zeros. Otherwise, it is called conjugate.

Concerning the linear case, conjugacy criteria for (1.2) and the general
equation

(1.3) (a()y'(1))" + c(t)y(t) =0
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have been investigated in several papers, see [3, 4, 6, 9, 12, 16]. In
[16], Tipler proved that the linear equation (1.2) is conjugate under the
condition [*_¢(t) dt > 0. Pena [13] has shown that the same condition
is also sufficient for conjugacy in R for the half-linear equation (1.1).
Other conjugacy criteria for (1.1) can be found in [5, 13, 15].

In this paper, we give some conditions on the function ¢(t) to guar-
antee the conjugacy of (1.1).

Let y(t) be a solution of the equation (1.1) such that y(t) # 0; then
the function W (¢) = ¢(y’)/¢(y) is a solution of the generalized Riccati
equation

(1.4) W'(t) + (p — DIW()]* = —c(t)

where ¢ = p/(p—1) is the conjugate number of p. The relation
between solutions of (1.1) and (1.4) is very useful for the investigation
of conjugacy property of the half-linear equations.

2. Main results. For the convenience of the reader, we start with a
lemma which is a variant of the generalized Hartman’s lemma, cf. [14].

Lemma 2.1. Suppose that the generalized Riccati equation
(2.1) W!(t)+ (- DIWH)|? = —c(t), teR

has a solution. If

g T ¢
(2.2) IITIILIOIéff/O </_tc(s)ds> dt =k > —oo,

then

(2.3) /oo W (#)]? ds < oo,

— 00

Proof. From equation (2.1), we get

(2.4) %/Ot [W(s)—W(—s)] ds+p%1/0t /_Z|W(g)|q(zgds

_ —%/Ot /_Ssc(g) de ds.
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(2.5) %/Ot[W(s)—W( d—i——//_s &))" de ds
[ s [ s

Towards contradiction, suppose that (2.3) does not hold. That is,
[ [W(s)|?ds = co. Then, by assumption (2.2) the righthand side of
(2.5) tends to —oo as t — oo.

Thus, for large values of t,

(2.6) %/Ot[W() W(—s ds+—// €)| d¢ ds < 0.

Then, for t > T, we have

/ [S €)|9deds < —% /Ot [W(s) — W(fs)] ds.

On the other hand, by Holder’s inequality, we get

(2.8) %/Ot (W (s) —~ w(-s)] ds

[ W e a

t
%t”?[(/@t |W(s)|qu>1/q + (/Ot |W(s)|qu>1/q]
1 t 1/q
Lo QW+ wi-sp ds

_ (2t)1/p< _tt W) d8>1/q'

t

IN

IN

IN

Let S(t fo J°,IW(&)|? d¢ ds, which tends to co. Then equation (2.8)

can be rewrltten as

S’ p—l q 1 q/p 1
o9 AN
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Integrating this inequality from T to ¢, T' < t, we get

(2.10)
1 1 1 -1\? 1
— . T2-9 _ 42—4
s mare - o] () J
if g#2
and
1 1 1 t
2.11 —— =~ >-In| if ¢g=2
&4 CORECI LI CNEREE
which is a contradiction, since the righthand side tends to co as t — oo
but the lefthand side is bounded. Then [%_|W (s)|?ds < +oo. o

Theorem 2.2. Equation (1.1) is conjugate on R if c(t) Z 0 and

(2.12) hm 1nf = / / s)dsdt > 0.

Proof. Assume the converse, that is, there exists a solution of equation
(1.1) having no zero in R. So, the generalized Riccati equation (2.1)
has a solution W (t) # 0.

Following the same steps in the proof of Lemma 2.1, we arrive at
inequality (2.8) which, together with (2.3), leads to

tim L[ [W(s) = W(~s)] ds =o0.

t—oo t

Now, taking the lower limit, as t — oo, of both sides of equation (2.4),
one gets

liminf 1 //_ £)dedt = —(p— )/_O:OW(S)|qu<o,

which contradicts assumption (2.12). O

The following two lemmas will be used in the sequel.
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Lemma 2.3. If ¢ > 1, then for any two real numbers X,Y , we get

(2.13)

<|X|+Y|>q < XAy
2 = 2

Equality holds if and only if | X| = |Y|.
Lemma 2.4. Suppose that equation (1.1) has a positive solution z(t).

Then, for every a € R, the equation

219) (o @) + I ) — 0, b (~o0,0)

has a positive solution y(t).

Proof. Let W (t) := ¢(z'(¢))/d(x(t)). Then W (t) is a solution of the
generalized Riccati equation

(2.15) W'(t) + (p — 1)|[W(t)|? = —c(t).

Now let R(t) := (1/2) {W(a—i—t) +W(a— t)} . Then, by Lemma 2.3, we

have

(2.16) R'(t) + (p — DIR(®)]

q

_ %[W’(a—i—t)—i—W’(a—t)} +(p—1)‘W(a+t);W(a_t)

<[+ wWia— 0] + L2 [Wia 0l + W a— 1))

g—%[c(a—l—t)—t—c(a—t)] o

Theorem 2.5. If equation (1.1) is disconjugate on (—o0,0), then,
for any a € R, the equation

(2.17) (t¢(z'(t)))' + (% /:Hc(s) ds>¢(z(t)) =0

—t

is disconjugate on (0, 00).



364 M.Z. ABD-ALLA AND M.H. ABU-RISHA

Proof. Let R(t) == (1/2) [W(a Yt - W(a— t)} as in Lemma 2.4.
Then R(0) = 0. From inequality (2.16), by integration from 0 to ¢, we
get

+(- 1)/(: [R(s)|?ds < —%/Ot [C(a—i—s) +c(a—s)] ds

1 a+t
= —5/ c(s) ds.
a—t

Using Holder’s inequality, we find that

(2.18)

t t 1/p t 1/q
(2.19) ‘/ R(s)ds| < (/ ds> </ |R(s)|? ds) .
0 0 0
That is,
(2.20) ta/p / R(s / |R(s)|? ds.

From inequalities (2.19) and (2.20), we get
p _ 1 t q 1 a+t
(221) R+ tq—_l‘ / Ris)ds| <~ / o(s) ds.
0 a

—t
Putting V (¢) := fot R(s) ds, we may rewrite inequality (2.21) as

_ a4+t
v+ v < —%/ o(s) ds.

-1
tq —t

This means that the equation

e2) () + (1 / " ete) ds)¢(z<t)> —0,

2 Ja-t

is disconjugate. |

Theorem 2.6. Equation (1.1) is conjugate if c(t) Z 0 and there
exists an a € R such that

(2.23) lim inf/ / s)dsdt > 0.

T— 00
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Proof. Suppose, towards contradiction, that equation (1.1) is discon-
jugate. Let R(t) be as in the proof of Lemma 2.4. Then, R(0) = 0 and,
by equation (2.16),

R(5) + (o~ DR = ~U%(s) — 5 [ela+s) +cla )],

where U(s) is some continuous function of s. Integrating from 0 to ¢,
we get

(2.24) R+ (p-1) /1t R(s)|? ds
/U2 ) ds — %A a+s-+da—g}@
forai [

Using Holder’s inequality, we find that

(2.25)
t q t 1 rett
R(t) + (p — 1)t9/P / R(s)ds —/ U?(s)ds — 5/ c(s)ds.
0 0 a—t
Now, letting V(¢ fo s) ds, we may rewrite inequality (2.25) as

V'(t)

p—1 ! 1 [oft
+ tq_l |V(t)‘q S _/0 UQ(S) ds — 5/ C(S) ds.

—t

This means that the equation
(2.26)

(o) + [ v2@dsrl [ ctas ot =0, te (0,00

—t
is disconjugate.

On the other hand, noting that fol(l/t) dt = [°(1/t)dt = oo and
that, in the presence of (2.23),

t 1 t
/ U?(s) ds + 5/ c(s)ds =0 implies that ¢(t) =0,
0 a—t
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which contradicts the assumption. Also,if U # Oand 1/2 [ e s)ds
— fo U?(s)ds, then

(2.27) lim / / s)dsdt =
T—o0

which also contradicts assumption (2.23). If U = 0, then faajtt c(s)ds =
0 implies c(a — s) = c(a + s), for all s. u]

The contrapositive parts of the following theorem give sufficient
conditions for conjugacy of equation (1.1).

Theorem 2.7. If equation (1.1) has a positive solution on (—oo, c0)
and a € R, [;°|R(s)|?ds < oo then for all T > 0,

(2.28) Jim / < / / dgds> dt < 0.

Moreover, if c(a +t) # c(a —t), then
(2.29) Tll_rp f/ (/ / €)d¢ ds) = —o0.

Proof. Suppose that equation (1.1
on R. Define W (t) = ¢(z'(t))/p(x(
then

) has a positive solution z(t) defined
t), R(t) = [W(a+t) - W(a—1)]/2,

(230) R+ (p— DIRE = V7€) ~ 5 [ela+8) +ela—£)],

2

where U(¢) is some continuous function in £. Multiplying both sides of
equation (2.30) by (T — £)?, we get

(T = €)*R'(€) + (p — 1)(T — €)*|R(¢) |

_@—gprrg - T2

L [ea+8) + e(a )]
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So

d

4 (T =O°R©) + 2T —ORE) + (T~ (- VIR

2 [clat§) +ela=¥)

5 +U%(¢)]| .

=-(T-¢)

Adding |R(€)]*79/p — 1 to both sides of the last equation, we arrive at

(2.31)
A (r-ore) + B 20— grie) + (-2 - i@

dg

_ |RI§£E| 1_q _ (T _ 6)2 [c(a + 6) ;— C(a’ — 5) + U2(§):| .
That is,
(2.32)

(o (5))+<|R\(/£/2+\/ (T - &)(R ‘”2)2

dg
_ R c(a+ &) +cla8)
p—1 2

~-ep | Ik

Integrating equation (2.32) and noting that R(0) = 0, one gets

@%)

/0 K'R&ﬁ/z*ﬁT R ”’/2>2+<T—£)2U2(5)]d5

=[O gL [ - 9?eta+ &)+ cla - 0) .

Since the integrand in the lefthand side of equation (2.33) is nonnega-
tive and cannot be identically zero, we have
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(231) o /OT(T &) [ela+8) +c(a—©)] de

% /OT % ) @-a)/
T 2/p T . > e

%(/0 d§> (/0 #d&)

< TC-p)/p ( /0 g @ﬁ()% dg) (2-a)/a

T (2—4q)/4q
LG

IN

IN

Now, if [ |R(€)]? d¢ < oo, then
—/ (6)*"%d¢ — 0, as T — oo.
It follows that
1 [T )
im —— - . <
Jin oz [0 92 [ela+9) +la— )] ae <0

So, we get

1 T t a+s
— <0
TlgnooT/O /0 /a_s c(§)dédsdt <0

We notice that, if U # 0, then

T
lim U?(€)dé=A, 0<A<oo
T— o0 0
implies that
I l/T(T—£>2U2(£) dE =2 1 l/T(T—t) / U2 (€) de dt =
e T o TN T 0 B

which, in view of equality (2.33), gives the relation

g [ ([ [ i) -
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On the other hand, it is easy to show that if U = 0, then c¢(a +t) =
cla —t). o

Theorem 2.8. For p > 2, equation (1.1) is conjugate if there is a
point a € R such that c(a +t) + c(a —t) # 0 and

ST § e P N

where u is the Lebesgue measure on R.

Proof. Let C,(t) = f e s)ds, and define the function ¢, to be
1if Cu(t) > 0 and 0 0therw1se Suppose that equation (1.1) were
disconjugate. Then, by Lemma 2.3 the inequality

P+ (= DIr(0)f* = — 5 [ela+1) +ela— )]

would have a solution r satisfying 7(0) = 0. Integrating, multiplying
by ¢, and then integrating once more, we get

239 [ euoras + 01 [ uto)( [ rrmar)a<o

Therefore,

230 -1 [ t eolo)( [ roitar) as
<[ " pu(o)lr(s) ds

< ([ratomas) ([ ropas)”

Since [pa]P = @a, inequality (2.37) would lead to

(2.38) ((p—l/ </ Ir(r |da> >
([ ([}
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Hence, for large values of ¢,

e [Ceueras) s Dbl
b=1) S”"(t)(/o ol )d> = (Js pals)Jy ()2 dr)ds)”

This would give

/TT soa(t)(/ot ©als) ds)l_q dt < (p— 1)1

(S pals) () aar) ds)

< 00,
0<Ty<T.

Noting that ¢ < 2, since p > 2, and that (2.35) implies that
o) . . .
Jo ®a(s)ds = oo, we have arrived at a contradiction. o

We denote by Cgo(R) the set of all continuous functions on R with
compact support.

Theorem 2.9. Equation (1.1) is disconjugate on R if and only if
the equation

(2:39) (6@ + (f *cl)) by () =0

is also disconjugate on R for every nonnegative function f € Cyo(R)
with [%_ f(s)ds < 1.

Proof. Suppose that equation (1.1) is disconjugate on R. Let W be
a continuous solution of the generalized Riccatti equation

(2.40) W&+ (p— DIW ()" = —c(£).

For each t € R, define R(t) := [*_ f(s)W(t—s)ds = f =W (t). Then,

R(t) = /_oo F$)W'(t— 5) ds;
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and

(2.41)

B = ‘/ NYE(f(s) Y w(t — 5) ds

<([ s ds)q/p( | some-sras)

< [ s

It follows that

(242) R'(t)+ (p— DIR()|

/ FSYW'(t — 5)ds + (p 71/ F(8)|W(t — 5)| ds
/ £(s

"t—s)+ (p—1)|W(t—s)ds

/ f(s)e(t—s)d

= —fxc(t).

Now suppose that equation (2.39) is disconjugate for every function
f € Coo(R) satisfying the condition ffooo f(s)ds < 1. Define the
sequence f, on R by

1 1 : 2,2

and
fn(t) =0 otherwise,

C, = S
/l/n P < 1- n2t2>

Then {f,} C Coo(R f fa(s)ds = 1 and f, * ¢ — ¢ uniformly on
[—b,b] for every b > O see [10] This implies that equation (1.1) is
disconjugate on the interval [—b,b] for every b > 0, cf. [11, page 6].
Therefore, it is disconjugate on R. O

where
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