INTEGRAL AND NUCLEAR OPERATORS ON THE SPACE $C(\Omega, c_0)$

DUMITRU POPA

ABSTRACT. We give necessary and sufficient conditions for a linear and continuous operator on the space $C(\Omega, c_0)$ to be integral and nuclear. Based on this result some examples are given.

1. Introduction. Let Ω be a compact Hausdorff space, let X be a Banach space with dual space X^* , and let $C(\Omega, X)$ stand for the Banach space of continuous X-valued functions on Ω under the uniform norm and denoted by $C(\Omega)$ when X is the scalar field. It is well known that if Y is a Banach space, then any linear and continuous operator $U: C(\Omega, X) \to Y$ has associated with it a finitely additive vector measure $G: \Sigma_{\Omega} \to L(X, Y^{**})$, where Σ_{Ω} is the σ -field of Borel subsets of Ω , such that

$$y^*U(f) = \int_{\Omega} f dG_{y^*}, \quad f \in C(\Omega, X), \quad y^* \in Y^*,$$

see $[\mathbf{3}, \mathbf{4}, \mathbf{8}, \mathbf{9}]$ for more details. The measure G is called the representing measure of U.

Also, for a linear and continuous operator $U: C(\Omega, X) \to Y$, we can associate in a natural way two linear and continuous operators

$$U^{\#}:C(\Omega)\longrightarrow L\left(X,Y\right) \quad \text{and} \quad U_{\#}:X\longrightarrow L\left(C\left(\Omega\right) ,Y\right)$$

defined by

$$(U^{\#}\varphi)(x) = U(\varphi \otimes x)$$
 and $(U_{\#}x)(\varphi) = U(\varphi \otimes x)$

where for $\varphi \in C(\Omega)$, $x \in X$, we define $(\varphi \otimes x)(\omega) = \varphi(\omega) x$, for $\omega \in \Omega$.

²⁰⁰⁰ AMS Mathematics subject classification. Primary 46B28, 47A80, 47B10. Keywords and phrases. Banach spaces of continuous functions, tensor products, operator ideals, p-summing operators. Received by the editors on October 7, 2005.

DOI:10.1216/RMJ-2008-38-1-253 Copyright © 2008 Rocky Mountain Mathematics Consortium

The operator $U^{\#}$ occurs also in [9, Theorem 1, page 377], where it is denoted by U'.

Swartz in [19] characterized absolutely summing operators U on the space $C(\Omega,X)$ in terms of the representing measure and the operator $U^{\#}$.

Saab in [17] characterized integral operators U on the space $C(\Omega, X)$ in terms of the representing measure, and later Montgomery-Smith and Saab in [10] presented a characterization of integral operators U on an injective tensor product in terms of the operator $U^{\#}$.

Partial characterizations of nuclear operators U on the space $C(\Omega, X)$ in terms of the representing measure and the operator $U^{\#}$ are given in $[\mathbf{1, 12, 17, 18}]$, and a partial characterization of Pietsch integral operators U on the space $C(\Omega, X)$ in terms of the representing measure and the operator $U^{\#}$ is given in $[\mathbf{13}]$.

The space $C(\Omega, X)$ is an injective tensor product [5, 8]. In [10], for p-absolutely summing operators, and in [14], for (r, p)-absolutely summing operators, necessary conditions are given for an operator U on an injective tensor product to be p-absolutely summing, respectively (r, p)-absolutely summing, in terms of the operator $U^{\#}$. By symmetry, these necessary conditions are also true for the operator $U_{\#}$. We will use in our proofs this corresponding fact for $U_{\#}$.

We denote by $(As, \| \|_{as})$, $(I, \| \|_{int})$, $(\mathcal{N}, \| \|_{nuc})$ the normed ideal of all absolutely summing, (Grothendieck) integral operators and nuclear operators, respectively. We refer the reader to $[\mathbf{5}, \mathbf{7}, \mathbf{8}, \mathbf{11}]$ for details.

If X is a Banach space, a series $\sum_{n=1}^{\infty} x_n$ in X is called a weak Cauchy series if and only if for every $x^* \in X^*$ the series $\sum_{n=1}^{\infty} |x^*(x_n)|$ is convergent.

We denote by $(e_n)_{n \in \mathbb{N}}$ the canonical basis in the Banach space c_0 .

For a vector measure $G: \Sigma \to X$, where Σ is a σ -field of sets, we denote by |G| the variation measure of G, see $[\mathbf{8}, \mathbf{9}]$.

Also, for $\Omega = [0,1]$ we denote $\mu : \Sigma_{\Omega} \to [0,1]$ the Lebesgue measure, and by $(r_n)_{n \in \mathbb{N}}$ the sequence of Rademacher functions. If (S, Σ, ν) is a finite measure space, X is a Banach space and $f: S \to X$ is a ν -Bochner integrable function, then we denote by $B - \int_{(-)}^{\infty} f \, d\nu$ the

indefinite Bochner integral. It is always a σ -additive vector measure with finite variation.

All notations and notions used and not defined in this paper can be found in [7, 8].

In the sequel we will use the following well-known result, [5, 7].

Fact. If X is a Banach space, then $As(c_0, X) = I(c_0, X) = \mathcal{N}(c_0, X)$.

More precisely, $T \in As(c_0, X)$ if and only if $\sum_{n=1}^{\infty} ||T(e_n)|| < \infty$, and in this case

$$||T||_{as} = ||T||_{int} = ||T||_{nuc} = \sum_{n=1}^{\infty} ||T(e_n)||.$$

The main result and examples. In the following theorem, which is the main result of our paper, we present a characterization of both integral and nuclear operators on the space $C(\Omega, c_0)$.

Theorem 1. Let Ω be a compact Hausdorff space, X a Banach space and $U: C(\Omega, c_0) \to X$ a linear and continuous operator. Suppose that the representing measure G takes its values in $L(c_0, X) \subseteq L(c_0, X^{**})$, and let $G_{e_n}: \Sigma_{\Omega} \to X$ be defined by $G_{e_n}(E) = G(E)(e_n)$, for $n \in \mathbb{N}$.

- (a) The following assertions are equivalent:
 - (i) U is absolutely summing.
- (ii) U is integral.
- (iii) For each $n \in \mathbb{N}$, we have

$$U_{\#}(e_n) \in As(C(\Omega), X)$$

and

$$\sum_{n=1}^{\infty} \|U_{\#}(e_n)\|_{\mathrm{as}} < \infty.$$

(iv) For each $n \in \mathbb{N}$, the set function G_{e_n} has bounded variation and $\sum_{n=1}^{\infty} |G_{e_n}|(\Omega) < \infty$.

(v) $G: \Sigma \to \mathcal{N}(c_0, X)$ has bounded variation with respect to the nuclear norm.

In addition,

$$||U||_{\text{int}} = ||U||_{\text{as}} = \sum_{n=1}^{\infty} ||U_{\#}(e_n)||_{\text{as}} = \sum_{n=1}^{\infty} |G_{e_n}|(\Omega) = |G|_{\text{nuc}}(\Omega).$$

- (b) The following assertions are equivalent:
 - (i) U is nuclear.
- (ii) U is integral and $U_{\#}(e_n) \in \mathcal{N}(C(\Omega), X)$ for every $n \in \mathcal{N}$.
- (iii) U is integral and $U_{\#}(\xi) \in \mathcal{N}(C(\Omega), X)$ for every $\xi \in c_0$.

In addition, $||U||_{\text{nuc}} = \sum_{n=1}^{\infty} ||U_{\#}(e_n)||_{\text{nuc}} = |G|_{\text{nuc}}(\Omega)$.

- *Proof.* (a) (i) \Rightarrow (iii). If U is absolutely summing, then by [10, Theorem 3.1] or [14, Theorem 1], $U_{\#}: c_0 \to As(C(\Omega), X)$ is absolutely summing and $\|U_{\#}\|_{as} \leq \|U\|_{as}$. This implies, in particular, that $U_{\#}(e_n) \in As(C(\Omega), X)$ for each $n \in \mathbb{N}$ and by the Fact, $\sum_{n=1}^{\infty} \|U_{\#}(e_n)\|_{as} \leq \|U_{\#}\|_{as}$, i.e., (iii) holds.
- (iii) \Rightarrow (iv). For each $n \in \mathbb{N}$, the representing measure of $U_{\#}(e_n)$ is G_{e_n} and $||U_{\#}(e_n)||_{as} = |G_{e_n}|(\Omega)$, [8, Theorem 3, page 162]. Hence, (iv) follows from (iii).
 - (iv) \Rightarrow (i). For $E \in \Sigma_{\Omega}$, we have

$$\sum_{n=1}^{\infty} \|G(E)(e_n)\| = \sum_{n=1}^{\infty} \|G_{e_n}(E)\| \le \sum_{n=1}^{\infty} |G_{e_n}|(E)$$

$$\le \sum_{n=1}^{\infty} |G_{e_n}|(\Omega) < \infty.$$

By the above Fact, $G(E) \in As(c_0, X)$ and

$$\|G(E)\|_{\text{nuc}} = \|G(E)\|_{\text{as}} = \sum_{n=1}^{\infty} \|G_{e_n}(E)\|, \ E \in \Sigma_{\Omega}.$$

From this and (iv) we obtain that $G: \Sigma_{\Omega} \to As(c_0, X)$ has bounded variation and $|G|_{\text{nuc}}(E) = |G|_{\text{as}}(E) \leq \sum_{n=1}^{\infty} |G_{e_n}|(E)$ for any $E \in \Sigma_{\Omega}$.

Now, by Swartz's theorem [19] or by a more general result [15, Theorem 2], it follows that U is absolutely summing and, moreover,

$$\|U\|_{\mathrm{as}} = |G|_{\mathrm{as}} (\Omega) \leq \sum_{n=1}^{\infty} |G_{e_n}| (\Omega).$$

- (i) \Rightarrow (v). It follows from Swartz's theorem [19] and the above Fact.
- $(v) \Rightarrow (ii)$. Apply Saab's theorem [17, Theorem 3].
- (ii) \Rightarrow (i). This is true in general and is known [5, 7, 11].

We also have the equality from the statement.

We remark that $|G|_{\text{nuc}}(E) = \sum_{n=1}^{\infty} |G_{e_n}|(E)$ for all $E \in \Sigma_{\Omega}$. This follows since (iv) \Rightarrow (i) yields

$$|G|_{\mathrm{nuc}}\left(\Omega\setminus E\right)\leq\sum_{n=1}^{\infty}\left|G_{e_{n}}\right|\left(\Omega\setminus E\right),E\in\Sigma_{\Omega},$$

and then use $|G|_{\text{nuc}}(\Omega) = \sum_{n=1}^{\infty} |G_{e_n}|(\Omega)$.

- (b) (i) \Rightarrow (iii). Follows from the ideal property of nuclear operators and the obvious relation that for any $\xi \in c_0$ we have $U_{\#}(\xi) = U\sigma_{\xi}$, where $\sigma_{\xi} : C(\Omega) \to C(\Omega, c_0)$ is defined by $\sigma_{\xi}(\varphi) = \varphi \otimes \xi$.
 - (iii) \Rightarrow (ii). This is trivial.
- (ii) \Rightarrow (i). We will prove that in this case there is a $|G|_{\text{nuc}}$ -Bochner integrable function $h: \Omega \to \mathcal{N}(c_0, X)$ such that

$$G\left(E
ight) =B-\int_{E}h\left. d\left| G
ight| _{\mathrm{nuc}},\quad E\in\Sigma_{\Omega},$$

which then assures, by [1, Theorem III. 4], as it is cited in [18] or [12, Theorem 1] or [18, Theorem 5], that U is nuclear.

Indeed, since for each $n \in \mathbb{N}$ we suppose that $U_{\#}(e_n) \in \mathcal{N}(C(\Omega), X)$, it follows that there is a $|G_{e_n}|$ -Bochner integrable function $\varphi_n : \Omega \to X$ such that $G_{e_n}(E) = B - \int_E \varphi_n \, d|G_{e_n}|$, for $E \in \Sigma_{\Omega}$ [8, Theorem 4, page 173]. Because U is integral, (a) implies that $|G_{e_n}| \ll |G|_{\text{nuc}}$ and, hence, there is a $|G_{e_n}|$ -integrable function $h_n : \Omega \to [0, \infty)$ such that $|G_{e_n}|(E) = \int_E h_n \, d|G|_{\text{nuc}}$ for $E \in \Sigma_{\Omega}$. Then $G_{e_n}(E) = \int_E h_n \, d|G|_{\text{nuc}}$

 $B - \int_E h_n \varphi_n d|G|_{\text{nuc}}$ for $E \in \Sigma_{\Omega}$ and $|G_{e_n}|(E) = \int_E ||\varphi_n|| h_n d|G|_{\text{nuc}}$ for all $n \in \mathbb{N}$ and $E \in \Sigma_{\Omega}$. Hence, by (a), it follows that

$$\left|G\right|_{\mathrm{nuc}}\left(E\right) = \sum_{n=1}^{\infty} \left|G_{e_n}\right|\left(E\right) = \int_{E} \left(\sum_{n=1}^{\infty} \left\|\varphi_n\right\| h_n\right) d\left|G\right|_{\mathrm{nuc}}, \quad E \in \Sigma_{\Omega}.$$

Then $\sum_{n=1}^{\infty} \|\varphi_n\| h_n = 1$ for $|G|_{\text{nuc}}$ -almost everywhere $\omega \in \Omega$, which implies that the function $h: \Omega \to L(c_0, X)$ defined by

$$h(\omega)(\xi) = \sum_{n=1}^{\infty} \langle \xi, e_n \rangle \varphi_n(\omega) h_n(\omega), \quad \omega \in \Omega, \quad \xi \in c_0,$$

takes $|G|_{\text{nuc}}$ -almost everywhere value in $L(c_0, X)$; without loss of generality, we can suppose that h takes all its values in $L(c_0, X)$.

Then, for all $\omega \in \Omega$ and $n \in \mathbb{N}$, we have $h(\omega)(e_n) = \varphi_n(\omega)h_n(\omega)$, which by the above Fact, implies that h takes its values in $\mathcal{N}(c_0, X)$ and

$$\|h\left(\omega\right)\|_{\text{nuc}} = \sum_{n=1}^{\infty} \|\varphi_n\left(\omega\right)\| h_n\left(\omega\right).$$

Thus,

$$\int_{\Omega} \|h(\omega)\|_{\text{nuc}} d|G|_{\text{nuc}}(\omega) = \int_{\Omega} \left(\sum_{n=1}^{\infty} \|\varphi_n\| h_n \right) d|G|_{\text{nuc}}$$
$$= |G|_{\text{nuc}}(\Omega) < \infty.$$

Since $h: \Omega \to \mathcal{N}(c_0, X)$ is obviously $|G|_{\text{nuc}}$ -Bochner measurable, it follows that h is $|G|_{\text{nuc}}$ -Bochner integrable.

Now, if $F(E) = B - \int_E h \, d|G|_{\text{nuc}}$, then by the Hille theorem [8, page 47], for any $\xi = (\xi_n)_{n \in \mathbb{N}} \in c_0$ and $E \in \Sigma_{\Omega}$, we have

$$F(E)(\xi) = B - \int_{E} h(\omega)(\xi) d|G|_{\text{nuc}}(\omega)$$

and

$$F(E)(\xi) = \sum_{n=1}^{\infty} \xi_n \left(B - \int_E \varphi_n(\omega) h_n(\omega) d |G|_{\text{nuc}}(\omega) \right)$$
$$= \sum_{n=1}^{\infty} \xi_n G_{e_n}(E) = \sum_{n=1}^{\infty} \xi_n G(E)(e_n) = G(E)(\xi).$$

Thus, $G(E) = B - \int_E h \ d|G|_{\text{nuc}}$ for all $E \in \Sigma_{\Omega}$, and the proof is finished.

If X^* and Y have the Radon-Nikodym property and Y is complemented in its bidual, then the space $\mathcal{N}(X,Y)$ has the Radon-Nikodym property, (see [13, Corollary 5] for this result or [2, Theorem 7] for the more general normed ideal of operators, but in [2], under some approximation hypotheses). In the examples which we present the space $\mathcal{N}(X,Y)$ (in our situation $\mathcal{N}(c_0,Y)$) does not a priori have the Radon-Nikodym property.

As applications of Theorem 1, we now present some relevant examples.

Example 2. (i) Let $a=(a_n)_{n\in\mathbb{N}}\in l_{\infty}$, and $U:C([0,1],c_0)\to c_0(C[0,1])$ be the operator defined by

$$(Uf)(x) = \left(a_n \int_0^x \langle f(t), e_n \rangle dt\right)_{n \in \mathbf{N}}, \quad x \in [0, 1].$$

Then U is integral if and only if $a \in l_1$, while U is nuclear if and only if a = 0.

(ii) Let $a=(a_n)_{n\in\mathbb{N}}\in l_\infty$ and $U:C([0,1],c_0)\to c_0(L_1[0,1])$ be the operator defined by

$$(Uf)(x) = \left(a_n \int_0^x \langle f(t), e_n \rangle dt\right)_{n \in \mathbf{N}}, \quad x \in [0, 1].$$

Then U is integral if and only if U is nuclear if and only if $a \in l_1$.

(iii) Let $\sum_{n=1}^{\infty} x_n$ be a weak Cauchy series in a Banach space X and $U:C[0,1],c_0)\to X$ the operator defined by

$$U\left(f\right) = \sum_{n=1}^{\infty} \left(\int_{0}^{1} r_{n}\left(t\right) \left\langle f\left(t\right), e_{n}\right\rangle dt \right) x_{n}.$$

Then U is integral if and only if it is nuclear if and only if the series $\sum_{n=1}^{\infty} x_n$ is absolutely convergent.

Proof. (i) Let $\Omega = [0,1]$. The representing measure of U is

$$G(E)(\xi)(t) = \left(a_n \langle \xi, e_n \rangle \mu \left(E \bigcap [0, t]\right)\right)_{n \in \mathbf{N}},$$

$$\xi \in c_0, \quad E \in \Sigma_{\Omega}, \quad t \in [0, 1].$$

Then

$$\|G_{e_n}(E)\| = \sup_{t \in [0,1]} |a_n| \, \mu\left(E \bigcap [0,t]\right) = |a_n| \, \mu\left(E\right), \quad E \in \Sigma_{\Omega},$$

and thus

$$\sum_{n=1}^{\infty} |G_{e_n}| ([0,1]) = \sum_{n=1}^{\infty} |a_n|.$$

The statement follows from Theorem 1 (a).

If U is nuclear then, by Theorem 1 (b), for each $n \in \mathbb{N}$ the operator $U_{\#}(e_n): C[0,1] \to c_0(C[0,1])$ is nuclear and, by the ideal property of nuclear operators, it follows that $p_n U_{\#}(e_n): C[0,1] \to C[0,1]$ is nuclear (where p_n are the canonical projections in $c_0(C[0,1])$). Observe, for each $n \in \mathbb{N}$, that

$$(p_n U_{\#}(e_n))(\varphi)(x) = a_n \int_0^x \varphi(t) dt, \quad \varphi \in C[0,1], \quad x \in [0,1].$$

Since the Volterra operator $V: C[0,1] \to C[0,1]$ defined by $(V\varphi)(x) = \int_0^x \varphi(t) dt$ is not nuclear [8, page 73], it follows that $a_n = 0$.

- (ii) Argue as in (i) and use the fact that the Volterra operator $V: C[0,1] \to L_1[0,1]$ defined by $(V\varphi)(x) = \int_0^x \varphi(t) dt$ is nuclear [8, page 78].
- (iii) Let $f \in C([0,1], c_0)$. Then $\langle f(t), e_n \rangle \to 0$ and $|\langle f(t), e_n \rangle| \leq ||f||$ for $t \in [0,1]$. From the Lebesgue dominated convergence theorem it follows that $\int_0^1 r_n(t) \langle f(t), e_n \rangle dt \to 0$ and, since $\sum_{n=1}^{\infty} x_n$ is a weak Cauchy series in X, it follows that U is well defined [6, Theorem 6, page 44]. The representing measure of U is

$$G\left(E\right)\left(\xi\right) = \sum_{n=1}^{\infty} \left\langle \xi, e_n \right\rangle \left(\int_E r_n\left(t\right) dt\right) x_n, \quad E \in \Sigma_{\Omega}.$$

Then $G_{e_n}(E) = (\int_E r_n(t) dt) x_n$ and $|G_{e_n}|([0,1]) = ||x_n|| \int_0^1 |r_n(t)| dt$. We now apply Theorem 1 (a) and (b) to obtain the statement.

Example 3. (i) Let $\Omega = [0,1]$, $(\varphi_n)_{n \in \mathbb{N}} \subset L_1([0,1], l_1)$ be such that $\sup_{n \in \mathbb{N}} \|\varphi_n(t)\|_{l_1} < \infty$ for all $t \in [0,1]$ and $\int_E \langle \xi, \varphi_n(t) \rangle dt \to 0$ for $E \in \Sigma_{\Omega}$ and $\xi \in c_0$. Let $U : C([0,1], c_0) \to c_0$ be the operator defined by

$$U(f) = \left(\int_{0}^{1} \langle f(t), \varphi_{n}(t) \rangle dt\right)_{n \in \mathbf{N}}.$$

Then U is nuclear if and only if $\varphi_n(t) \to 0$ weak* for μ -almost everywhere $t \in [0,1]$ and the function $h = (h_k)_{k \in \mathbb{N}}$ belongs to $L_1([0,1], l_1)$, where $h_k(t) = \sup_{n \in \mathbb{N}} |\langle e_k, \varphi_n(t) \rangle|$.

(ii) Let $\mathcal{M} = (\alpha_{nk})_{n,k \in \mathbb{N}}$ be a regular method of summability and $U: C([0,1],c_0) \to c_0$ the operator defined by

$$U(f) = \left(\sum_{k=1}^{\infty} \alpha_{nk} \int_{0}^{1} \langle f(t), e_{k} \rangle r_{k}(t) dt\right)_{n \in \mathbf{N}}.$$

Then U is integral if and only if U is nuclear if and only if the series $\sum_{k=1}^{\infty} (\sup_{n \in \mathbb{N}} |\alpha_{nk}|)$ is convergent.

Proof. (i) By hypothesis, it is clear that U is well defined and that the representing measure of U is

$$G\left(E\right)\left(\xi\right) = \left(\int_{E} \left\langle \xi, \varphi_{k}\left(t\right) \right\rangle \, dt\right)_{k \in \mathbf{N}}, \quad E \in \Sigma_{\Omega}, \quad \xi \in c_{0}.$$

Suppose that U is nuclear. Then, by Theorem 1 (b), for any $\xi \in c_0$ the operator $U_{\#}(\xi) : C[0,1] \to c_0$ defined by $U_{\#}(\xi)(f) = (\int_0^1 \langle \xi, \varphi_n(t) \rangle f(t) dt)_{n \in \mathbb{N}}$ is nuclear. Using [16, Proposition 3 (iv)], it follows that $\langle \xi, \varphi_n(t) \rangle \to 0$ for μ -almost everywhere $t \in [0,1]$ and

$$\left\|U_{\#}\left(\xi\right)\right\|_{\mathrm{nuc}} = \int_{0}^{1} h_{\xi}\left(t\right) dt, \quad \text{where} \quad h_{\xi}\left(t\right) = \sup_{n \in \mathbb{N}} \left|\left\langle \xi, \varphi_{n}\left(t\right) \right\rangle\right|.$$

We observe that the exceptional set typically depends on $\xi \in c_0$ but, since c_0 is separable, it follows that the exceptional set is independent

of ξ , i.e., there is an $A \in \Sigma_{\Omega}$ such that $\mu([0,1] \setminus A) = 0$ and $\varphi_n(t) \to 0$ weak* for any $t \in A$.

In particular,

$$\|U_{\#}\left(e_{k}\right)\|_{\operatorname{nuc}} = \int_{0}^{1} h_{k}\left(t\right) dt \quad \text{with} \quad h_{k}\left(t\right) = \sup_{n \in \mathbb{N}} \left|\left\langle e_{k}, \varphi_{n}\left(t\right)\right\rangle\right|.$$

Since U is nuclear, by Theorem 1 (a) we have

$$\sum_{k=1}^{\infty} \|U_{\#}\left(e_{k}\right)\|_{\text{nuc}} = \|U\|_{nuc} \quad \text{i.e.} \quad \sum_{k=1}^{\infty} \int_{0}^{1} h_{k}\left(t\right) \, dt = \|U\|_{\text{nuc}} \, .$$

Hence, $h = (h_k)_{k \in \mathbb{N}} \in L_1([0,1], l_1)$.

For the converse we observe that, for each $k \in \mathbb{N}$, we have $\langle e_k, \varphi_n(t) \rangle \to 0$ for μ -almost everywhere $t \in [0,1]$ and the function h_k is integrable. Thus, by [16, Proposition 3(iv)], it follows that the operator $U_{\#}(e_k)$ is nuclear and, in addition, $\|U_{\#}(e_k)\|_{\text{nuc}} = \int_0^1 h_k(t) dt$. Using now the fact that $h = (h_k)_{k \in \mathbb{N}} \in L_1([0,1], l_1)$ the proof is completed by Theorem 1 (b).

(ii) Recall that if $\mathcal{M} = (\alpha_{nk})$ is an infinite real matrix and

$$(x_k)_{k \in \mathbf{N}} \longrightarrow \left(\sum_{k=1}^{\infty} \alpha_{nk} x_k\right)_{n \in \mathbf{N}}$$

is its formal action on the space of all sequences of scalars, then $\mathcal{M} = (\alpha_{nk})$ is called a regular method of summability if its action on convergent sequences produces convergent sequences with preservation of limits. As is well known, a matrix $\mathcal{M} = (\alpha_{nk})$ is a regular method of summability if and only if

- a) $\sup_{n \in \mathbb{N}} \sum_{k=1}^{\infty} |\alpha_{nk}| < \infty$,
- b) for each $k \in \mathbf{N}$, $\lim_{n \to \infty} \alpha_{nk} = 0$,
- c) $\lim_{n\to\infty} \sum_{k=1}^{\infty} \alpha_{nk} = 1$.

Let $\varphi_n:[0,1]\to c_0^*=l_1$ be defined by

$$\varphi_{n}(t)(\xi) = \sum_{k=1}^{\infty} \alpha_{nk} \langle \xi, e_{k} \rangle r_{k}(t)$$

and observe that

$$U\left(f\right) = \left(\int_{0}^{1} \left\langle f\left(t\right), \varphi_{n}\left(t\right) \right\rangle \, dt\right)_{n \in \mathbf{N}}.$$

Then $U_{\#}(e_k) = \lambda_k \otimes \alpha_k$ is a rank one operator, where $\lambda_k(\varphi) = \int_0^1 \varphi(t) r_k(t) dt$ for $\varphi \in C[0,1]$ and $\alpha_k = (\alpha_{nk})_{n \in \mathbb{N}}$.

Also $\langle e_k, \varphi_n(t) \rangle = \alpha_{nk} r_k(t)$. Hence, $h_k(t) = \sup_{n \in \mathbb{N}} |\langle e_k, \varphi_n(t) \rangle| = \sup_{n \in \mathbb{N}} |\alpha_{nk}|$ and by Theorem 1 (a) and part (i) the statement follows.

Example 4. Let $\Omega = [0,1]$ and $(h_n)_{n \in \mathbb{N}} \subset L_{\infty}[0,1]$ be such that

$$M = \sup_{n \in \mathbb{N}} \|h_n\|_{\infty} < \infty$$
 and $\int_E h_n(t) dt \to 0$ for $E \in \Sigma_{\Omega}$.

Let $(x_n^*)_{n\in\mathbb{N}}\subset c_0^*=l_1$ be a bounded sequence such that, for some $x\in c_0$, we have $\liminf_{n\to\infty}|x_n^*(x)|>0$ and $T:c_0\to l_\infty$ defined by $T(x)=(x_n^*(x))_{n\in\mathbb{N}}$ is nuclear.

Let $U: C([0,1], c_0) \to c_0$ be the operator defined by

$$U\left(f\right) = \left(\int_{0}^{1} x_{n}^{*}\left(f\left(t\right)\right) h_{n}\left(t\right) dt\right)_{n \in \mathbf{N}}.$$

Then

- (a) U is integral.
- (b) U is nuclear if and only if $h_n(t) \to 0$ for μ -almost everywhere $t \in [0,1]$.

Proof. (a) For $\varphi_n:[0,1]\to l_1=c_0^*$ defined by

$$\varphi_n(t)(x) = x_n^*(x) h_n(t), \quad t \in [0, 1], \quad x \in c_0,$$

we observe that the conditions in Example 3 (i) are satisfied.

The representing measure of U is $G(E)(x) = (x_n^*(x) \int_E h_n(t) dt)_{n \in \mathbb{N}}$.

We show that $G: \Sigma \to \mathcal{N}(c_0, c_0)$ has bounded variation with respect to the nuclear norm. By Saab's theorem [17, Theorem 3], or Theorem 1(a), U will then be integral.

Indeed, for each $E \in \Sigma$ we have $G(E) = S_E T$, where $S_E : l_{\infty} \to c_0$ is the multiplication operator defined by $S_E((\alpha_n)_{n \in \mathbb{N}}) = (\alpha_n \int_E h_n(t) dt)_{n \in \mathbb{N}}$.

Since $T: c_0 \to l_{\infty}$ is nuclear, it follows that $G(E) \in \mathcal{N}(c_0, c_0)$ and

$$||G(E)||_{\text{nuc}} \leq ||T||_{\text{nuc}} ||S_E||,$$

i.e.,

$$||G(E)||_{\text{nuc}} \le ||T||_{\text{nuc}} ||F(E)||,$$

where $F(E) = \sup_{n \in \mathbb{N}} |\int_E h_n(t) dt|$, for $E \in \Sigma_{\Omega}$.

Because $||F(E)|| \leq M\mu(E)$ for $E \in \Sigma_{\Omega}$, it follows that $G : \Sigma \to \mathcal{N}(c_0, c_0)$ has bounded variation with respect to the nuclear norm.

(b) If U is a nuclear operator, then, by Example 3 (i), it follows that for μ -almost everywhere $t \in [0,1]$ we have $\varphi_n(t) \to 0$ weak*. Let $A \in \Sigma$ be such that $\mu([0,1] \setminus A) = 0$ and for all $t \in A$ and any $x \in c_0$ we have $x_n^*(x)h_n(t) \to 0$. Since, by hypothesis, there is an $x \in c_0$ such that $\liminf_{n \to \infty} |x_n^*(x)| > 0$, we deduce that $\limsup_{n \to \infty} |h_n(t)| = 0$.

For the converse, observe that from $h_n \to 0$, μ -almost everywhere, it follows that $\varphi_n(t) \to 0$ weak* for μ -almost everywhere $t \in [0, 1]$. Also

$$h_{k}\left(t\right) = \sup_{n \in \mathbb{N}} \left|\left\langle e_{k}, \varphi_{n}\left(t\right)\right\rangle\right| \leq M \left\|T\left(e_{k}\right)\right\|, \quad \text{for} \quad t \in \left[0, 1\right], \quad k \in \mathbb{N}.$$

Since T is nuclear (by the Fact), it follows that $(h_k)_{k \in \mathbb{N}} \in L_1([0,1], l_1)$, and we can use Example 3 (i) to deduce that U is nuclear.

A concrete situation for Example 4 is the following one.

For a nonzero $(\lambda_n)_{n\in\mathbb{N}}\in l_1$, let $x_n^*\in c_0^*$ be defined by

$$x_n^*(x_1, x_2, \dots) = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n, \quad (x_1, x_2, \dots) \in c_0.$$

REFERENCES

- G. Alexander, Linear operators on the spaces of vector-valued continuous functions, Ph.D. dissertation, New Mexico State University, Las Cruces New Mexico, 1972.
- 2. K.T. Andrews, The Radon-Nikodym property for spaces of operators, J. London Math. Soc. 28 (1983), 113–122.

- 3. J. Batt and E.J. Berg, Linear bounded transformations on the space of continuous functions, J. Funct. Anal. 4 (1969), 215-239.
- 4. J. Brooks and P. Lewis, *Linear operators and vector measures*, Trans. Amer. Math. Soc. **192** (1974), 139–162.
- 5. A. Defant and K. Floret, Tensor norms and operator ideals, North-Holland, Math. Studies, Amsterdam, 1993.
- 6. J. Diestel, Sequences and series in Banach spaces, Grad. Texts Math., Springer-Verlag, Berlin, 1984.
- 7. J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Stud. Adv. Math. 43, Cambridge University Press, 1995.
- 8. J. Diestel and J.J. Uhl, *Vector measures*, Math. Surveys. 15, Amer. Math. Soc., Providence, 1977.
- N. Dinculeanu, Vector measures, Veb. Deutscher Verlag der Wissenschaften, Berlin, 1967.
- 10. S. Montgomery-Smith and P. Saab, p-summing operators on injective tensor product of spaces, Proc. Royal Soc. Edinburgh 120 (1992), 283–296.
 - 11. A. Pietsch, Operator ideals, Veb. Deutscher Verlag der Wiss., Berlin, 1978.
- 12. D. Popa, Nuclear operators on C(T, X), Stud. Cercetări Matematice 42 (1990), 47–50.
- 13. ——, Pietsch integral operators on the injective tensor products of spaces, Glasgow Math. J. 39 (1997), 227–230.
- 14. , (r, p)-absolutely summing operators on the space C(T, X) and applications, Abstract Appl. Anal. 6 (2001), 309–315.
- 15. ——, Measures with bounded variation with respect to a normed ideal of operators and applications, Positivity 10 (2006), 87–94.
- 16. —, Regular methods of summability, compact, absolutely summing and nuclear operators on the space C[0,1] with values in c_0 , J. Australian Math. Soc., submitted.
- 17. P. Saab, Integral operators on spaces of continuous vector valued functions, Proc. Amer. Math. Soc. 111 (1991), 1003–1013.
- 18. P. Saab and B. Smith, Nuclear operators on spaces of continuous vector valued functions, Glasgow Math. J. 33 (1991), 223-230.
- 19. Ch. Swartz, Absolutely summing and dominated operators on spaces of vector valued continuous functions, Trans. Amer. Math. Soc. 179 (1973), 123-132.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONSTANTA, Bd. MAMAIA 124, 8700 CONSTANTA, ROMANIA

Email address: dpopa@univ-ovidius.ro