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INTEGRAL AND NUCLEAR OPERATORS
ON THE SPACE C (2, ;)

DUMITRU POPA

ABSTRACT. We give necessary and sufficient conditions
for a linear and continuous operator on the space C(£2,¢o) to
be integral and nuclear. Based on this result some examples
are given.

1. Introduction. Let Q2 be a compact Hausdorff space, let X
be a Banach space with dual space X*, and let C(2, X) stand for the
Banach space of continuous X-valued functions on {2 under the uniform
norm and denoted by C(Q2) when X is the scalar field. It is well known
that if Y is a Banach space, then any linear and continuous operator
U : C(Q,X) - Y has associated with it a finitely additive vector
measure G : ¥q — L(X,Y™**), where Xq is the o-field of Borel subsets
of €, such that

yU(f) = /Q fdG,, feC@,X), y Y,

see [3, 4, 8, 9] for more details. The measure G is called the
representing measure of U.

Also, for a linear and continuous operator U : C(Q, X) — Y, we can
associate in a natural way two linear and continuous operators

U#.C0(Q) — L(X,Y) and Uy:X — L(C(Q),Y)
defined by
(UF¢) (@) =U(p@z) and (Uyz)(p)=U(p®2)

where for ¢ € C(Q), z € X, we define (¢ ® ) (w) = ¢ (w) z, for w € Q.
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The operator U# occurs also in [9, Theorem 1, page 377], where it is
denoted by U’.

Swartz in [19] characterized absolutely summing operators U on the
space C(£2, X) in terms of the representing measure and the operator
U#

Saab in [17] characterized integral operators U on the space C(£2, X)
in terms of the representing measure, and later Montgomery-Smith and
Saab in [10] presented a characterization of integral operators U on an
injective tensor product in terms of the operator U%.

Partial characterizations of nuclear operators U on the space C(2, X)
in terms of the representing measure and the operator U# are given
in [1, 12, 17, 18], and a partial characterization of Pietsch integral
operators U on the space C(£2, X) in terms of the representing measure
and the operator U# is given in [13].

The space C(€2,X) is an injective tensor product [5, 8]. In [10],
for p-absolutely summing operators, and in [14], for (r, p)-absolutely
summing operators, necessary conditions are given for an operator U
on an injective tensor product to be p-absolutely summing, respectively
(7, p)-absolutely summing, in terms of the operator U#. By symmetry,
these necessary conditions are also true for the operator Ux. We will
use in our proofs this corresponding fact for U.

We denote by (As,|| las), (I, ]| lint), N,|| |laue) the normed
ideal of all absolutely summing, (Grothendieck) integral operators and
nuclear operators, respectively. We refer the reader to [5, 7, 8, 11] for
details.

If X is a Banach space, a series y .- @, in X is called a weak
Cauchy series if and only if for every z* € X* the series >~ | |z*(z,,)]
is convergent.

We denote by (en)nen the canonical basis in the Banach space cy.

For a vector measure G : ¥ — X, where X is a o-field of sets, we
denote by |G| the variation measure of G, see [8, 9].

Also, for 2 = [0,1] we denote p : Lo — [0,1] the Lebesgue measure,
and by (rn)nen the sequence of Rademacher functions. If (S,%,v)
is a finite measure space, X is a Banach space and f : § — X is
a v-Bochner integrable function, then we denote by B — [ 0) fdv the
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indefinite Bochner integral. It is always a o-additive vector measure
with finite variation.

All notations and notions used and not defined in this paper can be
found in [7, 8].

In the sequel we will use the following well-known result, [5, 7].

Fact. If X is a Banach space, then As(co,X) = I(co,X) =
N(Co,X).

More precisely, T € As(co, X) if and only if >, [|[T(en)|| < oo, and
in this case

1T g = 1T ling = | T llae = D 1T ()| -
n=1

The main result and examples. In the following theorem, which
is the main result of our paper, we present a characterization of both
integral and nuclear operators on the space C'(£2, ¢p).

Theorem 1. Let Q) be a compact Hausdorff space, X a Banach space
and U : C(Q,¢c0) = X a linear and continuous operator. Suppose that
the representing measure G takes its values in L(cg, X) C L(co, X**),
and let G, : g — X be defined by G.,(E) = G(E)(e,), forn € N.

(a) The following assertions are equivalent:
(i) U is absolutely summing.
(ii) U is integral.

(ili) For each n € N, we have
Uy (en) € As(C(), X)

and

Z U (en) [las < oo

n=1

(iv) For each n € N, the set function G, has bounded variation and
2ozt Ge, () < oo
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(v) G : ¥ = N(cg,X) has bounded variation with respect to the
nuclear norm.

In addition,

1Ulline, = 11l ZIIU# €n)llas ZIGenI = |Gl (2) -

(b) The following assertions are equivalent:
(i) U is nuclear.
(ii) U is integral and Ug(e,)e N(C(R), X) for everyn € N.

(iii) U is integral and Uy(€)e N (C(2), X) for every & € cy.
In addition, |U||lnue = 2211 [Us(en) lnue = |Glauc($2).

Proof. (a) (i) = (iii). If U is absolutely summing, then by [10,
Theorem 3.1] or [14, Theorem 1], Uy : ¢¢ — As(C(Q2),X) is ab-
solutely summing and [|[Ugl|las < ||U|las. This implies, in particu-
lar, that Ug(e,) € As(C(R?),X) for each n € N and by the Fact,
2 one1 [1U#(€n)llas < [Ug|las, ie., (iii) holds.

(iii) = (iv). For each n € N, the representing measure of Ux(ey) is
Ge,, and ||Ug(en)llas = |Ge,, [(£2), [8, Theorem 3, page 162]. Hence, (iv)
follows from (iii).

(iv) = (i). For E € Xgq, we have

> lG(E

o
Q

E)| <) |Ge.|(E
n=1

|Ge,.| (2) < 0.

3
Il
-

[M]8

<

3
Il
-

By the above Fact, G(E) € As(cp, X) and
1G (B)llpue = G (E Z 1Ge., (B)II, E € Za.

From this and (iv) we obtain that G : £g — As(co, X) has bounded
variation and |Glyuc(E) = |Glas(E) < Y07 |Ge, |(E) for any E € Xq.
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Now, by Swartz’s theorem [19] or by a more general result [15
Theorem 2], it follows that U is absolutely summing and, moreover,

1Ullas = 1Glas Z |Ge,. | (

i) = (v). It follows from Swartz’s theorem [19] and the above Fact.
v) = (ii). Apply Saab’s theorem [17, Theorem 3].

(
(
(ii) = (i). This is true in general and is known [5, 7, 11].
We also have the equality from the statement.
We remark that |Glpuc(E) = Y oo |Ge,|(E) for all E € Zg. This
follows since (iv) = (i) yields

Gl... (Q\E) < Z|G (Q\ E),FE € Xq,

nuc

and then use |Gluuc(Q) = > onr [Ge. |(9).

(b) (i) = (iii). Follows from the ideal property of nuclear operators
and the obvious relation that for any ¢ € ¢y we have Ux(§) = Uog,
where ¢ : C(Q) = C(€, ¢) is defined by o¢(p) = ¢ ® .

(iii) = (ii). This is trivial.
(ii) = (i). We will prove that in this case there is a |G|uc-Bochner
integrable function A : Q — M (cp, X ) such that

G(E):B—/hd|G|nuc, Ee S,
E

which then assures, by [1, Theorem III. 4], as it is cited in [18] or [12,
Theorem 1] or [18, Theorem 5], that U is nuclear.

Indeed, since for each n € N we suppose that Uk (e,) € N (C(£2), X),
it follows that there is a |G, |-Bochner integrable function ¢, : @ — X
such that Ge, (E) = B — [, ¢nd|Ge,|, for E € X [8, Theorem 4,
page 173]. Because U is integral, (a) implies that |Ge,| < |Gluuc
and, hence, there is a |G, |-integrable function h, : Q@ — [0, 00)
such that |G, |(E fEh d|Glpuc for E € Xq. Then G, (E) =
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B— fE n@n d|G|nuc for E € ¥q and |G, |(E fE ll@nl|hn d|G|aue fo
alln € N and E € Eq. Hence, by (a), it follows that

Z|Gen| -/ (Z|son||hn)d|a|m, Fe o

n=1

Then Y7, [[@nllhn = 1 for |G|puc-almost everywhere w € Q, which
implies that the function h : @ — L(cg, X) defined by

Z f,en (pn hn(OJ), WEQ, 56007

takes |G|, .-almost everywhere value in L(co, X ); without loss of gen-
erality, we can suppose that h takes all its values in L(cg, X).

Then, for all w € Q and n € N, we have h(w)(e,) = @n(w)h,(w),
which by the above Fact, implies that h takes its values in N (co, X

and
oo

17 @) llaue = D len @) hn ().

n=1

Thus,

L 1@ e 216 e ) = [ (Znsannh)dmnuc

= |Gl () < 00

Since h : © — N(co, X) is obviously |G|uuc-Bochner measurable, it
follows that h is |G|uc-Bochner integrable.

Now, if F(E) = B — [ hd|G|nuc, then by the Hille theorem [8, page
47], for any € = (&,)neN € ¢o and E € X, we have

F(E)(©) = B [ 1()(©) 16 )

( B ()16 )

an e) = G (B) (&)

and

-3¢
2 e



INTEGRAL AND NUCLEAR OPERATORS 259

Thus, G(E) = B— [}, hd|G|ny for all E € Xq, and the proof is finished.
]

If X* and Y have the Radon-Nikodym property and Y is comple-
mented in its bidual, then the space N'(X,Y) has the Radon-Nikodym
property, (see [13, Corollary 5] for this result or [2, Theorem 7] for
the more general normed ideal of operators, but in [2], under some ap-
proximation hypotheses). In the examples which we present the space
N(X,Y) (in our situation A'(co,Y")) does not a priori have the Radon-
Nikodym property.

As applications of Theorem 1, we now present some relevant exam-
ples.

Example 2. (i) Let a = (ap)nen € loo, and U : C([0,1],¢0) —
¢o(C10,1]) be the operator defined by

(Uf) (z) = <an/w<f (t),en) dt) , = €][0,1].

0 neN

Then U is integral if and only if a € [;, while U is nuclear if and only
if a=0.

(ii) Let a = (an)nen € loo and U : C([0,1], co) — ¢co(L1]0,1]) be the
operator defined by

W@ = (a [ (@) ), wefol,
neN

0
Then U is integral if and only if U is nuclear if and only if a € I5.

(iii) Let Y~ | @, be a weak Cauchy series in a Banach space X and
U : C[0,1],¢9) — X the operator defined by

(oo}

Umzz(fmmmmn@%

n=1

Then U is integral if and only if it is nuclear if and only if the series

>0 | @y is absolutely convergent.
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Proof. (i) Let Q = [0, 1]. The representing measure of U is

G(B)(©) @) = (an e (EN0.4)) .

neN
5660, FE € Xq, tE[O,l].

Then

IGe, (B)| = sup lan|pn (E10,8]) = lanl u(E), E € Za,

t€[0,1]

and thus
D 1G] (0,1]) = lanl.-
n=1 n=1

The statement follows from Theorem 1 (a).

If U is nuclear then, by Theorem 1 (b), for each n € N the operator
Ux(ey,) : C[0,1] = ¢(C]0,1]) is nuclear and, by the ideal property of
nuclear operators, it follows that p,,Ug(e,,) : C[0,1] — C[0, 1] is nuclear
(where p,, are the canonical projections in ¢o(C[0,1])). Observe, for
each n € N, that

(PaUs (en)) (9) (2) = an / “owd, pecl], zel0,1.

Since the Volterra operator V' : C[0, 1] — C]0, 1] defined by (V)(z) =
5 ©(t) dt is not nuclear (8, page 73], it follows that a, = 0.

(ii) Argue as in (i) and use the fact that the Volterra operator
V : C[0,1] — Ly[0,1] defined by (V)(z) = [; ¢(t)dt is nuclear [8,
page 78].

(iii) Let f € C([0,1],¢0). Then (f(t),en) — 0 and [(£(2),en)| < [|£]]
for t € [0,1]. From the Lebesgue dominated convergence theorem it

follows that fol T (6)(f(t),en)dt — 0 and, since > o~ @, is a weak
Cauchy series in X, it follows that U is well defined [6, Theorem 6,
page 44]. The representing measure of U is

1<£,en>(/Ern(t) dt>a:n, E € %q.

o0

n=
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Then G.,(E) = ([5rn(t) dt)z, and |G, |([0,1]) = ||9vn||f01 7 (t)| dt.
We now apply Theorem l (a) and (b) to obtain the statement.

Example 3. (i) Let Q = [0,1], (¢n)nen C L1([0,1],11) be such that
SUP,en [on(t)]l, < oo for all ¢ € [0,1] and [L(, on(t))dt — 0 for
E € Xq and € € ¢g. Let U : C([0,1],c0) — co be the operator defined

by 1
v = ([ v dt)neN‘

Then U is nuclear if and only if ¢, (t) — 0 weak* for py-almost every-
where t € [0,1] and the function h = (hy)ren belongs to Ly([0,1],11),
where hy(t) = sup,en [(er, on(t))]-

(i) Let M = (@nk)n,ken be a regular method of summability and
U : C([0,1],¢0) = ¢co the operator defined by

_ (i_o;ak [ G0 w)

Then U is integral if and only if U is nuclear if and only if the series
Y ey (sup,en |ankl) is convergent.

Proof. (i) By hypothesis, it is clear that U is well defined and that
the representing measure of U is

G(E)(é)z(/E@,sok(t» dt)kN, Beto tea
€

Suppose that U is nuclear. Then, by Theorem 1 (b), for any
€ € ¢o the operator Ug(§) : C[0,1] — ¢o defined by Ux(€)(f) =
(fo (€, @n(t))f(t) dt)nen is nuclear. Using [16, Proposition 3 (iv)], it
follows that (€, ¢, (t)) — 0 for p-almost everywhere ¢ € [0,1] and

1
1U% (€)] e :/0 he (t) dt, where he () = Sggl(&% @)1

We observe that the exceptional set typically depends on £ € ¢y but,
since ¢ is separable, it follows that the exceptional set is independent
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of &, i.e., there is an A € ¥q such that p([0,1] \ A) = 0 and
©n(t) = 0 weak* for any t € A.

In particular,

1
1U% (ek)llmc=/ hug (t) dt with b (£) = sup [(ex, pn (D)] -
0 ne

Since U is nuclear, by Theorem 1 (a) we have

oo o 1
S 10 @l =1Vl i 3 [ €) dt = [V
k=1 k=170

Hence, h = (hg)ken € L1(]0,1],11).

For the converse we observe that, for each & € N, we have
(ek, pn(t)) — 0 for p-almost everywhere ¢ € [0,1] and the function
hy is integrable. Thus, by [16, Proposition 3(iv)], it follows that the

operator U (eg) is nuclear and, in addition, |Ug(ex)||nuc = fol hi(t) dt.
Using now the fact that h = (hg)ren € L1([0,1],11) the proof is com-
pleted by Theorem 1 (b).

(ii) Recall that if M = (ay) is an infinite real matrix and

oo
(Tk)ren — <Zankwk>
neN

k=1

is its formal action on the space of all sequences of scalars, then
M = (ank) is called a regular method of summability if its action on
convergent sequences produces convergent sequences with preservation
of limits. As is well known, a matrix M = (k) is a regular method
of summability if and only if

a) SUPpeN Do |ank| < 0o,

b) for each k € N, lim,,_, 00 @i, = 0,
¢) limy 00 D poq nk = L.
Let ¢, : [0,1] = ¢} = l; be defined by

o () () = D anne (€, ) 7 (1)
k=1
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and observe that

v = ([ 0o w)

Then U#(ek) = M\; ® o is a rank one operator, where \;(p) =
fo o(t)ri(t) dt for p € C[0,1] and a = (Cnk)neN-

AISO <6k,80n( )) = ankri(t). Hence, hy(t) = sup,en [(ex, ¢n(t))] =
SUp,en |@nk| and by Theorem 1 (a) and part (i) the statement follows.

Example 4. Let Q@ =[0,1] and (h,)nen C Loo[0, 1] be such that

M = sup ||hy||,, < oo and / hn(t) dt =0 for F € Xg.
neN E

Let (z})nen C ¢§ = l1 be a bounded sequence such that, for some
x € ¢y, we have liminf, , |z%(z)| > 0 and T : ¢y — lo defined by
T(z) = (zf(z))nen is nuclear.

Let U : C([0,1],¢c9) — co be the operator defined by

vn=([ e (£ () hn () )

neN
Then
(a) U is integral.

(b) U is nuclear if and only if h,(t) — 0 for p-almost everywhere
tel0,1].

Proof. (a) For ¢, : [0,1] = l; = ¢} defined by
¢on (t) (2) = 5, (2) b (1), £ €[0,1], €0,

we observe that the conditions in Example 3 () are satisfied.
The representing measure of U is G(E)(z) ) [ hn(t) dt)neN.

We show that G : & — N(cp, cp) has bounded variation w1th respect
to the nuclear norm. By Saab’s theorem [17, Theorem 3], or Theorem
1(a), U will then be integral.
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Indeed, for each £ € X we have G(E) = SgT, where Sg
loo — c¢o is the multiplication operator defined by Sg((an)nen) =

(o [ hn(t) dt)pen.
Since T : ¢y — l is nuclear, it follows that G(E) € N (co, c¢p) and

1G (Bl e < 1Tl age I1SEI

nuc

i.e.,
1G (B)lpue < 1T lloue 1F (B
where F(E) = sup,,cn | [ hn(t) dt], for E € Xq.
Because ||F(E)|| < Mu(E) for E € Xq, it follows that G : ¥ —

N (co, ¢p) has bounded variation with respect to the nuclear norm.

(b) If U is a nuclear operator, then, by Example 3 (i), it follows that
for p-almost everywhere ¢ € [0, 1] we have ¢, (t) — 0 weak*. Let A € ¥
be such that p([0,1]\ A) =0 and for all t € A and any « € ¢p we have
zf (z)h,(t) — 0. Since, by hypothesis, there is an # € ¢y such that
liminf,,_, |2} (2)| > 0, we deduce that limsup,,_, . |, (t)] = 0.

For the converse, observe that from h,, — 0, py-almost everywhere, it
follows that ¢, (t) — 0 weak* for u-almost everywhere ¢t € [0, 1]. Also

hi (t) = sug\(ek,gon N < M||T (er)||], for te]0,1], keN.
ne

Since T is nuclear (by the Fact), it follows that (hg)ren € L1([0, 1],11),
and we can use Example 3 (i) to deduce that U is nuclear.

A concrete situation for Example 4 is the following one.

For a nonzero (A,)nen € 1, let @, € ¢ be defined by

x) (1, 2T2,...) = ANz + AeZa + - -+ Ay, (21,22,...) € cp.
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