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AN OVERVIEW OF GRAPHS
ASSOCIATED WITH CHARACTER DEGREES
AND CONJUGACY CLASS SIZES
IN FINITE GROUPS

MARK L. LEWIS

1. Introduction. Let G be a finite group. One of the key tools
to studying G is the set of irreducible characters of G. The characters
are constant on conjugacy classes, and in fact the conjugacy classes
can be viewed as being “dual” to the characters. The value of each
character at the identity is the degree of the character, and we call the
set c¢d (G) = {X(1) | X € It (G) } the (irreducible) character degrees of
G. The corresponding value for the conjugacy class is its size, and we
call the set cs (G) = {|C| | C € class(G)} the class sizes of G. These
are both finite sets of positive integers that include 1.

In this field of study, there are two main questions that arise. Which
sets of positive integers can occur as either cd (G) or cs(G) for some
group G, and if there is some set X so that X = cd (G) or X = cs(QG)
for a group G, what can be said about the structure of G? To aid in the
study of these questions, we will attach several graphs to cd (G) and
cs (G). Again the questions that arise are: which graphs can occur in
these situations, and if some graph does occur, what can be said about
the associated groups?

This will be an expository paper in which we outline the major results
about these graphs. In this paper we will survey many of the known
results, and we will provide references to the literature for their proofs.

There are two main graphs considered in this paper. In Section 3, we
define these graphs for general sets of positive integers, and we outline
the connections between these graphs for a given set of integers. In
Sections 4, 5, 6 and 7, we look at the properties of the graphs attached
to c¢d(G). We look at graphs associated with cs(G) in Section 8.
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Sections 9 and 10 look at subgraphs and generalizations of the graphs
considered for cd (G) and cs (G).

2. An overview. The genesis for this paper occurred several years
ago when Isaacs was preparing [29]. At that time, he asked us for a
summary of the results known about these graphs. Many times before
and since, we have been asked for a good place to find an expository
account of the results associated with these graphs. We usually referred
people to [24], but that paper was published in 1991 and, due to the
large number of results that have appeared since then, that account is
now out of date. A good introduction to the basic results can be found
n [25]. A more extensive introduction to the subject is in [55], and it
included most of the results known for the character degree graphs at
that time. Unfortunately, it too has become out of date. Thus, we feel
that an expository account of the results associated with these graphs
is appropriate.

The character degree portion of this paper is based on a series of
lectures that we gave in the algebra seminar at Kent State University.
At that time, it was suggested that it would be useful to include graphs
associated with conjugacy classes. We decided to follow this advice. We
were not as familiar with the literature on the graphs associated with
conjugacy classes, and we were surprised with the extent of it.

Recall the two questions posed in the introduction. What graphs can
occur in each context? If a given graph is associated with G, what
can be said regarding the structure of G? Most of the known results
address the first question. In particular, we will find that in all but
one of the graphs we study, the number of connected components will
be at most two or three. (There is one graph where there is no bound
on the number of connected components.) For the most part, the only
other restriction that will be placed on the graphs will be a bound on
the diameter. In a couple of cases, we will find further restrictions
on which graphs can occur, but even in those cases we do not have a
full characterization of which graphs occur. As to the second question,
most of the results look at the structure of G when the associated graph
is disconnected.
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3. Graphs associated with sets of integers. For the moment, we
are going to set the groups aside and just focus on the graphs associated
with sets of positive integers. The results in this section are considered
part of the folklore of the subject. Since the proofs of these results are
easy and have not been well distributed, we include them here.

If G is a graph, we let n(G) be the number of connected components
of G. If x and y are vertices lying in the same connected component of
G, then the distance between z and y, written d (z,y), is the number of
edges in a path between x and y with the fewest number of edges. If
and y lie in different connected components of G, we do not define the
distance between them. The diameter of G is the maximum distance
between vertices in the same connected component, and is denoted by
diam (G). Note this means that the diameter of G is the largest diameter
among the connected components. (We should mention this is perhaps
not the standard graph theoretic definition of diameter. In that case,
the diameter of a disconnected graph would be infinite. This definition
is consistent with the usage in the literature on these graphs.)

If z is a positive integer, we use 7(z) to denote the set of prime
divisors of x. For our purposes, X will be a set of positive integers.
We define p(X) to be the set of primes dividing integers in X, i.e.,
p(X) = Un(z) where & runs through the elements of X. The prime
vertex graph for X is denoted by A(X). The vertex set for A(X) is
p(X), and there is an edge between p, g € p(X) if pg divides x for some
integer x € X. The common divisor graph for X is denoted by I'(X).
The vertex set for I'(X) is X* = X \ {1}, and there is an edge between
a,b € X* if a and b have a nontrivial common divisor. (Note, we are
not necessarily assuming 1 € X. If 1 is not in X, then X* = X.)

If Y is a subset of X, it is easy to see that A(Y) is a subgraph
of A(X) and I'(Y) is a subgraph of I'(X). If W is a set of positive
integers with the property that, for every element w € W, there is
some integer z € X so that w | , then one can show that A(W) is a
subgraph of A(X). On the other hand, I'(W) need not be a subgraph
of I'(X). It is easy to believe that A(X) and I'(X) are intimately
connected. In the following lemma, we present one connection that
has proven to be important. Since it is possible for primes to occur
in X, we will distinguish distance in I'(X) from distance in A(X)
by a subscript. (To demonstrate the possible problem, consider the
following. If X = {2,3,6}, then dp(x)(2,3) = 2 and da(x)(2,3) = 1.)
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Lemma 3.1. Let X be a set of positive integers. Suppose a,b € X*.
Fiz primes p and q so that p | a and q | b. Then a and b lie in the
same connected component of I'(X) if and only if p and q lie in the
same connected component of A(X). Furthermore, if this occurs, then

|d1"(X)(a7 b) - dA(X)(pa q)| <1

Proof. Suppose a and b lie in the same connected component of
I'(X). We choose the integers a = ag,a,...,a, = b € X* so that
a=ag—ay — - — a, = bis a path with the fewest number of edges
between a and b in I'(X), so dp(x)(a,b) = n. For each i =1,...,n,
we can find a prime p; € p(X) so that p; | a;—1 and p; | a;. It follows
that p — p1 — --+ — p, — q is a path of length n + 1 in A(X), and
dax)(p,q) < n+1=drix)(a,b) + 1.

Conversely, suppose that p and g lie in the same connected component

of A(X). We find primes p = qg,q1, ..., ¢ = ¢ € p(X) with p = g —
g1 — -+ —q = q is a path of shortest length between p and ¢ in A(X).
It follows that da(x)(p,q) = 1. Fori =1, ..., [, we can find b; € X* so
that ¢;_1¢q; | b;, and this implies a — by — --- — b; — b is a path of length

I +1in I'(X), and we see that dr(x)(a, ) <1+1=dax)(p,q) + 1.
Therefore, |dp(x)(a,b) — dax)(p, )| < 1. o

Corollary 3.2. Let X be a set of positive integers so that X* is not
empty. Then we have the equation n(A(X)) = n(I'(X)). Furthermore,
|diam (A (X)) — diam(I'(X))| < 1.

Proof. Notice that in Lemma 3.1, we actually proved that there was
a correspondence between the connected components of I'(X) and the
connected components of A(X). In particular, a subset A of X* that
is maximal with prime set p(A) corresponds to a connected component
of I'(X) if and only if p(A) corresponds to a connected component
of A(X). Furthermore, the diameters of these connected components
differ by at most 1. i

Let X = {4,6,9}. It is easy to see that I'(X) has diameter 2 while
A(X) has diameter 1. On the other hand, if Y = {6,15}, then I'(Y)
has diameter 1 and A(Y") has diameter 2. Thus, it is possible for the
graphs to have different diameters and for either graph to have the
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larger diameter. If we let Z = {4,6}, then both I'(Z) and A(Z) have
diameter 1 which shows that the two graphs may also have the same
diameter.

Next, we will present examples to show that any graph can appear
in either context. This shows that when we look at sets of integers
coming from groups, the restrictions on the graphs occurring are group
properties and not artifacts arising from the construction of the graphs.

Lemma 3.3. Let G be any graph. Then there exist sets of positive
integers X andY so that A(X) =G and I'(Y) 2 G.

Proof. Let vy, v, ..., v, be the distinct vertices, and let ey, eq, .. ., e,
be the distinct edges of G. Take py1,p2, -..,pn to be distinct primes.
We can view each edge e; as an unordered pair {v,,, vy, } where a; and
b; are integers between 1 and n. For ¢ = 1,...,m, we set x; = pq,ps,,
and X ={z; |i=1,...,m}U{p1,p2, ..., Pn}. It is not difficult to
see that A(X) 2 G. Let ¢1,92, ..., ¢m be distinct primes that are all
different from py,ps, ..., pn. We define c(3,j) to be 1 if e; is incident

to v; and 0 otherwise. For ¢ =1, ..., n, we define y; = p; H;n:l q;(i’j),

andY ={y; |i=1, ..., n}. It is not difficult to see that T'(Y) 2 G. O

4. Which graphs occur as A(G)? Let G be a group. We
define p(G) = p(cd (@), A(G) = A(cd(@)) and I'(G) = I'(cd (G)).
It is not difficult to see that, if G is any group and A is an abelian
group, then both A(G) = A(G x A) and I'(G) = I'(G x A) since
cd (G) = cd (G x A). Thus, once one has one example of a group that
gives rise to a graph G, then one has a family of examples that gives
rise to G.

If N is a normal subgroup of G, we know that cd (G/N) is a subset of
cd (G), so A(G/N) is a subgraph of A(G) and I'(G/N) is a subgraph
of I'(G). The set cd (V) has the property that every degree a € cd (N)
divides some degree b € c¢d (G). It follows that A(N) is a subgraph
of A(G). On the other hand, it is not clear what relationships exist
between I'(G) and I'(N). Because of this fact, the prime vertex graph
A(G) is more amenable to inductive arguments than the common
divisor graph I'(G). This may explain why most of the results in the
literature are about A(G). Furthermore, much more is known about
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A(G) when G is solvable. In this section, we discuss which graphs
occur as A(G) when G is solvable.

Perhaps the most sweeping result regarding which graphs arise as
the prime graph, A(G), when G is solvable, is due to Palfy [67]. This
theorem should be viewed as eliminating many graphs as possibilities
for A(G) when G is solvable. Interestingly, the first published proof of
this result was in [55].

Theorem 4.1 (Pélfy [67]). Let G be a solvable group, and let
be a subset of p(G). If |w| > 3, then there exist primes p,q € © and
a degree a € c¢d(QG) so that pq divides a. In other words, any three
primes in p(G) must have an edge in A(G) that is incident to two of
those primes.

We will say that a graph satisfies Pdlfy’s condition if it has the
property that every three vertices have an edge incident to two of those
vertices. It is easy to see that a disconnected graph that satisfies Pélfy’s
condition will have two connected components, and each connected
component will be a complete graph. Also, it is not difficult to see
that (connected) graphs satisfying P4lfy’s condition have diameter at
most 3. We state these results as a corollary. In fact, it was known
when G is solvable that n(A(G)) < 2 and diam (A(G)) < 3 before
Palfy’s theorem. (See [52, Proposition 2] and [54, Corollary 4.5].
It is surprising to note that Manz proved the number of connected
components was at most 2 before the prime vertex graph A(G) had
been defined.) In Theorem 4.4 of [54], they proved a weaker version
of Theorem 4.1. In particular, they proved that if G was solvable and
m was a subset of p(G) with |7| > 4, then there exist primes p,q € 7
and a degree a € cd (G) so that pq | a. This led to the immediate
corollary that if G is solvable and A(G) is disconnected, then at least
one connected component of A(G) is a complete graph and the other
connected component has diameter at most 2, see [54, Corollary 4.5].
As far as we can tell, Palfy was the first to prove that if A(G) is
disconnected when G is solvable, then both connected components are
complete graphs.
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Corollary 4.2. Let G be a solvable group.
1. (Manz [52]). Then n(A(G)) < 2.

2. (Manz, Willems and Wolf [54]). If A(G) is connected, then
diam (A(G)) < 3.

3. If A(G) is disconnected, then each connected component is a
complete graph.

As we will see, the situation when A(G) is disconnected has been
studied in detail. The next result was first mentioned in [24]. When
we read this result, it was such a surprise that we did not believe it
was true. It was not clear in [24] who had discovered this result, so we
wrote Huppert to ask. He stated the result was due to Palfy who had
never published it. We had managed to prove the result ourselves, and
we were within a day of submitting for publication a paper containing
our proof when we received a preprint of [68]. In that paper, we found:

Theorem 4.3 (Palfy [68]). Suppose the prime vertex graph of
cd (G) for a solvable group G has two connected components, and let
the cardinalities of the vertex sets of the two components be n and N
withn < N. Then N > 2™ — 1.

This shows that many graphs satisfying Palfy’s condition do not occur
as A(G) for some solvable group G. For example, the four-vertex graph
in Figure 1 does not occur as A(G) for a solvable group G.

FIGURE 1. Not allowed by Theorem 4.3.

Question 4.4. Let n and N be integers greater than 1 so that
N > 2™ —1. Does there exist a solvable group G so that A(G) has two
connected components with cardinalities n and N7
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We do not know any pairs (n, N) as in the question where there fails
to be an example of solvable group G with a disconnected prime vertex
graph with connected components of sizes n and IN. For every positive
integer IV, there is a solvable group G so that A(G) has two connected
components, one an isolated vertex and the other having N vertices.
We illustrate this with the following example. Let p be an odd prime.
We can find an integer a so that p® — 1 has at least N prime divisors.
(Use the Zsigmondy prime theorem.) Take b to be a divisor of p* — 1
with exactly N distinct prime divisors. Define F to be an extra-special
group of order p?**! and exponent p. Now, E has an automorphism o
of order b that centralizes the center of E, and set G as the semi-direct
product E({c). It is relatively easy to prove that cd (G) = {1,b,p"}, see
[66], and so the connected components of A(G) have vertices {p} and
m(b).

When n > 2, the answer to the question will probably rely on number
theory rather than character theory or group theory. From [36], we see
that if G is a solvable group whose prime vertex graph on cd (G) has
two connected components, both components with at least two vertices,
then the connected components of A(G) are 7(b) and 7(m) where b
and m are coprime, composite integers. Furthermore, there is a prime
power g where (¢™ — 1)/(q¢ — 1) divides b and b divides ¢(¢™ — 1). If
we have integers b and m that satisfy the above condition, then we
use the construction in [28] to find a solvable group G whose prime
vertex graph on cd (G) has the two connected components: m(b) and
m(m). This reduces the question of the existence of a solvable group
whose graph has two connected components having sizes n and N to a
question of the existence of a prime power ¢ and integers m and b so that
the following conditions are satisfied: b and m are coprime, m has n
distinct prime divisors, b has N distinct prime divisors, (¢ —1)/(g—1)
divides b and b divides g(¢™ — 1).

We have seen that we have a reasonable idea of which graphs occur as
disconnected prime vertex graphs for cd (G) given G is solvable. When
A(G) is connected and G is solvable, the picture is murkier. At the time
[54] was published saying that diam (A(G)) < 3 for a solvable group G,
no solvable group G was known to have a prime vertex graph for cd G
whose diameter was 3. In fact, it was conjectured that diam (A(G)) < 2
when G is solvable. To further this belief Zhang proved:
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Theorem 4.5 (Zhang [75]). If G is a solvable group, then A(G) is
not the graph in Figure 2.

FIGURE 2. Not allowed by Theorem 4.5.

It is easy to see that the graph in Figure 2 is the only graph with 4
vertices and diameter 3. We also showed in [41] that no graph with 5
vertices and diameter 3 occurs as A(G) with G solvable.

Theorem 4.6 [41]. If G is a solvable group and |p(G)| = 5, then
diam (A(G)) < 2.

On the other hand, at the time Theorem 4.6 was proved, we also
found an example that proved the conjecture is false.

Theorem 4.7 [40]. There is a solvable group G where A(G) is the
graph in Figure 3.

FIGURE 3. The graph of Theorem 4.7.

The group referred to in Theorem 4.7 is quite complicated. (For
example, it has order 245.3.5.7-31-151.) Thus, we will not present it
here. Only one group is constructed in [40] and, as mentioned earlier,
other examples can be found by taking direct products with abelian
groups. Lately, our graduate student, Carrie Dugan, has replicated the
construction in [40] to find other solvable groups whose prime vertex
graphs for c¢d (G) have diameter 3.
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We now ask which graphs with diameter 3 occur as A(G) for some
solvable group G. Suppose G is a connected graph of diameter 3 that
satisfies Palfy’s condition. It is not difficult to see that the vertices
of G can be partitioned into 4 nonempty sets pi, p2, p3, and py, SO
that no vertex in p; is adjacent to any vertex in p3 U p4 and no vertex
in ps is adjacent to any vertex in p; U pa. Also, every vertex in po
is adjacent to some vertex in p3 and every vertex in ps is adjacent to
something in ps. Applying Palfy’s condition, we see that p; U p2 and
p3 U py determine complete subgraphs of G. Finally, we label the sets
so that |p1 U p2| < |ps U pa|. (For the full details on this partition see
Observation 1 of [41].)

The evidence we have seen suggests that if G is solvable and A(G) has
diameter 3, then there is a normal subgroup N so that p(G/N) = p(G)
and A(G/N) is disconnected where the connected components match
up with the sets p; U p2 and p3 U ps from the last paragraph. In fact,
the groups that arise as G/N in the examples we have seen suggest the
following conjecture, which should be compared with Theorem 4.3.

Conjecture 4.8. Let G be a solvable group with diam (A(G)) = 3.
Label the vertices of A(G) as above. If n = |p1Up2|, then |p3Ups| > 2.

Since the p;’s are nonempty, |p1 U p2| > 2. If this conjecture is true,
then it would say that |p3 U ps| > 4 when |p; Ups| = 2. In particular, it
would imply that there are no solvable groups whose degree graphs have
diameter 3 and fewer than 6 vertices, which is the content of Theorems
4.5 and 4.6. It also would imply that if A(G) has diameter 3 and 6
vertices, then |py U p2| = 2 and |p3 U ps| = 4, which is proved in [41].
On the other hand, we have no feeling on the relationships between |p; |
and |p2| and between |ps| and |p4|. In Figure 3, |p1]| = [p2| = |pa| =1
and |ps| = 3. We ask whether there is a solvable group G where
diam (A(G)) = 3 and |p3| = |pa] =2 or |p3] =1 and |ps| = 3.

Finally, we consider graphs with few vertices. In [24], Huppert lists all
the graphs with 4 or fewer vertices that occur as A(G) for some solvable
group G. In fact, except for the graphs shown in Figures 1 and 2, every
graph with 4 or fewer vertices that satisfies Palfy’s condition occurs as
A(G) for some solvable group G. We saw in Theorem 4.6 that the 5
vertex graphs with diameter 3 do not occur as A(G) for any solvable
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group G. In [44], we show that two other graphs with 5 vertices that
satisfy Pélfy’s condition do not occur as A(G) for any solvable group
G. Also, for all but one of the remaining graphs having 5 vertices that
satisfies Palfy’s condition, we find a solvable group with an isomorphic
prime vertex graph. There is one graph with 5 vertices where we do not
know of a solvable group G so that A(G) is isomorphic to this graph,
but also, we are unable to prove that no such group exists. This graph
is shown in Figure 4. At this time, it is unknown which graphs with
6 vertices occur as A(G) when G is solvable.

=]

FIGURE 4. Unknown graph.

5. The structure of G given A(G). In the previous section, we
considered which graphs occur as A(G) when G is solvable. In this
section, we look at what can be said about the structure of G from
knowing the structure of A(G). Perhaps the most basic result in this
direction is the fact that if G has a nonabelian p-group quotient for
some prime p, then p will be adjacent to every other prime in A(G).
Restating this fact, if G is solvable and A(G) has no vertex adjacent
to all the other vertices, then all nilpotent quotients of G are abelian.

We next look at the structure of a group in terms of a prime p where
p is not adjacent in A(G) to some other prime in p(G). We will show
that the structure of G will be limited in terms of p. We define the
following series of characteristic subgroups:

Py =0y (G)’ b = Op’,p,p’(G)a Py = Op pp' pp’ (G’), cees

We define the p-length of G, written {,(G), to be the smallest integer {
so that P, = G. If G is solvable, [,,(G) is guaranteed to exist. In its full
generality, the following result was proved by Zhang in [76]. A weaker
version of this theorem had been proved earlier by Pense in [69].
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Theorem 5.1 (Zhang [76]). Let G be a solvable group. Suppose
that p,q € p(G) are not adjacent in A(G). Then I,(G) < 2 and
14(G) < 2. Furthermore, 1,(G) + l4(G) = 4 if and only if pg = 6
and the normal closure of a Sylow 2-subgroup of G contains a quotient
that is isomorphic to the semi-direct product of GL2(3) acting faithfully
on 43 X Zs.

Now, we switch from thinking about the structure of G in terms of
a single prime to the whole structure of G. Recall that the Fitting
subgroup F(G) is the unique largest normal nilpotent subgroup of G.
We can define a series of normal subgroups Fpy C Fy C F, C.-- C G
by Fy =1 and F;11/F; = F(G/F;). A group G is solvable if and only
if G = F; for some integer i. The Fitting height of G is the smallest
integer ¢ so that G = F;. The following result appears in [55].

Theorem 5.2 (Manz and Wolf [55]). Let G be a solvable group
where A(G) is disconnected. Then G has Fitting height at most 4, and
G/F(G) has derived length at most 4.

In fact, more can be said. The following result was nearly proved by
Palfy in [68] and Zhang in [78]. This form of the result was proved in
[36].

Theorem 5.3 [36]. Let G be a solvable group where A(G) is
disconnected. Then the following are true:

1. If G has Fitting height 4, then G/Z(G) is isomorphic to
the semi-direct product of GL2(3) acting on Zs x Z3 and cd (G) =
{1,2,3,4,8,16}. (Consequently, if p(G) # {2,3}, then G has Fitting
height at most 3.)

2. If both of the connected components of A(G) have at least 2
vertices, then G has Fitting height 3.

3. If one connected component of A(G) has n > 2 vertices and the
other has 2™ — 1 wvertices, then G has derived length 3.

In [36] we proved a stronger result. We defined six families of groups,
and we proved that G is solvable with A(G) disconnected if and only
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if G is in one of the six families. In other words, we have found a
classification for the solvable groups with A(G) disconnected.

Let G be a graph that occurs as A(G) for some solvable group G. We
say that G has bounded Fitting height if there is a bound on the Fitting
height of any solvable group H where A(H) = G. We know that if G is
disconnected, then G has bounded Fitting height. On the other hand,
if G is the graph with two vertices and an edge, then for any integer n
it is possible to find a solvable group H with Fitting height at least n
so that A(H) = G. Thus, G does not have bounded Fitting height. In
[35], we were able to characterize which graphs have bounded Fitting
height.

Theorem 5.4 [35]. Let G be a graph with n vertices that occurs as
A(G) for some solvable group G. Then G has bounded Fitting height if
and only if G has at most one verter of degree n — 1.

If G has bounded Fitting height, the bound that is found in [35]
is linear in the number of vertices of G. On the other hand, when
G is disconnected, the bound is 4. In fact, we do not know of any
graph with bounded Fitting height that occurs as A(G) for a solvable
group G where the bound is bigger than 4. This leads to the following
conjecture.

Conjecture 5.5. Let G be a solvable group where A(G) is a graph
with bounded Fitting height. Then G has Fitting height at most 4.

To provide further evidence in support of this conjecture, we looked
at some other graphs with bounded Fitting height, and in [37], we
showed the conjecture holds for these graphs. Specifically, we proved
the following theorem.

Theorem 5.6 [37]. Let G be a solvable group where either:

1. p(G) = m Ume U{p} is a disjoint union where each of the m;’s is
not empty, and no prime in 71 is adjacent in A(G) to any prime in
T2, OT
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FIGURE 5. Graph of Theorem 5.6.2.

2. A(G) is the graph with four vertices where every vertex has
degree 2.

Then G has Fitting height at most 4.

The proof of Theorem 5.4 is strongly based on Theorem 5.1. In
fact, Moreté has been able to prove the existence of a universal bound.
Specifically, he has proved the following.

Theorem 5.7 (Moreté [63]). Let G be a solvable group with bounded
Fitting height graph. Then the Fitting height of G is at most 31.
Furthermore, if |G| is odd, then the Fitting height of G is at most 7.

To prove that the universal bound is 4, a different idea will likely
be required. At this time, a reasonable next step would be to look at
other families of graphs that arise as prime vertex graphs with bounded
Fitting height, and prove that 4 is a universal bound for them. One
set of candidates for study that we would consider next is the set of
graphs with diameter 3.

Thus far, we have asked what is the largest Fitting height that can
arise for a solvable group G where A(G) = G, given the graph G. One
can also ask what is the smallest Fitting height that a solvable group
G can have when A(G) = G. When G is nonabelian and nilpotent,
i.e., has Fitting height 1, we know that A(G) is a complete graph.
Therefore, if A(G) is not a complete graph, then G must have Fitting
height at least 2. In [42], we characterize A(G) when G is a solvable
group of Fitting height 2.

Theorem 5.8 [42]. Let G be a graph with n vertices. There exists
a solvable group G of Fitting height 2 with A(G) = G if and only if the
vertices of G with degree less than n—1 can be partitioned into two sub-
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sets, each of which induces a complete subgraph of G and one of which
contains only vertices of degree n — 2.

We conclude this section with another question suggested by Theo-
rem 5.3. Thus far, we have considered the relationship between Fitting
height and the prime vertex graph, but conclusion (3) of Theorem 5.3
suggests that there might be a connection between A(G) and the de-
rived length of G. We can say that a graph G which occurs as A(G) for
some solvable group G has bounded derived length if there is an upper
bound on the derived length of H when A(H) = G. Obviously, any
such graph that does not have bounded Fitting height will not have
bounded derived length. Notice that the graph consisting of a sin-
gle vertex has bounded Fitting height but not bounded derived length
since this is the graph A(P) when P is any nonabelian p-group for a
prime p. Thus, there exist graphs with bounded Fitting height that
do not have bounded derived length. In fact, the only graphs we know
which have bounded derived length are the ones found in conclusion
(3) of Theorem 5.3. It would be interesting to find other graphs with
bounded derived lengths. Is it possible to characterize which graphs
have bounded derived lengths?

6. A(G) when G is not solvable. In the previous two sections we
considered the relationship between the prime vertex graph A(G) and
the group G when G is solvable. In this section, we wish to consider
this relationship when G is not solvable. These graphs have received
much less attention when G is not solvable, but recent research has
begun to better our understanding.

When looking at nonsolvable groups, the basic building blocks are
the nonabelian simple groups, so it makes sense to understand the
graphs that arise when G is a nonabelian simple group. We use the
classification to list these graphs. Since the character tables of the
sporadic simple groups are all in the Atlas [19], we can read off the
graphs of the sporadic simple groups from there.

Theorem 6.1. If G is a sporadic simple group other than My, J1 or
Mss, then A(G) is a complete graph. The prime vertex graphs of M11
and Ms3 are connected with diameter 2, and the prime vertex graph of
J1 is connected of diameter 3.
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The next family of groups to consider are the alternating groups.
Looking at the character degree sets for Alt (5) and Alt (6), we see that
A(G) is disconnected when G is either of these groups. It is well known
that Alt (5) = PSL (2,4) and Alt (6) = PSL (2,9), and we shall show
that these groups can be handled with the groups of the form PSL (2, q)
where ¢ > 4 is a prime power. Also, A(Alt (8)) is graph of diameter 2.
Looking at cd (G) when G 22 Alt (7), we see that the graph A(Alt (7)) is
a complete graph. By computing particular degrees for a large number
of examples in [4], Alvis and Barry present compelling evidence that
A(Alt(n)) is a complete graph when n > 9. Recently, Barry and Ward
have proved this conjecture [5]. In fact, a stronger result is proved.

Theorem 6.2 (Barry and Ward [5]). For every integer n > 15,
there is a degree a € cd (Alt (n)) such that a is divisible by every prime

in p(Alt (n)).

For 9 < n < 14, one can check via the actual character degrees that
A(Alt (n)) is complete.

The remaining simple groups are the groups of Lie type. The graphs
for these groups have been determined by White. The exceptional
groups of Lie type are handled in [72]. He proved that if G is an
exceptional simple group of Lie type except the Suzuki groups, then
A(G) is a complete graph. If G is a Suzuki group, say G' = 2B;(q¢?)
where ¢> = 2?1 and m > 1, then p(G) can be partitioned as
{2} Un(¢® —1) Un(¢* +1). The subgraph of A(G) on p(G) — {2} is
complete and 2 is adjacent in A(G) to precisely the primes in 7(¢? —1),
see [72, Theorem 3.3].

Finally, we consider the classical groups of Lie type. The character ta-
ble for PSL (2, ¢) is well-known. From the table, we see A(PSL (2,2"))
with n > 2 has three connected components {2}, 7(2"—1) and (2" +1).
When p is an odd prime and p™ > 5, then A(PSL(2,p")) has two
connected components {p} and m(p*™ — 1). It might appear that we
have omitted A(PSL (2,5)), but in fact, we have not. It is known that
PSL (2,4) =2 PSL(2,5), and so, this graph is handled as A(PSL (2,4)).
If G is any other classical Lie-type nonabelian simple group, then A(G)
is connected of diameter at most 2. In fact, A(G) is a complete graph
except when G is one of PSL (3,4), PSL (3, ¢) where m(q — 1) Z {2, 3},
PSL (4,2), or PSU (3, q) where m(q+ 1) Z {2,3}. (See [47, 73, 74].)



GRAPHS IN FINITE GROUPS 191

In summary, we have the following results regarding nonabelian
simple groups of Lie type.

Theorem 6.3 (White [47, 72, 73, 74]). Let G be a nonabelian
simple group of Lie type.

1. If G is not isomorphic to PSL (2, p™) for some prime p and integer
n with p™ > 4, then A(G) is connected.

2. The graphs A(PSL (2,p™)) have two connected components where
p is an odd prime and n is an integer so that p™ > 5.

3. The graphs A(PSL (2,2™)) have three connected components where
n > 2 is an integer.

4. If G is isomorphic to Sz(2"™) where n > 3 is odd, PSL (3, q) where
g > 3 is a prime power with ¢ =4 or w(qg — 1) Z {2,3}, PSL(4,2), or
PSU (3,q) where ¢ > 3 is a prime power with w(q+ 1) € {2,3}, then
A(G) is connected of diameter 2.

5. If G is any other simple group of Lie type, then A(G) is a complete
graph.

Looking at general nonsolvable groups, we have the following. Most
of these results used results regarding the graphs of the nonabelian
simple groups. We first look at the disconnected case.

Theorem 6.4. Let G be a nonsolvable group. Then the following
are true:

1. (Manz, Staszewski and Willems [53]). n(A(G)) < 3.
2. (Lewis and White [47]). n(A(G)) =3 if and only if G = S x A
where S = PSL(2,2™) for some integer n > 2 and A is an abelian

group. The connected components are {2}, (2" — 1), and 7(2" + 1),
and each component has diameter at most 1.

3. (Lewis and White [47, 48)]). If n(A(G)) = 2, then G has normal
subgroups N C K so that K/N = PSL (2,p") where p is a prime and
n is an integer so that p™ > 4. Furthermore, G/K is abelian and N
is either abelian or metabelian. In fact, the connected components of
A(G) are {p} and n(p*" —1)Un(|G:CK]|) where C/N = Cq/n(K/N).
This second component has diameter at most 2.



192 MARK L. LEWIS

In [47], we prove a stronger condition than the one in Theorem 6.4 (3).
In fact, we are able to prove a necessary and sufficient condition for G
to be nonsolvable with A(G) having two connected components. Using
the notation of the theorem, we proved that K is one of the following:
PSL (2,p™), SL(2,p"), or there is a subgroup L in K that is normal
in G so that K/L = SL(2,p"), L is elementary abelian group of order
p?", and K/L acts transitively on the nonprincipal characters in Irr (L).
Also, it is necessary that p does not divide |G : CK| and C/N is central
in G/N. When p = 2 or p" = 5, then either N > 1 or CK < G.
This last condition is necessary to ensure that A(G) has two connected
components instead of three. Finally, because PSL (2,4) = PSL (2,5),
there is some ambiguity in the value p in the theorem. We discuss in
[47] how to handle this ambiguity.

Notice that, unlike the solvable case, A(G) can have three connected
components, and when G is not solvable and A(G) is disconnected,
one of the connected components is an isolated vertex. Recall that
when G is solvable and A(G) has two connected components, then
each component is a complete graph. If G is not solvable and A(G)
has two connected components, it is possible that the other connected
component has diameter 2, see A(PSL (2,11)), for example. We have
recently shown that the upper bound on the diameter of A(G) when
G is not solvable is the same as the upper bound on the diameter of
A(G) when G is solvable.

Theorem 6.5 (Lewis and White [48, 49]). Let G be a nonsolvable
group where A(G) is connected. Then diam(A(G)) < 3.

7. The graph I'(G). We now consider the common divisor graph
I'(G). By Corollary 3.2, we know from the results regarding A(G) that
I'(G) has at most two connected components when G is solvable and
I'(G) has at most three connected components when G is not solvable.
The various classification results for when A(G) is disconnected will
apply when I'(G) is disconnected. Furthermore, when G is solvable
and I'(G) is disconnected, the Fitting height of G will be at most 4.
Using Corollary 3.2, and the various results on A(G), we obtain upper
bounds on the diameter of I'(G). In fact, we can usually do better than
the bounds obtained this way.
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Theorem 7.1. Suppose that I'(G) is disconnected.

1. If G is solvable, then there is a prime dividing all the degrees
corresponding to the vertices of one connected component of I'(G), and
the other connected component has diameter at most 2.

2. If n(T'(G)) = 3, then G is not solvable and each component is an
isolated vertex.

3. If G is nonsolvable and n(I'(G)) = 2, then one connected
component is an isolated vertex, and the other component has diameter
at most 2.

Note that conclusion (2) of the theorem is an immediate consequence
of Theorem 6.4 (2). Conclusion (3) has never appeared in the literature,
but it can be deduced by a careful reading of the proofs of Theorem 6.3
of [47] and Lemma 3.2 of [48]. To see that the second component can
actually have diameter 2, let G be the semi-direct product of SL (2, 8)
acting on an elementary abelian group of order 64 in the natural fashion.
It is not difficult to see that cd (G) = {1,7,8,9,63} and the connected
components of I'(G) are {8} and {7,9, 63}, which has diameter 2.

Conclusion (1) can easily be deduced from the classification in [36].
(It was known to be true before that paper.) Also, one can find a
solvable group G where the common divisor graph I'(G) is disconnected
and one of the connected components actually has diameter 2. In fact,
there is a solvable group G with c¢d (G) = {1, 2, 5, 20, 1023}.

Let m and n be any two positive integers. In [57], McVey has
shown that there is a solvable group G where I'(G) has two connected
components that are complete graphs of sizes m and n. Notice this
contrasts with the situation for A(G). Also, it does not answer the
question of which graphs arise where one of the two components is not
a complete graph. We do not know which graphs do occur for I'(G)
when G is solvable, I'(G) is disconnected, and one of the connected
components is not a complete graph.

From Corollary 3.2 and the results regarding A(G), we see that I'(G)
has diameter at most 4 when G is solvable and at most 5 when G is not
solvable. McVey has been able to improve these bounds. The solvable
case is handled in [58] and the nonsolvable case is handled in [59].
McVey proved the following.
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Theorem 7.2 (McVey [58, 59]). Let G be any group. Then
diam (I'(G)) < 3.

It is not difficult to find solvable and nonsolvable groups G whose
diameter is 3. Let H be any group with cd (H) = {1, 7}. (Notice that H
is necessarily solvable.) For a solvable example, take G = Sym (4) x H.
In this case, cd(G) = {1,2,3,7,14,21} and I'(G) has diameter 3.
For a nonsolvable example, take K = Alt(5) x H, and observe that
cd (K)=1{1,3,4,5,7,21,28,35}, so that I'(K') has diameter 3.

McVey'’s results give an upper bound for the diameter of I'(G). As for
a lower bound, we see that if G is a p-group for some prime p, then I'(G)
is a complete graph. Furthermore, in [71], Turull has a construction
which shows that for every p-group P of order p" there is a solvable p’-
group @ of Fitting height n that P acts on with CqP = 1. If G is the
resulting semi-direct product, then p divides every degree in cd (G)—{1}
and so I'(G) is a complete graph. In [46], we constructed for every pair
of odd primes p and g where p is congruent to 1 modulo 3 and ¢ is a
prime divisor of p+1 a solvable group G with cd (G) = {1, 3¢, pq, 3p*}.
Observe that I'(G) is a complete graph and no single prime divides
all the nontrivial degrees. It would be interesting to find other groups
where I'(G) is complete, but no prime divides all the nontrivial degrees.
Given that I'(G) can be a complete graph for solvable groups, we found
the following new result to be surprising.

Theorem 7.3 (Bianchi, Chillag, Lewis and Pacifici [13]). If T'(G)

is a complete graph, then G is a solvable group.

Recently, there have been other efforts at further understanding the
structure of I'(G). Say that a graph G has a connective subset C if C
induces a subgraph of G that is a complete graph and every vertex in
G is adjacent to some vertex in C. In working on [59], McVey noticed
that such subsets were common in I'(G). In the papers [60, 61], he
studied the groups G where I'(G) has such a subset. In particular, he
proved that if G is a nonabelian group so that I'(G) is connected of
diameter at most 2, then I'(G) has a connective subset. Obviously, if
I'(@G) is disconnected, then it will not have a connective subset. In [59],
McVey constructs both solvable and nonsolvable groups G where I'(G)
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is connected but does not have a connective subset. On the other hand,
it seems that such examples are rare, so McVey has asked whether one
can classify the groups G where I'(G) does not contain a connective
subset.

Given a vertex v of graph G, we define N, (v) to be the subgraph of G
induced by the vertices that are adjacent to r. In his Ph.D. dissertation
[50], Lo has proved when G is solvable, r € c¢d (G), and G = I'(G) that
Ni(r) has at most two connected components. Notice that P&lfy’s
condition will imply a similar conclusion for N, (p) when p € p(G) and
G = A(G). Most of the results for character degree graphs can be
thought of as “global” results. This is the first result that is focused
on the situation at a given vertex. That is, it is the first “local” result.

8. The graphs I''(G) and A'(G). It is well known that there is a
strong connection between the irreducible characters of a group and the
conjugacy classes. For example, the number of irreducible characters
of a group equals the number of conjugacy classes. Even though for a
particular group there may not be a close connection between cd (G)
and cs (G), there is a similarity to the theorems that can be proved for
each set.

We will demonstrate this similarity by looking at the associated
graphs. We let A’(G) = A(cs(G)) and I'(G) = T'(cs(G)). The
common divisor graph for conjugacy class sizes has been studied more
closely than the prime vertex graph for conjugacy class sizes. This is
the opposite of the situation with character degrees where the prime
vertex graph has received more attention.

Technically, the graph studied in most of the literature is the graph
I, (G) whose vertex set is the set of noncentral conjugacy classes, and
there is an edge between two classes if their sizes have a nontrivial
common divisor. It is not difficult to see that I, (G) can be transformed
into I'(G) by collapsing all the classes with the same size into a
single vertex. Thus, these graphs have the same number of connected
components. The connected components will have the same diameter
except in the case where a connected component contains classes all
of the same size. If there is more than one class in this component,
then the component in I''(G) has diameter 0, whereas in I, (G), the
component has diameter 1. This is similar to the original graph studied
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for character degrees in [53]. In that paper, they considered the
graph I',(G) whose vertex set was all nonlinear irreducible characters
and there was an edge between two characters if their degrees had
a nontrivial common divisor. While F*(G) is similar to the common
divisor graph for cd (G), in the proofs of [53] it is noted that the referee
suggested studying the prime divisor graph for cd (G), which has been
the practice for character degrees.

To make our presentation for cs (G) consistent with the presentation
for cd (G), we have translated the results proved for I, (G) into results
for the common divisor graph for cs(G). Unfortunately, there are a
few results that do not translate well from I, (G). (See [12, Corollary
3] and the paper [22].)

The following are the main results for the common divisor graph of
cs (G). We say G is a quasi-Frobenius group if G/Z(G) is a Frobenius
group. We define the kernel and complements of G to be the preimages
of the Frobenius kernel and Frobenius complements of G/Z(G). Ap-
parently, the authors of [12] did not know of [32], and they reproved
many of the results found by Kazarin in [32]. The main results of [32]
are formulated without any mention of a graph. At the end of [32] a
graph is mentioned, but it is the complement graph of I''(G). (If G
is a graph, then its complement graph G is the graph with the same
vertices, and there is an edge in G between a and b if and only if there
is not an edge between a and b in G.)

Theorem 8.1. Let G be a group.
1. (Kazarin [32]; Bertram, Herzog, and Mann [12]). n(I'(G)) < 2.

2. (Kazarin [32]; Bertram, Herzog, and Mann [12]). n(IV(G)) = 2
if and only if G is a quasi-Frobenius group with abelian kernel and
complement. In this case, both connected components are isolated
vertices.

3. (Chillag, Herzog, and Mann [17]). If I'(G) is connected, then
diam (T'(G)) < 3.

4. (Fisman and Arad [23]). If G is a nonabelian simple group, then
I'"(G) is a complete graph.

5. (Chillag, Herzog, and Mann [17]). Suppose G is a nontrivial
perfect group. Then I'(G) is connected and diam (I''(G)) < 2.
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If you look at [28], it would appear that (4) is not related to the
result proved in [23], but in [12, Proposition 5], they showed that (4)
is an easy application of the result proved in [23].

Notice that they do not need to assume G is solvable to show
that the common divisor graph for cs(G) has at most two connected
components. The class of groups where the common divisor graph
for class sizes is disconnected is much simpler to describe than the
class of groups where common divisor graph for character degrees is
disconnected. Related to this is the fact that, if the common divisor
graph for cs(G) is disconnected, then it consists of two disconnected
vertices. Whereas we saw that the common divisor graph for c¢d (G)
can have either two or three connected components where the connected
components may have more than one vertex, and in the two connected
component case, one component can even have diameter 2.

We should note that in [12, 17], they show similar results for
the common divisor graph for FC-groups (infinite groups where all
conjugacy classes are finite). Not only can one characterize the groups
G where I''(G) is disconnected, it is possible to characterize groups G
where IV(QG) is not a complete graph. In addition, one can study groups
G where IV(H) is a complete graph for every subgroup H of G.

Theorem 8.2. Suppose G is a finite group.

1. (Adami, Bianchi, Mauri, and Herzog [1]). Then I''(G) is not a
complete graph if and only if there exist subgroups A and B and a set of
primes 7 so that (1) G = AB, (2) Cg(4) > Z(G), (3) Cx(B) > Z(B),
(4) |G| divides |A| and (5) |G| divides |B|.

2. (Puglisi and Spiezia [70]). Suppose I'"(H) is a complete graph for
every subgroup H of G. Then G s solvable.

Recall that if G is a nonabelian simple group, then the common
divisor graph for cs (G) is a complete graph. This last result says that
such a group G must have a subgroup H so that the common divisor
graph for cs (H) is not a complete graph.

An interesting result related to the common divisor graph for cs (G)
has been proved by Bianchi, Gillio and Casolo in [15]. They proved
for a finite group G that I''(G) is disconnected if and only if the two
largest elements in cs (G) — {1} are relatively prime.
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The prime vertex graph for cs (G) has been studied by Dolfi and Al-
fandary. Using Lemma 3.2, we see that n(A'(G)) < 2 and n(A’(G)) = 2
if and only if G is quasi-Frobenius with abelian complement and kernel.
When I'"(G) is disconnected, each connected component is an isolated
vertex, and so, if A’(G) is disconnected, then each connected compo-
nent is a complete graph. When A’(G) is connected, IV (G) can be used
to get a bound on the diameter of A’(G), which can be improved as fol-
lows. In addition, Dolfi showed that A’(G) satisfies the same condition
that Palfy showed for A(G).

Theorem 8.3. Let G be a group.
1. (Alfandary [2]). If A'(G) is connected, then diam (A'(G)) < 3.
2. (Dolfi [21]). If G is solvable, then A'(G) satisfies Pdlfy’s condition.

We note that Dolfi proved (1) for solvable groups in [21].

It is an old result of It6 that, if p and g are primes that occur as
vertices in A’(G) and are not adjacent in A’(G), then either G is p-
nilpotent or g¢-nilpotent, see [31]. In [21] Dolfi proved that if G is
solvable, then both the Sylow p-subgroups and the Sylow ¢-subgroups
of G are abelian. In [3] Alfandary proved that if G is solvable and G
does not contain a certain subgroup of an affine semi-linear group, then
A'(G) is composed of two complete graphs. In [16] Casolo and Dolfi
characterized the groups G where A’(G) has diameter 3. In particular,
they showed that if G is not solvable, then diam (A’(G)) < 2. The
solvable groups with diam (A’(G)) = 3 that they obtained have a much
less complicated structure than the group found in [40] of a solvable
group where diam (A(G)) = 3.

Perhaps the most amazing and surprising result regarding the prime
vertex graph for cs (G) is the following direct connection to the prime
vertex graph for cd (G) that was proved by Dolfi.

Theorem 8.4 (Dolfi [20]). Let G be a solvable group. Then A(G)
is a subgraph of A'(G).

9. Other graphs of character degrees. In this section we discuss
other graphs that have been studied in the context of character degrees.
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Let G be a group, and let p be a prime. We set cBr,(G) = {¢(1) |
¢ € IBr,(G)} (the degrees of the irreducible p-Brauer characters of G).
The prime vertex graph for ¢cBr,(G) is studied in [54, 55]. They proved
that if G is a solvable group, then the prime vertex graph for c¢Br,(G)
has at most 2 connected components. In this case, if A(cBr,(G)) is
disconnected, then one component has diameter at most 3 and the
other component has diameter at most 2, and if it is connected, then
its diameter is at most 5. For general groups, the situation is much
different. If p > 2 is a prime, it is known that the irreducible p-Brauer
characters of SL (2, p) have degrees 1,2,3,...,p—1, p, see [26, Example
VII.3.10]. For any integer m, we can find a prime p so that the number
of connected components of the prime vertex graph for cBr,(SL (2, p))
is at least m. (This is the only graph associated with a group that
we encounter where the number of connected components cannot be
bounded, or in fact can be greater than 3.)

Let A act coprimely via automorphisms on a group G. We define
cd 4 (G) to be the set of degrees of the irreducible A-invariant characters
of G. We define A4(G) = A(cda(G)). Beltrdn has proved that this
graph shares some properties with A(G) in [6].

Theorem 9.1 (Beltrdn [6]). Suppose a group A acts coprimely via
automorphisms on a solvable group G. Then A 4(G) has at most two
connected components.

Let m be a set of primes. We set cd,(G) to be the subset of
cd (G) consisting of those degrees that are m-numbers. We define
Az (G) = A(cdr(G)). Observe that p(cd,(G)) C p(G) N7, and we
do not necessarily have equality. In [45], we studied this graph, and
we proved the following.

Theorem 9.2 (Lewis, McVey, Moretd, and Sanus [45]). Let w be a
set of primes, and suppose that G is a w-solvable group. Then A, (G)
has at most two connected components.

Since cd,(G) appears to be an arbitrary subset of cd(G), it is
somewhat surprising that A, (G) shares any property with A(G). In
[45], we also bound the diameter of A, (G).
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Theorem 9.3 (Lewis, McVey, Moret6, and Sanus [45]). Let w be a
set of primes, and suppose that G is a w-solvable group.

1. If Ax(G) is disconnected, then each connected component has
diameter at most 3.

2. If A,(QG) is connected, then diam (A,(G)) < 6.

We do not know of any examples where the diameter of A,(G)
actually meets the bounds found in this theorem. In fact, we do not
know of any examples where A;(G) has diameter exceeding 3 (or 2 if
A, (G) is disconnected). One question that arises is: does there exist
an invariant of G which is bounded when A, (G) is disconnected?

We should mention that Theorem 9.2 generalizes Theorem 9.1. Let A
act coprimely via automorphisms on a group G. Let m = p(G). Looking
at the semi-direct product GA, one can show that any character in
Irr (GA) having w-degree is an extension of an A-invariant irreducible
character of G and that any A-invariant irreducible character of G
extends to an irreducible character of GA having w-degree. It follows

that cda(G) = cd.(GA), and so A4(G) = A (GA).

Suppose N is a normal subgroup of a group G and 6 € Irr (N).
The set of irreducible constituents of ¢ is Irr (G | ) and cd (G | §) =
{x(1) | x € Irr(G|6)}. Now, define the graph A(G | 6) =
A(cd (G | 6)). Moreté and Sanus studied this graph in [65]. They
obtained the following results.

Theorem 9.4 (Moreté and Sanus [65]). Let N be a normal subgroup
of a group G, and let 6 € Irr (N).

1. Then n(A(G | 0)) <3
2. If G/N is solvable, then n(A(G | 0)) < 2
3. If G/N is solvable, then diam(A(G | 6)) < 4

Notice that, if N = 1, then § = 1 and c¢d(G|6) = cd(G), so
A(G | 6) can be viewed as a generalization of A(G). In particular,
it is not possible to improve (1) or (2) of Theorem 9.4. Moreté and
Sanus use this theorem to study the following situation. Let G be a
group, let p be a prime and let B be a Brauer p-block of G. We define
Irr (B) to be the set of irreducible characters of G that lie in B and
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cd(B) = {x(1) | x € Irr (B)}. We define A(B) = A(cd(B)). They
have the following result.

Theorem 9.5 (Moret6 and Sanus [65]). Let p be a prime, and let B
be a Brauer p-block of the p-solvable group G.

1. Then n(A(B)) < 3.
2. If G is solvable, then n(A(B)) < 2.
)

3. If G is solvable, then diam (A(B)) < 4.

Let N be a normal subgroup of G. We define c¢d (G | N) to be
the union of ¢d (G | 0) as € runs over the nonprincipal characters in
Irr (V). Hence, cd(G) = cd(G/N)Ucd (G| N). If 6 € Irr (N) is not
the principal character, then c¢d (G| 6) C ¢d(G | N). We define the
graphs ['(G | N) = I'(cd(G | N)) and A(G | N) = A(cd (G | N)).
Note that ¢d (G| G') = cd(G) \ {1}, and so I'(G | G') = I'(G) and
A(G | G') = A(G). We can view these graphs as generalizations of the
graphs for G. The first paper on this graph is [29], where Isaacs proved
the following results, among others.

Theorem 9.6 (Isaacs [29]). Let N be a solvable normal subgroup of
a group G such that N C G'.

1. Then n(T'(G | N)) < 2.

2. If T(G | N) is disconnected, then some prime divides all the
degrees in one connected component and the other connected component
has diameter at most 2.

3. If T'(G | N) is connected, then diam (I'(G | N)) < 4.

4. If T(G | N) is connected and N is nilpotent, then diam (I'(G |
N)) <3.

In fact, Isaacs was able to prove the first conclusion and a weaker
version of the second conclusion when he replaced N solvable by the
weaker hypothesis that N’ < N. We do not know any examples where
I'(G | N) has diameter 4, and we would not be surprised if the correct
bound is 3.
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In [29], Isaacs was mainly concerned with the connection between
cd (G | N) and the structure of N. However, Isaacs did study one
connection between I'(G | N) and the structure of G. In [29], he
included the conjecture that if N C G, N is normal and solvable, and
I'(G | N) is disconnected, then G is solvable. This was a conjecture that
we had communicated to him when [29] was being prepared, and that
paper includes strong evidence that the conjecture is true. Recently,
Moreté has proved this conjecture, and in fact, he was able to prove a
stronger result. In particular, he did not need to assume that N was
solvable.

Theorem 9.7 (Moreté [62]). Let N be a normal subgroup of a group
G with N C G'. If A(G | N) is disconnected, then G/N is solvable.

Motivated by Moretd’s result, we further studied A(G | N). Among
other things, we are able to remove the hypothesis that N C G'. We
also have the following result:

Theorem 9.8 [43]. Let N be a normal subgroup of a group G.

1. If A(G | N) is disconnected, N C G' and N is not solvable, then
N =G

2. If A(G| N) is disconnected and G is solvable, then G has Fitting

height at most 4, and there is a normal subgroup B in G so that |G : B|
divides 2 and A(G | N) = A(B).

3. If G" < G, then A(G | N) has diameter at most 4.
4. If G is solvable, then A(G | N) has diameter at most 3.

At this time, most of the results regarding I'(G | N) and A(G | N)
have shown the similarities between these graphs and the graphs I'(G)
and A(G). In his Ph.D. dissertation [56], McQuistan has shown the
first difference between A(G) and A(G | N). He has that, for every
positive integer k and prime p, there exist distinct primes p1,ps, ..., Pk
and a solvable group G with normal subgroup IV so that

cd (G| N) = {p™*, p"*=1) py . pn=D) py o prlk=1) py - pr kDY

for some integer n. In particular, the graph A(G | N) will not satisfy
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Palfy’s condition, and in fact, this graph will not satisfy even a weaker
version of Palfy’s condition.

Lo also studied N,(r) when 7 € ¢d(G|N) and G = T'(G | N).
He showed that if G is solvable, then N, (r) has at most 2 connected
components in this case. When G is any group with N C G’ and N
is nilpotent, he is able to show that M. (r) will have at most 4 isolated
vertices.

As we were completing the research for this paper, we came across
one other graph related to the character degrees of a group. Given
a character X € Irr (G), the co-degree of X is the quotient |G|/X(1).
We define X(G) = {|G|/x(1) | x € Irr(G),x(1) # 1}. In [18],
Chillag, Mann, and Manz study the graphs associated with X(G). In
particular, they proved that T'(X(G)) is always a complete graph, see
[18, Proposition 1.1]. It follows that A(X(G)) has diameter at most 2.
They show more in this case. In particular, they show that A(X(G))
has a complete subgraph so that every other vertex is adjacent to
some vertex in the subgraph. (In the terminology mentioned earlier,
A(X(G)) has a connective subset.)

10. Other graphs of conjugacy class sizes. We have just
seen that several subgraphs and generalizations of the character degree
graphs have been studied. In the same manner, several subgraphs and
generalizations of the graphs associated with conjugacy class sizes have
been considered. Let p be a prime, and let G be a group. The class
analog of p-Brauer characters are the p-regular classes of G which we
denote by class,(G). We define cs,(G) = {|C| | C € class,(G)}. We set
AL(G) = A(csp(G)) and I',(G) = I'(csp(G)). The prime vertex graph
for csp(G) has been studied in [51]. They proved the following.

Theorem 10.1 (Lu and Zhang [51]). Let p be a prime, and let G be
a finite p-solvable group.

1. Then n(AL(G)) < 2.

2. If AL(G) is disconnected, then each connected component is a
complete graph.

Lu and Zhang also obtained some additional information regarding
the structure of G when A} (G) is disconnected. The common divisor
graph for cs,(G) has been studied by Beltrdn and Felipe. In [51], Lu
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and Zhang had proved that if A},(G) is connected, then it has diameter
at most 6. Beltran and Felipe were able to improve this result.

Theorem 10.2 (Beltrdn and Felipe). Let p be a prime, and let G be
a p-solvable group.

1. [8]. If T,(G) is connected, then diam (I',(G)) < 3.

2. [8]. If T'(G) is disconnected, then each connected component is a
complete graph.

3. [9]. If AL(G) is connected, then diam (A,(G)) < 3.

In the paper [10], Beltrdn and Felipe begin to characterize the p-
solvable groups G where I',,(G) is disconnected, but their characteriza-
tion is not complete.

We can also look at conjugacy classes when the group A acts co-
primely on G. We define cs4(G) to be the sizes of the noncentral
A-invariant conjugacy classes of G. We set Iy (G) = I'(cs4(G)). In [9],
Beltran studied this graph. He proves the following.

Theorem 10.3 (Beltran [7]). Let A act coprimely via automorphisms
on a group G.

1. Then n(I'4(G)) < 2.
2. If T'4(Q) is connected, then diam (I',(G)) < 4.

3. If T4 (QG) is disconnected, then G is solvable and each connected
component has diameter at most 2.

An interesting generalization of IV(G) is the following. Let G act
transitively on a set Q. The subdegrees D(G, Q) are the cardinalities
of the orbits of a point stabilizer G, on 2. Since the action of G
is transitive, the values in D(G, ) are independent of a. We set
I'G,Q) =T(D(G,Q)). In [30], Isaacs and Praeger studied this graph
and obtained the following results.

Theorem 10.4 (Isaacs and Praeger [30]). Let G act transitively on
Q, and assume that all the elements of D(G,Q) are finite.
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1. Then n(T'(G,Q)) < 2.
2. If I'(G, Q) is connected, then diam (I'(G,Q)) < 4.

3. If T'(G,Q) is disconnected, then one connected component is a
complete graph and the other one has diameter at most 2.

To see that I'(G,Q) is a generalization of I'(G), we consider the
following situation. Let H act via automorphisms on a group G, and
let K be the resulting semi-direct product. We define 2 to be the set
of conjugacy classes of H in K, and note that G acts transitively on (.
It is not difficult to show that D(G,Q) = cs (G) when H = G.

11. Applications. We feel obligated to mention the applications
of these graphs. We initially encountered these graphs in the first
paper we wrote [33]. In that paper, we used the fact that I'(G)
has at most two connected components to obtain a bound on |cd (G)|
when G is a solvable group satisfying what we termed the one-prime
hypothesis. We apply the classification in [36] of disconnected graphs
of solvable groups to other character degree problems in [39] and [46].
The first of these two papers improves a bound on the derived length
of a solvable group satisfying the one-prime hypothesis. The second
paper is concerned with solvable groups where there is no divisibility
among distinct nontrivial character degrees. McVey applies the facts
about I'(G) when it is disconnected to obtain his results in [57].

Two open conjectures regarding character degrees have been proved
when T'(G) is disconnected. In [68], Pélfy showed that the p — o
conjecture is true when I'(G) is disconnected. We have shown that
the Taketa problem has a positive answer when I'(G) is disconnected
n [34]. We made use of this fact in [38] to show that dl (G) < |cd (G)]
when |cd (G)| = 5. One example where I'(G) has been applied to other
problems regarding conjugacy classes is [14].

12. Further structure. The following has been proposed by Isaacs.
As in Section 3, we let X be a set of positive integers. We associate two
simplicial complexes with X. The first one we call the prime complex,
and it has as its simplexes all sets of primes that divide some integer in
X. The second one is the common-divisor complezx, and its simplexes
will be all subsets of X* that have a nontrivial common divisor. For a
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nonnegative integer n, the n-simplexes are all simplexes of size n + 1,
and the n-skeleton is the simplicial complex obtained by taking all
k-simplexes with & < m. The 0-simplexes form the vertices of the
simplicial complex. The 1-simplexes of the prime complex for X will
be the edges of A(X), and so the 1-skeleton of the prime complex is
A(X). Similarly, the 1-skeleton of the common divisor complex for X
will be I'(X).

As far as we know, no results have been proven regarding these
complexes, but we would like to close this paper with some conjectures
regarding these complexes and the sets considered in this paper. Recall
that the dimension of a simplicial complex is one less than the size of
the largest simplex. For an integer a, we define o(a) to be the number
of distinct primes dividing a. For a set of positive integers X, the
simplexes of the prime complex correspond to the set of distinct primes
dividing elements of X*, so the dimension of the prime complex for X
will be one less than the maximum of o(a) for a € X*. The simplexes
in the common divisor complex of X are sets divisible by a common
prime, so the dimension of the common divisor complex is one less than
the maximal number of elements of X* divisible by a single prime.

When G is a group, we define 0(G) to be the maximum of o(a) for
a € cd(G). Therefore, o(G) — 1 will be the dimension of the prime
complex for ¢d (G). The p — o conjecture states for any group G that
|p(G)] < 30(G) and when G is solvable that |p(G)| < 20(G). If this
conjecture is proven, then this says that the number of vertices in the
prime complex for cd (G) is bounded in terms of the dimension of the
complex. At this time, it is known that |p(G)| < 30(G) + 2 when
G is solvable and |p(G)| < 30(G) when G is simple, see [4, 24, 55].
Recently, Moret6 has proved in [64] that |p(G)| < 40(G)?+6.50(G)+13
for a general group G.

Similarly, we define ¢/(G) to be the maximum of ¢’(a) for a € cs (G).
Notice that ¢/(G) — 1 will be the dimension of the prime complex for
cs(G). When G is solvable, Zhang has shown that |p'(G)| < 40'(G)
[77]. For nonsolvable groups G, Moreté showed in [64] that |p'(G)| <
30'(G)? +7.50'(G) + 11. In this case, the number of vertices of the
prime complex for cs (G) will be bounded in terms of the dimension of
the complex.
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In [57], McVey conjectured that some prime must divide at least one
third of the elements in cd (G) when G is a solvable group. If we let
k(G) be the maximal number of degrees in cd (G) \ {1} divisible by
any prime p, then the dimension of the common divisor complex for
cd (G) is k(G) — 1. McVey’s conjecture is that |cd (G)| < 3k(G) when
G is solvable. This would say that the number of vertices in common
divisor complex for cd (G) is bounded in terms of its dimension. In [11],
Benjamin has shown that |cd (G)] is bounded by a quadratic function
in k(@) when G is solvable.

In closing, the questions regarding these simplicial complexes are
the same as the questions regarding the graphs. Which simplicial
complexes arise in these situations? If some group is known to have
some simplicial complex that can be said about the group? The last
several paragraphs seem to suggest that the number of vertices in
the simplicial complexes is bounded in terms of the dimensions of the
complexes. What other limits can be placed on the structure of these
complexes?

Added in proof. Since this paper was accepted, I have been made
aware of several results:

1. Dolfi has shown that the hypothesis that G is solvable is not
necessary for Theorem 8.3.2. See S. Dolfi, “On independent sets in the
class graph of a finite group,” J. Algebra 303 (2006), 216—224.

2. Cassolo and Dolfi have shown that the hypothesis that G is solvable
is not necessary for Theorem 8.4 in the preprint, “Products of primes
in conjugacy class sizes and irreducible character degrees.”

3. Cassolo and Dolfi have shown that the quadratic inequalities
of Moreté in Section 12 can be improved to linear inequalities. In
particular, if G is any group, they show that |p(G)| < 70(G) and
|0 (G)| < 50’(G). See C. Cassolo and S. Dolfi, “Prime divisors of
irreducible character degrees and of conjugacy class sizes in finite
groups,” J. Group Theory 10 (2007), 571-583.
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