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ON MULTI-DIMENSIONAL SDES
WITH LOCALLY INTEGRABLE COEFFICIENTS

V.P. KURENOK AND A.N. LEPEYEV

ABSTRACT. We consider the multi-dimensional stochastic
equation

t t
X :zo—l—/ B(S,Xs)dWs—l—/ A(s, Xs)ds
0 0

where z¢ is an arbitrary initial value, W is a d-dimensional
Wiener process and B : [0, +00) x R? — Rdz, A [0, +00) X
R¢ — R4 are measurable diffusion and drift coefficients, re-
spectively. Our main result states sufficient conditions for the
existence of (possibly, exploding) weak solutions. These con-
ditions are some local integrability conditions of coefficients
B and A. From one side, they extend the conditions from [3]
where the corresponding SDEs without drift were considered.
On the other hand, our results generalize the existence theo-
rems for one-dimensional SDEs with drift studied in [4]. We
also discuss the time-independent case.

1. Introduction. In this note we consider a stochastic equation of
the form

t t

(1.1) Xt:wo—i—/B(s,XS)dWS—}-/A(s,XS)ds, t>0,
0 0

where the coefficients B : [0, +00) x R? — R, A: [0, +00) x R? — R4
are Borel measurable matrix- and vector-valued functions with d > 1,
respectively, W is a d-dimensional Wiener process and zy € R? is an
arbitrary initial vector.
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It is well known that if the coefficients A and B satisfy the assumption
of at most linear growth, that is, if there exists a constant K; > 0 such
that

(1.2)  |A(t,z)| + ||B(t,z)|| < Ky (1+ |z|]) forallt>0, z € RY,

then the solution of the equation, if it exists, is nonexploding, i.e., it
exists in RY for all ¢ > 0, cf. [6, Theorem 6.4.2]. Here | - | denotes the
Euclidean norm of a vector in R? and

|B(t,z)||> = ZB

5,j=1

In the general case the solution exists only in the sense that it may
explode, i.e., on a finite time interval it may leave every compact subset
of RY. In this paper we study solutions of equation (1.1) in this more
general context.

The purpose of this article is to prove the existence results for the
equation (1.1) in the weak sense. This equation is also called the It
equation because It6 was the first who considered it [7]. He proved
that the equation (1.1) has a solution if the coefficients A and B satisfy
the condition (1.2) and there exists a constant Ky > 0 such that

(1.3) [A(t,z) — At y)| + | B(t,z) — B(t, y)|| < Ka|z -y
' for all t > 0, z,y € R%.

The coefficients A and B satisfying the condition (1.3) are said to be

globally Lipshitz continuous.

Skorokhod [23] proved later the existence of a solution for coeflicients
not satisfying the Lipshitz condition. More precisely, he replaced the
condition of Lipshitz continuity of the coefficients by the condition
of their usual continuity in the space variable. At the same time,
Skorokhod proposed a different concept of the solution than that used
by It6: Skorokhod was looking for a solution of the equation existing
on a not a priori fixed probability space while following It6’s idea one
had to find a solution on a given probability space with a given process
W . Since then one started distinguishing two concepts of a solution for
(1.1): strong solutions (in the sense of It6) and weak solutions (in the
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sense of Skorokhod). The names strong and weak reflect the fact that
any strong solution is also a solution in the weak sense but not vice
versa.

The conditions of Skorokhod were essentially weakened by Krylov [10]
who proved the existence of weak solutions of the stochastic equation
(1.1) for discontinuous and measurable coefficients using his well-known
estimates for stochastic integrals of diffusion processes. He assumed
the coefficients A and B to satisfy the following conditions: there exist
constants C' > 0 and 0 < ¢; < co not depending on (t,z) € [0, +00) x R?
such that for all z,z € R?, and t > 0,

AL2)| <O, alzP <(Bta)zz), Bt < e,

where ((-,-)) denotes the Euclidean scalar product.

The case of one-dimensional homogeneous equations, i.e., equations
with time-independent coefficients, was treated in detail by Engelbert
and Schmidt, cf. [4, 5]. To formulate some of their results, define the
sets

N ={zeR: B(z) =0}

and
MZ{mER:/ B™?(y)dy = o0
U(z)
for any open neighborhood U(z) of x},

where B~2 := 1/B2. It was proven that, for any initial value zy € R,
the equation (1.1) without drift (A = 0) has a solution if and only
if M C N. In particular, it was shown that the local integrability
of B~? is necessary and sufficient for the existence of nontrivial (not
equal identically to a constant) solutions with an arbitrary initial value
zg € R. They also obtained various sufficient conditions for the
existence of solutions of the corresponding time-independent equation
with drift. For example, it was proved in [4] that if B(z) # 0 for all
r € R and if the function (1 + |A|)B~2 is locally integrable, then the
homogeneous equation (1.1) has a (possibly, exploding) solution for any
initial value zgy € R.

A more general case of equation (1.1) with time-dependent coefficient
B and A = 0 but still with one-dimensional state space was investigated
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by Kurenok [12], Raupach [17], Rozkosz and Slominski [18] and Senf
[21]. For example, Senf [21] was able to prove the existence of a solution
for every initial value zy € R under the following two conditions:

1) B? is locally integrable;

2) B2 is locally integrable.

Moreover, it was proven that the solution does not explode if only,
for every N > 1, there exists a nonnegative function By finite on a
set of positive Lebesgue measure such that B?(t,z) < By/(z) for every
t € [0, N] and € R. The conditions found in [18] were very similar to
those in [21]. In [12] the author assumed the continuity of the function
B~2(t, ) in the variable ¢ along with a condition of local integrability
of B~2. Raupach generalized the result from [21], respectively that
from [18], replacing condition 2) by a weaker condition

2YMCWN,
where the sets M and N in case of the function B(t,z) are defined
similarly as in the case of the function B(z) above.

Let g be a measurable function in [0,+00) x R%. We write g €
L¢([0, +00) x R?) if g is locally integrable, i.e., integrable with respect
to the Lebesgue measure on every compact subset of [0, +00) x R%. Let
o = B - B* and define the measure x on [0, +00) x R? by

(1.4) du(s,y) = [deto(s,y)] ' dyds

where 07! = 400 and B* is the transpose of the matrix B. Similarly,
the notation g € L'°°([0, +00) x R%, 1) stands for the local integrability
of g with respect to the measure p on [0, +00) x R

In [3] the existence of weak solutions for the multi-dimensional
stochastic equation (1.1) without drift was proved under the following
two conditions:

aj) (det B- B*)~1 € L!°¢([0, +0) x R%),
az) || BIIP“HD € L'¢([0, +00) x RY, ).

The results of this paper generalize the results in [3] for SDEs with
drift when the conditions a1 ), az), and

b) [A|P (B> + 1) € ([0, +00) x R, p)

are satisfied.
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Another far-reaching generalization was given by Rozkosz and Stomin-
ski [19, 20] for multi-dimensional stochastic equations with time-
independent and also with time-dependent coefficients A and B sat-
isfying, additionally, the usual linear growth condition (1.2). We refer
for the detailed formulation of the results to [19, 20] and only notice
that one principal difference between the conditions in [19, 20] and
our conditions is that we do not require at most linear growth of the
coeflicients A and B.

While discussing the results about SDEs with unbounded drift, we
cannot leave this subject without mentioning the investigations of
Portenko [16] who proved the existence of (nonexploding) solutions for
equation (1.1) with diffusion coefficient B being uniformly continuous,
bounded and nondegenerate, and the drift coefficient A(t,z) being
globally Lebesgue integrable in the space variable z of order p > d+2 on
every interval [0, T], T > 0. As an essential tool for proving his results,
he used his own estimates (similar to Krylov’s estimates) for stochastic
integrals of solutions of SDEs with integrable drift. The assumption
of global Lebesgue integrability led Portenko to obtain nonexploding
solutions while we require the local Lebesgue integrability of coefficients
which guarantees the existence in the more general sense as described
above (exploding solutions).

In the time-dependent or multi-dimensional cases, the main tools
remain Krylov’s estimates. We also use here an appropriate variant of
Krylov’s estimates for processes X satisfying the equation (1.1). The
case of time-independent equations is discussed as well.

2. Preliminaries. Let R = R? U {A} be the one-point com-
pactification of R%. By (R% B(R?)) we denote the measurable space
generated by the o-algebra B(R?) of Borel subsets of RY. For any
function w : [0, +00) — R?, we set

(2.1) ra(w) = inf{t > 0: w(t) = A}

and call 7o (w) the explosion time of the trajectory w. Let E([0, +00),
R% be the set of all right-continuous functions w : [0, +00) — R4
such that w is continuous on [0,7a(w)) and w(t) = A whenever
t > 7a(w). For every t > 0 we define the coordinate mappings
Z; : E([0,4+00),R?%) — RY by

(2.2) Zy(w) = w(t), w € E([0, —l—oo),ﬁd),



144 V.P. KURENOK AND A.N. LEPEYEV

and introduce the o-algebras
£([0,400),RY) = 0(Z;,t >0), & =0(Zs,s<t), t>0,

and the filtration E = (£;);>¢. Obviously, 7a is E-stopping time.

Now, for any right-continuous function w : [0,4+00) — R and
any a > 0, let 7,(w) be a family of E-stopping times such that
To(w) < 7o (w) < Ta(w) whenever 7ao(w) < 400 and a < a'. We
additionally assume that

(2.3) To(w) T 7A(w) as a — 0.
For example, the family 7,(w) of E-stopping times defined by
To(w) :=1inf{t > 0: |w(¢)| > a}

is an increasing sequence in the sense described above and satisfies the
condition (2.3).

We remark further that for every E-stopping time 7 the o-algebra &,
associated with 7 can be described as

(24) & = 0(Zinr,t > 0) = (27)7(E((0,+00), RY),

where Z7 : E([0,+00),R%) — E([0,4+00),RY) is defined by Z7(w) =
w(- A7) for all w € E([0, +00), R?), cf. [22, Theorem 1.6].

Now let (am)men be an increasing sequence of positive real num-
bers converging to infinity as m — oo. Using standard arguments, cf.
Senf [21], one can show that, for every m € N, (E([0,+00),R%),&;, )
is a standard Borel space, cf. Parthasarathy [15]. Furthermore,
one sees that the o-algebras £, are increasing, £(]0,+oc0),R%) =

0(UmenEr,, ) in view of the assumptlon (2.3), and if (Am)menN is
a decreasing sequence of atoms A,, from &;, , then NpenAm # 9.
Theorem V.4.1 of Parthasarathy [15] now implies

Proposition 2.1. Let (Q™)men be a consistent family of probability
measures Q™ on &, . Then there exists a unique probability measure

Q on £([0, +00), R?) which is an extension of the family (Q™)men-
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Let C([0,+00),R%) C E([0,+00),R%) be the space of continuous
functions w of [0, +00) into R? endowed with the metric p defined by

(2.5) plw,v) = 2*N(§32 w(t) — v(t)| A 1)

for all w,v € C([0,+00),R%). We denote by C([0,+c0), R?) the o-
algebra of Borel subsets of C([0,+00), R%) and notice that C([0,+o0),
R%) = £(]0, +0), R%) N C(]0, +0), RY).

Let (Q,F,P) be a complete probability space, and let F = (F;);>0
be a filtration of F. We suppose that F = (F;):>( satisfies the usual
conditions, i.e., it is right-continuous and F{ contains all F-sets of P-
measure zero. For a process X = (X;);>0 defined on (Q, F,P) we write
(X,F) for X being F-adapted. If £ is a random variable on (Q, F,P)
with values in a measurable space (E, £), Dp(§) will frequently be used

as synonymous notation for the distribution P¢ of £ with respect to P
on (E,€E).

Let now X™, n € N, and X be stochastic processes with trajectories
in a metric space S defined on probability spaces (Q",F",P™) and
(Q, F,P), respectively. If the sequence (P%.)nen of distributions of
X™ converges weakly to the distribution P x of X, so we shall write

lim Dpn (Xn) = DP(X)

n—o0

We shall repeatedly make use of the following rule for weak convergence.
The proof is the same as the proof of Theorem 4.2 in [2]. Let (5, d) be a
separable metric space and B(S) the o-algebra of Borel subsets. In this
article, S = C(]0,+00),R%) or S = C([0,+0),R?) x C([0, +00), R%)
with the metric d = p or the product metric d = p? where p is
introduced in (2.5).

Proposition 2.2. Let X and Y", X and X be random variables
defined on probability spaces (O™, F™,P"), (U, Fk, Pr) and (Q, F,P),
respectively, with values in (S,B(S)). Suppose that the following con-
ditions are satisfied:

1) limp o0 Dpn (X)) = Dp, (X5).

2) limk_mo 'Dpk (Xk) = Dp (X)
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3) limy 00 limsup,, , P*"(d(X},Y") > ¢) =0 for alle > 0.
Then we have
lim Dpn(Y") = Dp(X).

n—r0o0

In the sequel we shall use the following norm || - || of the matrix B
defined as

d
|B||? := Z ij = traceo.
i,j=1
By definition, o (¢, z) is a symmetric and nonnegative definite matrix.

Hence, we can find orthogonal matrices U(¢, ), which can be chosen
measurable in (¢, z), such that

(26) A(t,I) = U*(tax) : U(tax) : U(t)m)a (ta CC) € [07 +OO) X Rda

are of diagonal form with nonnegative diagonal elements \;(t, ), i =
1,2,...,d. Equivalently, o has the representation

(2.7)  o(t,z) =U(t,z) - A(t,z) - U*(t,z), (t,z) € [0,+00) x R%

The following chain of inequalities can easily be verified:

(2.8) max o4 < max A <traceoc <d max oy,
3,7=1,...,d i=1,...,d i=1,...,d
where 045, 4,j = 1,2,...,d, denote the entries of the matrix o. The

next lemma, which is proven in [3, Lemma 2.4], will be used for later
estimates.

Lemma 2.3. Let
1 .
A?:()\iV—>/\n, 1=1,2,...,d, neN.
n

We then have the inequalities:

(e ) (H”‘) < e, o0 (TI0)

i=1
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where 0~ = +o00.

A stochastic process (X, F), defined on a probability space (Q, F,P)

with filtration F = (% );>0 and with trajectories in E([0,+00), R"), is
called a solution of equation (1.1) with initial value zo € R? if there
exists a d-dimensional Wiener process W = (Wt)tzo with respect to
the filtration F such that W, = 0 and

¢ ¢
(2.9) X =z +/ B(s, X) dWy +/ A(s, Xs)ds
0 0
on {t < 7a(X)} P-almost surely

for all ¢ > 0. Here 7a(X), called the explosion time of X, is the
composition of 7o (defined by (2.1)) and X. Solutions of this type are
called weak solutions.

Let (X, F) be a solution of equation (2.9) and, for any m € N, define
(2.10) Tm(X) = 7L (X) AT2(X) AT (X),
where

(X)) = inf{t > 0:|X;| > m},

m

t
72(X) = inf {t >0: / traceo(s, X;) ds > m},
0

¢
73 (X) = inf {t >0: / |A(s, Xs)|ds > m}.
0

It can easily be verified that the sequence (7,,(X)), m = 1,2,..., has
the following properties:

1) (7 (X))men is a sequence of F-stopping times;
2) T (X) T 7A(X) as m — 0.

Obviously, equation (2.9) is equivalent to
(2.11)
EATm (X)) tATm (X)
Xinrm(X) = To —|—/ B(s, X) dWs —|—/ A(s, Xs) ds P-aus.,
0 0
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where t > 0, m € N. We notice that (7,,(X))men is a localizing
sequence for the continuous semimartingale up to 7a(X) given in (2.9).
Therefore, the processes in (2.11) are bounded semimartingales with
respect to the filtration F = (F;):>0.

Next we state a version of Krylov’s estimates for stochastic integrals
which will be essential for the proof of our main result. As usual, for all
m € N, the set U,, = {z € R?%: |z| < m} determines the ball around
the origin with radius m.

Lemma 2.4. Suppose X is a solution of SDE (1.1) and f :
[0, +00) x R? — [0, +00) is a nonnegative measurable function. Then
there exists a constant C' which depends on t, m and d only such that
the following inequality holds:

tATm (X)) 1/(d+1)
E f(s,X5) [det o(s, X5)] ds
0

1/(d+1)
< C(/ FH(s,y) dy d8>
[0,6]X Un,

Proof. Assume first that f is a nonnegative, bounded and continuous
function, and let ¢ > 0 and m € N. We set

o(s,2) = {f(s,m) if s € [(.J,t], z € Up,
0 otherwise

and take ¢ € C§°([0,00) x R?) such that

/ o(u,z) dudr =1,
[0,+00) xR

where C§°([0,00) x R?) is the set of all infinitely many times dif-
ferentiable functions with a compact support defined on [0,00) x R4
and values in R. Furthermore, for any ¢ > 0 let g(*)(¢,z) be the
convolution of the function g¢(¢,z) with the function ¢. defined as
el ) = &4V (e L(u,)). Clearly, g (t,) € G ([0, 00) x RA).
According to [1, Lemma 5.1] (see also Lemma 1.1 there), there is a
function 2(%) (s, z) > 0 defined on [0,#] x U,, such that for all s € [0, ]



ON MULTI-DIMENSIONAL SDES 149

and z € U, we have:

() 1
(2.12) 6 ;1 6%8% oij(s, )
< 2 (s, ) trace o (s, ) — [det %O':I 1/(d+1)(s,x)g(5)(s,w),
(2.13) ‘82;6) (s,2)| < 2 (s, 2),
/(d+1)
ory 200 <N [, @ e is)

i= N9 llm,t.at1
where the constant IV depends on d,t and m only.

Applying Tto’s formula to 2(5)(s, X,) leads to
(2.15) E [2(5) (t A T (X), XWM(X))} — 29(0, Xp)

AT (X) 92 1 d
= E{/0 < s (s, Xs) + 3 Z Jijz;ilj (s, Xs)

d
+ Z Aizg(fi) (s, Xs)> ds] .
i=1

Let s € [0,¢ A 74, (X)]. Then using (2.12), (2.13) and the relations
A; <maxA; <|A|,

d

>

i=1

929

Lq

528
6$i

< d-max
2

)

ox

‘8z

we obtain

B [t A 7 (X), Xinr,nx))] — 29(0, Xo)

tATm (X))
<E [/ (z(E)(s, X, )trace o (s, X,)+d|A(s, Xs)|2) (s, XS))ds]
0

AT (X) | 11/
- E{/ [det 50] (s, X5)99 (s, X,) ds].
0
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Using the nonnegativity of () and relation (2.14), we have

tATm (X)
—Z(E)(O,XO) S E|:/ (Z(E)(SaXS)traceU(saXS)
0

+ d\A(s,Xs)IZ(E)(s,XS)> ds]

AT (X) L D
—E[/ [det 50] (s,XS)g(E)(s,XS)ds]
0

tATm (X)
B[ [ Nl aestraceats, X,
0

A X1 1) d|

AT (X) | 7Y+
—E[/ [det 50] (s,XS)g(E)(s,XS)ds]
0

EATm (X)
B[ N (1o lnsgeatraceo(s, )
0

+d|A(s, X,)[[lg® ||m7t7d+1)ds] .
Then

EATm (X)
21/(d+1)N<1 + E[/ trace (s, Xs) ds]
0

tATm (X)
. E{ [ e x ds])|g<f>||m,t,d+l
0
tATm (X)
2 E|:/ [det U]l/(d+1)(55 Xs)g(E)(Sa XS) d5:| °
0

As a result, it then follows from the definition of the sequence 7., (X)
that

EATm (X))
E{/ (det o] /@D (5, X,)g) (5, X, ds]
0

< 2V @DN (14 2mtd) g9 a1 = Cllg® -
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Since g is continuous on [0,t] X U,,, g\*) converges to g as ¢ — 0, and
by Fatou’s lemma,

tATm (X))
E[ / [det (s, X)) f(s,Xs)ds]
0

tATm (X)
<liminf E [/ [det o (s, XS)]I/(dH) g% (s, X,) ds
0

e—0

1/(d+1)
< C(/ FH (s, y) dy d5> -
[0,t]xUp,

Now we obtain the inequality stated in Lemma 2.4 for functions
f = |h| where h is an arbitrary bounded continuous function on
[0,t] X Up,. Using the monotone class theorem, cf. [14, Theorem I1.20
and the following remarks|, we observe that the inequality remains
valid for all bounded measurable h and hence for all nonnegative
bounded measurable functions f. Finally, in the general case f can
be approximated increasingly by the nonnegative bounded functions
f A n. This finishes the proof of the lemma. u]

From Lemma 2.4 it immediately follows

Corollary 2.5. Suppose that det o(s,y) # 0 for almost all (s,y) €
[0,t] X Up,. For any nonnegative measurable function f, m € N, and
t > 0, we then have

EATm (X)
E{/ f(s,Xs)ds]
0
1/(d+1)
< o( [ i) detots ) ! dyds)
[0,t]xUp,

where C is a constant as in Lemma 2.4.

3. Existence of solutions. The next theorem generalizes the main
existence result in [3] to the case of SDEs with diffusion and drift
coefficients.
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Theorem 3.1. Suppose that the conditions ay), az) and b) are
satisfied. Then, for an arbitrary xo € RY, there exists a solution X of
equation (1.1) with Xy = zg.

Proof. Let the matrix functions U and A be defined as in (2.6) and
(2.7). As above \;, i = 1,2,...,d, denote the diagonal elements of A.
For n € N we consider the diagonal matrix function A,, with diagonal
entries A\ = (A\; V (1/n)) An,i=1,2,...,d, and define

B" =+2U -AY?.U*, " =1/2B". B™,
and

AT = (A;V —n)An, i=1,2,...,d.

In view of ||B"||? = trace o™ and (2.8) we get

|IB"|> <dn, neN.
Also, we obtain
|A"| < Vdn, and |A"| <|A| foralln e N.
Furthermore, for every z € R
((B"z,2)) = ((UAY2U*z,2)) = ((AY2U*2,U*2)) > n~ Y2 |U*2|?
=n 22

Therefore, the coefficients B™ and A"™ satisfy the assumptions of
Krylov’s theorem, cf. [10, Theorem 2.6.1]. Hence, there exist contin-
uous processes (X", F") and (W™, F") defined on probability spaces
(Q™, 7, P") with filtrations F* = (F}*)¢>o such that (W",F") are
Wiener processes and, for any n = 1,2,..., the process (X", W") sat-
isfies the equation

t t
(3.1) Xg:x0+/ B"(s,X;’)dWS"—i—/ A™(s, X" ds, ¢ 3> 0.
0 0

Set

myn .__ n
Xi = X (X7
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S

EATm (X™)
myn . mxn _ / A™(s,™X™) ds
0
EATm (X™)
:x0+/ B"(s,™X") dW™,
0

where 7, is defined in (2.10).

Obviously, the process ™Y ™ is a continuous martingale being the
martingale part of the continuous semimartingale ™ X™. It follows, cf.
[9, Theorem 1.4.52], that

) ) . ) tATm (X™)
(32) [Tan’L,Tanj]t — <mynz’mynj>t :/ n( an)d
0

U

forallm € N, 4,5 =1,2,... ,d. Here[,,:] and (-, -) denote the quadratic
variation processes of a semimartingale and a martingale, respectively.

Now we are going to show that, for any fixed m € N, the sequence
of bounded processes ™X™, n > 1, is tight in C(]0,00),R%). Due
to Aldous’s criterion [1], for the tightness of the sequence (™X") in
the Skorokhod space D([0,+o0c0), R%), it suffices to show that for every
sequence (7") of F™-stopping times, every sequence (d,,) of real numbers
such that d,, | 0 and all € > 0 it follows that

(3.3) lim P”<| MY iy — X g > 5) —0.

n—oo

Because the processes ™ X™ are continuous, from [9, Theorem VI1.3.26],
it follows that the tightness also holds in C([0,+o0), R). We now
verify (3.3). First let n be fixed. By Chebyshev’s inequality, Lemma 2.4
and Corollary 2.5, for any L > 1 we obtain

Pn(‘ thn/\(‘r"+5 ) mX?/\T"| > 6)

EATm (X")N(T"+65,)
<‘ / B"(s,™X") dW™
t

AT™
+pP" <

< 82E" [

-
2
s> &
2

trace o™ (s, " X7) ds]

tEATm (X™)AN(T™+65)
J

A™(s,™X™) ds

AT

AT (X™)A(T™ +6n)
J

AT™
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IATm (X)A(T™ +6n)
42BN [/ An (s, ™ X )| ds]
tAT™
AT (X™)A(T™ +6n)
< 82E" [/ trace o™ (s, X7) ds]
tAT™
AT (XA (T +6n)
42 B [/ A(s,™X™)] ds]
tAT™

< L, (872 +2e71)

tEATI (X™)
+ 8 *E" [/ Litrace on > Ly trace o (s, ™ X') ds]
0

) AT (X™)
+ 2™ En[/@ 1{|A|>L}A(S,ng)|d8:|

< Lo, (8e72 +2e71h)

1/(d+1)
+ 86_2C</ Litrace on> 1} (trace o™ (det o™) " dy ds>
[0,t] XU,

1/(d+1)
+2510</ 1{‘A|>L}|A‘d+1(det0n)il dyds) .
[0,t]x U,

From (2.8) we get

d tracec™ < A" := max A7
i=1,...,d

Clearly, deto™ = detA, and, using Lemma 2.3 and the obvious
inequalities A} < A\; +1,¢=1,...,d, we observe

(trace ™)1 (det ™) 71 < d¥T (X + 1)%H (det A) 7

where A := max;—i . qAi. Now det A = deto and, applying again
inequalities (2.8), we obtain
(3.4)

d+1
(trace ™) (det ™)1 < g2(@+Y) ( max d(oii) + 1> (det o)~ 1.

i=1,...,
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Set v = max;—1, . 40 + 1. Lemma 2.3 implies then
(3.5)

(det ™) ' = (det A,,) (HA") 1
§2di=1,;_1x7 A +1) <HA>

d
< (2d)¢ ( max o + 1> (det o)™t = (2dy)?(det o) !

i=1,...,

The estimates (3.4) and (3.5) together yield

Pn(| T XN nts,) — Xipen| > 5)
< Lo, (872 +2e71)

/(d+1)
+ 8d%e~2C </ 1iysra-2yy? (det o)~ dy ds>
[0,t] XUy,

1/(d+1)
+4Cd5_1(/[0t . Lga>ry A" 14 (det o) ! dy ds)
XUm

Thanks to az) and b) we know that the functions y¢*1 and |A|4+1y4
are locally integrable with respect to du = (deto)~!dyds and, con-
sequently, the righthand side converges to zero for n — oo and then
L — oco. This shows that (™X"), N is tight in C([0, +00), R%).

Using the theorem of Prochorov, cf. [2, Theorem 6.1] and the diagonal
method, we can choose a subsequence (n;) and, for every m € N,
probability measures R™ on C([0,+00), R?) such that

lim Dpn, ("X™) = R™.
k—o0
For simplicity we assume that

(3.6) lim Dpn(™X")=R™ for allm e N.

n—oo

Let us extend R™ to probability measures R™ on (E(]0, +00), RY),
£([0, +00),R%)) by

(3.7) R™(A) =R™(ANC([0,4),RY)), Ae&([0,+0),RY).
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We recall the definition of the coordinate mappings Z = (Z;)t>0 on

E([0, +00), R?) by (2.2) and denote their restrictions to C([0, +00), R%)

by Z = (Z;)>0. Similarly, let 7, be the restrictions of the E-stopping
times 7, defined in (2.10).

Let us prove that there exists a sequence of numbers (a,)m>1 such
that a,, — 0o as m — oo and 7, (-) is R™-almost surely continuous
on C([0,00),R%) for all m = 1,2,.... Because C([0,00),R%) C
D([0,0), R?), it suffices to show the continuity of 7,, (+) on D(][0, c0),
R?) R™-almost surely.

For any m € N and a € (m — 1, m) consider the function J, : D — R
defined by

Ja(2) := inf {t >0:|z(t)] > a or /Ot |A(s,2(s))|ds > a
or /0 trace o (s, z(s)) dsZa}.

It is easy to see that the function a — J,(z) is increasing for any z,
hence there exists a countable set N,,, C (m — 1,m) such that for all
a ¢ Np,

R {z : 151?01 Jo—e(2) = 151?01 Ja+6(z)} =1

and
Rm+L) .1 — T _
R {z : 161&1 Jo—e(2) = 181JI’101 Ja+s(z)} =1

By the definition of the Skorokhod topology, if z, — z in D and
lim. o Jo—c(2) = lim. g Jate(2), then Jo(2,) = Jo(2) as n — oo, cf.
[8, Section 2.7]. Clearly, the function z — J,(z) is continuous for R™-
and R™!-almost every z for all a € (0, 00) \ US_; Npy.

Hence, there is a sequence (@, )meN With a,, € (m — 1, m] such that
Ta,, () are R™-almost surely and also R™L-almost surely continuous
functions on C([0, +o0), R%).

Let us introduce the continuous processes “~ X" and “~Z defined on
(Qr, F*, P") and (E([0, +00), R?), £([0, +00), R%)), respectively, by

athn =X (Xm) and amZt = Zt/\Tam(Z)7 t Z 0.

tATa,,
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To simplify the notation, from now on we write
mXP=mX], MZy=""1Z,.

The restriction of ™Z to C([0,+00),R%) is denoted by ™Z. In the
sequel, as image space for X" and ™Z, we consider (C([0, +00), R%),
C([0,+0c0),R%)). We define the probability measures Q™ by

Q™ = Drn("2) (= Dg,.("2)),

i.e., Q™ on (C([0, +00), R%),C([0, +00), R%)) is the distribution of the
stopped process ™Z defined on the probability space (E([0, +o00), R%),
£([0,4+00), R%,R™). The probability measures Q™ on (E([0, +c0), R9),
£([0,+00), R%)) are now introduced as the extensions of Q™ analo-
gously to (3.7).

Given that (am,)men is chosen such that 7, () is continuous R™-
almost surely and R™*l-almost surely, the relation (3.6) and the
continuous mapping theorem, cf. [2, Theorem 5.1], imply

(3.8) lim Dpn(™X") = Q™

n—oo

and
lim Dpn("X") = Drm+1(™Z) for all m € N.
n—r 00

This yields the equality
(3.9) Drms1(™Z) = Q™ for all m € N.

We now state the following

Lemma 3.2. For all m € N, we have
1) Dom(™Z) = Q™.

2) Dom+1(™Z) = Dom (™ Z).

3) Qmt(A) =Q™(A) forall A€ &,, .

Proof. 1) follows from the identity ™Z o™Z = ™Z and the definition
of Q™ and Q™. Using ™Zo™*1Z = ™Z and relation (3.9), we observe

Dqrii(™Z) = Dames ("2) = Q™
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which implies 2) in view of 1). Finally, 3) is a simple consequence
of 2) and the property "Z '(A) = A for every A € C~ =&, N

C([0,+0c0), R%). This proves Lemma 3.2. o

In view of Lemma 3.2 and Proposition 2.1, there exists a unique
probability measure Q on (E([0, +o0), R%), £([0, +00), R?)) such that

Q(A)=Q™(A) forall Acé&,, , meN.
The definition of Q, the representation (2.4) and Lemma 3.2 yield
Dq(™Z) = Dan(™Z) = Q™.
Hence, statement (3.8) can be rewritten as

(3.10) lim Dpn(™X") = Do(™2) forallmeN.

Thus, we constructed processes ™ Z on (E([0, +00), R9), £([0, +00), RY),
Q) to which the sequence (™ X™),en converges weakly. We also notice
that the process ™7 is a continuous semimartingale with respect to FZ,
cf. [9, Theorem VI.6.1 and Remark VI.6.5]. Hence, the process Z is
a continuous semimartingale with respect to F# up to the explosion
time 7A(Z). Our aim is to show that the process Z defined on the
probability space (E([0,+0), R%), £9([0, +00), R%), Q) with filtration
F = (F)is0, Ft = 53, t > 0, where the superscript Q means
completion in £Q([0, +00), R?), is the desired solution of equation (1.1).

In order to prove this, it suffices to show that there exists a Wiener
process W such that

t t
Zy = x0 +/ B(s, Zs) dW; +/ A(s,Zs)ds on {t <7a} Q-as.,
0 0
or, equivalently,
tATa,, (Z)

tATa,, (Z)
™7 = xg —|—/ B(s,™Zs) dWj —l—/ A(s,™Zs)ds Q-as.,
0 0

for all t > 0 and m € N.
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According to the well-known theorem of Doob, cf. [6, Theorem 7.1'],
we need then only to verify that, for all 4,5 = 1,2,... ,d, m € N, and
t >0, it holds

) ] tATa,, (Z)
(3.11) <mYZ,mYJ>t:/ 0ii(s,™Zs)ds, Q-a.s.
0

where ™Y is a continuous martingale of the form
tATa,, (Z)
mY, ="27, —/ A(s,™Zs) ds.
0
If we show that

) ] NTam (Z)
(3.12)  lim Dpn (<mY’”,’"Y"7>,/ 0’-’-(8,’”X§)d8)
0

n— 00 13
. ) -/\'ram(Z)
:DQ(<mYZ,mYJ>,/ O'i]'(s,st) dS)
0

forallme N, i,j=1,2,...,d, we will be able to finish the proof.

Indeed, because of the relation (3.2), an application of the continuous
mapping theorem, cf. [2, Theorem 5.1], to the functional p implies then

) ) ATam (Z)
p((mYl,mYQ,/ oii(s,™Zs) ds) =0,
0

which verifies (3.11).

Let us prove (3.12). For this we will need the following lemma stating
that the sequence of processes (™Y ™), n > 1, converges weakly to the
process ™Y for any m € N.

Lemma 3.3. For any m € N, ™Z — fO'AT“’"(Z)A(s,mZS) ds is a
continuous martingale and

ATam (X™)
(3.13) lim Dpn <mX" - / A"(s,mXQ)ds>
0

n—oo
NTam, (Z)
=Dq <mz - / A(s,™Z,) ds>.
0
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Proof. First we fix p € N and show
ATap (X™)
(3.14) lim Dpn <an —/ Ap(s,mX;l)ds>
0

n—00
-/\'ram(Z)
:DQ(mZ—/ Ap(S,mZS)dS>
0

for all m € N. Since |AP| is bounded by p and hence (AP)¢+! is locally
integrable, we can choose a sequence (fx)ren of continuous functions
uniformly bounded by p such that

lim fr — AP|T dyds = 0

k=00 J10,N1x Upn

for all m, N € N.
Consider the functional F}, on C([0,00), R?) defined as

tAJa,, (T)
Fila(t) = () - | Fu(s,2(5)) ds.

Clearly, for any k& € N, the functional Fj is continuous. Hence, applying
the continuous mapping theorem, cf. [2, Theorem 5.1], to the functional
F}., we obtain

AT, (X™)
(3.15) lim Dpn <an — / fr(s,™XD) ds)
n— o0 0
ATam (Z)
=Dq (mZ - / fr(s,™Zs) ds).
0
Next we extend Krylov’s estimates to the limit process ™Z.

Lemma 3.4. For anym € N, t > 0 and any nonnegative measurable
function f, we have

NTam (Z)
EQ[/@ f(s,st)ds]

1/(d+1)
< C(/ FH (s, y) [deto(s,y)] " dy ds)
[0,t]XUnm,
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Proof. First we notice that it suffices to verify the above inequality
only for any continuous and bounded function f. Indeed, using then
the standard arguments of the monotone class theorem, cf. Lemma 2.4,
the inequality would follow for any nonnegative measurable function f.

Because of the assumption aj) of Theorem 3.1, it follows that
det o(s,y) # 0 for almost all (s,y) € [0,t] X Up,. Hence, using Corol-
lary 2.5, the continuous mapping theorem and Fatou’s Lemma, we ob-
tain

tATa,, (Z)
EQ{/ f(s,mZS)ds}
0

tATq, (X™)
< liminf E" [/ f(s,™X3) ds]
0

n—r0o0

1/(d+1)
< C'lim inf </ F4 (s, y) [det o™ (s,y)] " dyds)
[0,t] XUy,

n— oo

1/(d+1)
_ c( [ i) eto(s, ) dyds)
[0,t]XUpm,

where we used the fact that (deto™)~! is uniformly integrable over
[0,t] x Uy, because of the estimate (3.5) and the conditions a;) and az)
of Theorem 3.1. u|

Using Lemma 3.4 and Chebyshev’s inequality, we estimate

tATam (Z) tATap, (Z)
Q( sup ‘/ Tr(s,™Zs) ds—/ AP(s,™Zs) ds‘ > 5)
0 0

0<t<N

NATa,, (Z)
<etmol [ huto, 2 - (s, s

1/(d+1)
§6_10</ |fx — AP|4T! [det o] 7! dyds) .
[0,N]x U,

Since |fy — AP|9t1 is bounded by (2p)¢*! uniformly for all k, the
condition ajy ) yields that the righthand side converges to zero as k — co.
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Hence,
ATam (Z)
(3.16) klggopq( Z—/O Fu(s, Zs)ds>

=Do("7 - /OIMW(Z) AP (s,"7,) ds).

In the next step we estimate

tATg,, (X )
lim sup P" sup ‘/ (s, X2)ds
n—00 0<t<N

tATa,, (X™)
—/ AP(s,"X7) ds‘ > 5)
0

NATa,, (X™)
<egt IimsupE"[/ |fr(s,™XY) —Ap(s,mX:)|ds]
0

n— oo

/(d+1)
< e 1C limsup </ \fr — A4 [det o] L dy ds> .
[0,N]xU.

n—oo

Now, since limy_,, fr = AP almost everywhere, fi is bounded by p
as well as AP, and (det 0™)~! is uniformly integrable over [0, N] x U,,
because of az) and the estimate (3.5), the righthand side converges to
zero as k — oco. Therefore, we have

tATa,,
(3.17)  lim limsupP" (‘ / fr(s,™X72)ds
0

k—oo noo
tATay, (X™)
_ / AP(s,™ XY ds
0

>8>—0
for all € > 0.

Applying Proposition 2.2, from relations (3.15), (3.16) and (3.17) we
obtain the weak convergence (3.14).

Next we observe that
NTam, (Z)
(3.18) lim Dq (mz / AP(s,™7Z,) ds)
0

p—o0
_ DQ (mZ B /./\‘ram (2) A(S, mZS) ds)
0
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because in view of Lemma 3.4,

t/\-ram(Z tATapm, (Z)
sup ‘/ (s,™Zs)ds —/ A(s,™Zs) ds‘ > 8)
0

0<t<N
JV/\T(,,m (Z)
=1 Eq [/ AP(s,™ Z,) — A(s,mZS)|ds]
0

1/(d+1)
e~to (/ |AP — A|*T! [det o]~ dy ds) .
[0,N]XUn,

By the Lebesgue theorem of uniform convergence, the right term
converges to zero as p — oo since by the definition of AP it follows that
lim,_, o |AP — A1 = 0 almost everywhere and, in view of condition
b), the sequence (|AP — A|?*1 [det 0]~1),>1 is uniformly integrable over
[0, N] x Up,.

Finally, it can be easily seen that

lim |A" — AP|%t ! [det o] ' = |4 — AP|* 1 [det o] ! ace.

n—oo

Moreover, estimate (3.5) and condition b) of Theorem 3.1 imply that
the sequence (|A™ — AP|4*1[det 0] 1), > is uniformly integrable over
[0, N] X Up,. Thus, by Corollary 2.5 and the Lebesgue theorem of
uniform convergence, we have

tATa,, (X™)
Ay = lim sup P” sup ‘/ A"(s,"X2)ds
n—00 0<t<N
tATa,, (X™)
7/ AP(s,"X7) ds >6>
0

N/\Tam(Xn)
g1 limsup E,, [/ (A" (s, Xy) — AP(s5," X )] ds}
0

n—ro0

n— oo

1/(d+1)
e~1C limsup (/ |A™ — AP|%HY [det o] dy ds)
[0,N]xU,

/(d+1)
e~to (/ |A— AP|H [det o] ! dy ds) .
[0,N]XUp,



164 V.P. KURENOK AND A.N. LEPEYEV

By the same arguments as above, lim,_,,, A, = 0. Consequently,

15/\'r,1m
(3.19) lim limsup P"( sup ‘/ A"(s,™X7)ds

P70 posco 0<t<N

tATa,, (X™)
—/ AP (s,ng)ds‘ >s> =0
0

for all € > 0. Finally, using Proposition 2.2, from (3.14), (3.18) and
(3.19) we obtain (3.13). The process ™Y is a continuous martingale
with respect to the filtration F" % as a weak limit of continuous
martingales ™Y ™, cf. [9, Proposition IX.1.10]. This finishes the proof
of Lemma 3.3. ]

As a consequence of Lemma 3.3 and Corollary V1.6.6 in [9], we obtain

Corollary 3.5. For anym € N and i,j7 =1,2,... ,d, it holds

(3.20)
. . ) NTay, (%) ]
: my/nt mynj _ morzi . m mrzj
lim De (< Yy my >) = Dq (< Z /0 Ai(s,™Z,)ds,™Z
NTap, (Z)
—/ Aj(s,st)ds>>.
0
Lemma 3.6. For anym € N and 1,5 =1,2,...,d, we have

) ] ATam (X™)
(3.21)  lim Dpn ([me,mX"J],/ oZ(s,mX?)d8>
0

n— o0
. ) ATap (Z)
:DQ<[mszmZJ],/ ‘Tw( )ds)
0

Sketch of the proof. We follow the same steps and use similar
arguments as in the proof of Lemma 3.3. Using Proposition 2.2,
for proving (3.21), it suffices to verify that, for all m € N and
1,7 =1,2,...,d, it holds
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. . /\Tam(X )
(3.22) lim Dpn([mxm,mx’”], /0 oﬁ’j(s,"‘X?)ds)

n—oo
) ) ATam (Z)
—pq(("zi 2, [T a2 ds)
0
for any fixed p € N;

] ] ATam (Z)
(3.23) lim DQ(["‘Z’,"‘ZJ],/ ot (s, Z,) ds)
0

p—ro0 v

. ) NTap, (Z)
:DQ<[mT,mZﬂ],/ ois (s, Z,) ds )
0

/\‘ram
(3.24) lim lLm P"( sup ‘ / o™ (s,™X™) ds

pP—00 Nn—00 0<t<N
ATapm (X™)
—/ ofj(s,mX;l)ds‘ > s) =0
0

for alle > 0 and IV € N.

To prove (3.22) we notice that, for any fixed p € N and i,j =
1,2,...,d, there exists a sequence of continuous bounded functions
(fk)ken such that

lim | fx —Ufj|d+1 dsdy =0

k=00 J10,N|x Uy,

for all m, N € N. The later follows from the definition of Ufj and the
conditions of Theorem 3.1. Now, for any & € N, the functional Gy,
defined as

Guteu) = (o0, [ Suto,u(s)ds).

is continuous on C([0, 00), R%) x C([0,00), R%).

Further we remark that from the weak convergence of the sequence
of continuous bounded semimartingales ™ X" to the continuous semi-
martingale ™Z as n — oo it follows, cf. [9, Theorem VI.6.1], that,
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for any i,7 = 1,2,... ,d, the sequence of vectors ([™ X", ™ X", ™X")
converges weakly to the vector ([™Z*,™Z?],"™Z). Hence, applying the
continuous mapping theorem to the functional G we obtain

_ A Ta (X
: m nt m nj m n
(3825) lim DPH([ Xmi mx ],/0 Fuls, Xs)ds)
) ) NTam (Z)
:DQ([mzl,mZJ],/ fk(s,mZS)ds)
0
for any k£ € N.

Using Krylov’s estimates for the limit process ™ Z, cf. Lemma 3.4, we
obtain that, for any ¢ > 0, N € N,

) ) NTanm, (Z)
lim Q(p2<([’”Z’,’”ZJ],/ Fi(5,™2,) ds);
— 00 0
N (Z)
([mZi,ij],/ ofj(s,st)ds)> > s) =0
0

which leads to

. . NTa, (Z)
: mrzi morzj m
(3.26) klggopq([ Z, Z],/0 Fi(s, Zs)ds)

foralmeN, i,j=1,2,...,d.

Similarly, using Krylov’s estimates, the relation (3.5) and the condi-
tions of Theorem 3.1, we can verify that

k—oo noo 0<t<N

t
(3:27)  lim limsupP"( sup ‘ / Ffuls,™X™) ds
0
t
—/0 ofj(s,mX;l)ds‘ >s> =0

foralle >0, Ne N,me N,and i,j =1,2,...,d.
The relations (3.25), (3.26), (3.27) and Proposition 2.2 imply (3.22).
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For the relation (3.23) to be true, it is enough to verify that, for any
e>0,meN, NeN,and i,57=1,2,...,d, it holds

15/\'r,1m
(3.28) lim Q sup ‘/ (5, %) ds
p—ro0 0<t<N
tATa,, (Z)
f/ oij(s,™Zs)ds
0

By Chebyshev’s inequality and Lemma 3.4,

tATay, (Z tATa,, (Z)
sup ‘/ (8, Zs )ds—/ 0ij(s,™Zs )ds‘ )
0

0<t<N

>€>:0.

1/(d+1)
671C(/ |ot; — 014 [det o]t dyds) .
[0,N]XUn,

Due to estimate (3.5) and condition az) of Theorem 3.1, the sequence
of functions (|o%; —04;|***[det o] 1),>1 is uniformly integrable over any
set [0, N] x Uy, and the relation (3.28) is true because of the Lebesgue
theorem of uniform convergence.

Finally, to show (3.24) we can use Chebyshev’s inequality, Lemma 2.3
and Lemma 2.4 to estimate

t/\‘ram
lim lim P” sup ‘/ (s, XT) ds

tATay, (X™)
p m n
_/ ati(s, Xs)ds‘ > 8)
0

NATq,, (X™)
<e ! lim limsup En/ lof (s, Xg") — Ufj(s,ngﬂ ds
P20 npnooco 0
1/(d+1)
<e!'C lim limsup </ lofy — Ufj|d+1[det U"]_l dyd%
[0,N]xU,

P70 poco

<e1C lim 1imsup</ max d\)\z —ADjdtt
[0

P20 n—oo NIXUy, B=1,20,

/(d+1)
x [deto™] " dyds>
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< &7 'C lim limsup (/ max  (AR)! 11y, 5y [det o™ tdyds
[0,N]

P pnoo XU #=1,2,...,d

L 1/(d+1)
+/ _max pf(d+1)1{>\kg(1/p)} [det o™ ™" dy ds>
[0,N]xU,y, k=1,2,-.. .d

<eC lim (/ max (A + 1)%+! Ling>p) [det o] ! dyds
[0,N]

p—oo XU k=1,2,...,d

1/(d+1)
+p‘(d+1)2d/ max (A + 1)4! [det o] dy ds> |
[0,N]x Uy, k=12, ,d

Because of condition az), the function

,_max d()\k + 1) [det o] !

=1,2,...,

is integrable over [0, N] X U,,, hence the righthand side of the last
inequality is equal to zero. ]

Now we return to the proof of Theorem 3.1. Notice that the
process [™Z*,™Z7] is predictable as a continuous process and it is
uniquely determined as the weak limit of the sequence of processes
[mXn mxnI] = (my™ myni) cf. [9, Theorem IX.2.4]. Hence, us-
ing Corollary 3.5 we conclude that [™Z¢ ™Z7] = (™Y* ™YJ) and, by
Lemma 3.6, the relation (3.12) is verified. The proof of Theorem 3.1 is
finished. o

Corollary 3.7. Suppose the coefficients A and B satisfy the following
conditions:

a;) (det B B*)~! € L°°(]0, +o0) x R?).
c) There exists a p > 1 such that |A[P(4+D) € L1°¢(]0,+00) x R, p)
and || B||?24+1) € L'¢([0,+00) x R%, ), where 1/p+1/q = 1.

Then, for an arbitrary zo € RY, there exists a solution X of the
equation (1.1) with Xo = zg.

The condition imposed on the coefficient A in Corollary 3.7 can be
formulated as “There exists a number p > d + 1 such that |A|P €
Lloc([0,+00) X Rd,/l)-”
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It is worthwhile to compare this condition with the integrability con-
dition on A found by Portenko [16]. He constructed a (nonexploding)
solution of (1.1) assuming the matrix B to be uniformly continuous,
bounded and uniformly nondegenerate, and the drift coefficient A to
be integrable on [0, 7] x R? of order p > d+ 2 with respect to Lebesgue
measure for any 7" > 0. In other words, he assumed global Lebesgue
integrability in the space variable. In our case we assume local integra-
bility of order p > d+1 but with respect to the measure . In particular,
assume matrix B to be nondegenerate as is the case in Portenko’s con-
ditions. Then there exists a constant ¢ > 0 such that det BB* > ¢ and
[det BB*]™! < 1/c¢ < oco. Therefore, our condition on drift becomes
“there exists a number p > d + 1 such that |A|P is locally integrable
with respect to the Lebesgue measure.”

Remark 3.8. Assume d = 1 and A = 0. Then our conditions coincide
with the existence conditions found by Senf [21] and Rozkosz and
Slomonski [18] for (possibly, exploding) solutions of (1.1).

Remark 3.9. Consider the case of a one-dimensional (d = 1) equation
(1.1) with the unit diffusion coeflicient B = 1. Then the existence
condition found becomes A% € L'°°([0,00) x R) which coincides with
the known existence condition for such SDEs stated first in [13].

Theorem 3.1 can be extended in the following way. We introduce the
sets

N ={(t,z) € [0, +00) x R*: B(s,z) =0
and A(s,z) = 0 for almost all s > t}

and
M ={(t,x) €[0,+00) x RY: pu(Ss(t,z)) = oo for all § > 0}

where Sj5(t,z) denotes the ball with center (¢,z) and radius ¢ in
[0, +00) x R? and the measure yu is defined in (1.4). Clearly, M® :=
[0, +00) x R¥\ M is an open subset of [0, +00) x R? and 4 is a locally
finite measure on M¢, i.e., u(K) < +oo for every compact subset of

Me.
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Theorem 3.10. Suppose the following conditions are satisfied:
aj) M CWN.
a3) [|B[*(*FY) € L'°(M°, ).
b*) A (B2 + 1) € L (M®, ),
Then, for any xy € RY, there is a solution X of (1.1) with Xy = zo.

The condition f € L°°(M¢ 1) means that f is integrable with
respect to p over every compact subset K of M¢ (and not of [0, +00) X
RY).

The proof follows the same steps as the proof of Theorem 3.2 in [3],
cf. [20], and, therefore, is omitted. The following statement is then a
natural extension of Corollary 3.7.

Corollary 3.11. Suppose the coefficients A and B satisfy the
following conditions:

a;) MCWN.

c*) There exists a p > 1 such that ‘A|P(d+1) € L°°(M®,u) and
‘|B||2q(d+1) € L°°(M°, 1), where 1/p+1/q=1.

Then, for an arbitrary o € R?, there exists a solution X of equation
(1].) with X() = Zy-

4. Time-independent SDEs. Now suppose that the coefficients
A and B do not depend on the time parameter ¢. In this case equation
(1.1) becomes

(4.1) Xt—aco—i-/B ) dW, +/A t>0,

where zy € R¢ and W is a d-dimensional Wiener process with Wy = 0.
Let
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and for any m € N, define

t
T (X) := inf {t >0:|Xy >mor / trace o(X,)ds > m
0

or /Ot |A(Xs)| ds > m}.

First, we have the following version of Krylov’s estimates that can be
proven in the same way as Lemma 2.4.

Lemma 4.1. Suppose X is a solution of SDE (4.1) and f : R —
[0,400) is a nonnegative measurable function. Then there exists a
constant C which depends on t, m and d only such that the following
inequality holds:

5| [ T ) deto(x ) w e [ rwa)

1/d

The following theorem is then the analog of the existence Theorem 3.1
in the time-dependent case.

Theorem 4.2. Suppose the following conditions are satisfied:
a;) (det B- B*)~! € L'°°(RY).

az) || BII** € L°°(R?, f).

b) |A[4(|BI[* +1) € L*“(R%, 7).

Then, for an arbitrary xo € R?, there exists a solution X of equation
(4.1) with X() = Zy-

Corollary 4.3. Suppose the coefficients A and B satisfy the following
conditions:

a;) (det B- B*)~! € L'°°(RY).
€) There exists p > 1 such that |A|P? € L°¢(R%, 1) and ||B|]*% €
LY°(RY, i), where 1/p+1/q = 1.

Then, for an arbitrary xo € R?, there exists a solution X of equation
(4.1) with X() = X2p-
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It is easy to see that in the one-dimensional case (d = 1) condition
ap) vanishes. The conditions of Theorem 4.2 (and of Corollary 4.3,
correspondingly) become those found by Engelbert and Schmidt in [5].
If A =0, then we have just one existence condition a;) that coincides
with the existence condition found also by Engelbert and Schmidt in
[5]. In fact, they proved that this is also a necessary condition for the
existence of a nontrivial (not equal to a constant) solution of equation
(4.1) for any initial value g € R. In the case of one-dimensional SDEs
with unit diffusion coefficient, we have the expected condition of local
integrability of A.

We also can easily formulate the corresponding analogs of Theo-
rem 3.10 and Corollary 3.11 in the time-independent case.

Define
N ={zecR?: B(z) =0and A(z) = 0}

and
M ={z e R*: 7(S;5(x)) = oo for all § > 0},

where Ss(z) denotes the ball with center z and radius ¢ in R<.

Theorem 4.4. Suppose the following conditions are satisfied:
aj) MCN.
a3) | BII** € L°(M", ).
B*) [A[4(IBIP + 1) € Lo*(M", ).
Then, for any xo € RY, there is a solution X of (4.1) with Xo = xo.

Corollary 4.5. Suppose the coefficients A and B satisfy the following
conditions:

aj) MCN.
c*) There exists a p > 1 such that |A[P? € Lo¢(M°, ) and ||B]|?9? €
Lo¢(M°, 1), where 1/p +1/q = 1.

Then, for an arbitrary xo € R?, there exists a solution X of equation
(41) with X() = Zy-
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