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AN EMBEDDING THEOREM FOR 
MIXED NORMED SPACES 

MIROLJUB JEVTIC 

1. Introduction. If s,r, ß > 0, a function / analytic on the upper 
half-plane U = {z — x -f iy, x G R, y > 0}, is said to belong to the 
space i4fr if 

:,.ß= ryrß-lMs(yJYdy< 
Jo 

oc, 

where 

M,(y,f)=(f~ \f{x + iy)\°dx)X'\ 

Let 0 < p < s < oo, 0 < q < r < oo and /x be some positive finite 
Borei measure on U. In this paper we will find conditions on /i that 
are equivalent to the estimate: There is a constant C such that 

( E ( Z / I / W I ^ M W Ì ^ ^ ^ C H / I U ^ f o r a l l / e 4 ? r , 

where Qj^ are squares {z — x -f iy, A;2J < x < (A: + 1)2^, W < y < 
2 J + 1 } , j and & are integers; i.e., the injection mapping from A^r to the 
space L^'q (with the obvious definition) is bounded. 

Our work was motivated by a recent paper of D. Luecking [5]. For 
0 < p < s < o o , he has characterized the positive measures // on the 
unit disc D for which there is a C > 0 such that 

[J \f(z)Y>dii{z))'V < C I I / I U 0 , for all / € < „ 

the Bergman space of functions / which are analytic in D and for which 

L.0 = I I ' \f(pei8)\*(l - P)sß-ldpd0 < 00 (8 > 0). 
Jo Jo 
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1060 M. JEVTIC 

His result is that this occurs if and only if 

k(z) = fi(D£(z))/ms,ß(De(z)) e L*(ms.ß), for \/q + p/s = 1, 

where D£(z) is the pseudo-hyperbolic disc around z e D having radius 
e and msjj(z) = (1 — \z\)vj~ldm(z), for dm two-dimensional Lebesgue 
measure on D. 

In this paper we extend Luecking's theorem to the mixed norm spaces 
(0 < p < s, 0 < q < r) . Actually, if p = q and r = s we have another 
equivalent condition on the measure p. The precise statement and 
the proof will be given in §3. For technical reasons, our proof will be 
performed in the upper half plane. 

The main ingredient of Luecking's theorem mentioned above is a 
theorem of E. Amar [1] which says that every separated sequence in D 
is a finite union of interpolation sequences for A%s (relevant definitions 
will be given in §2). To make use of Luecking's idea, we require such a 
theorem for mixed norm spaces. This follows from our main theorem 
in [3]. For the sake of completeness we restate it in §2. 

F. Ricci and M. Taibleson's decomposition theorem for mixed norm 
spaces [6] is another key theorem used in the proof of the main theorem. 

We conclude the paper with an application of the method used in §3. 
Pointwise multipliers from A%r to A% are characterized provided that 
0 < p < s < oo, 0 < q < r < oo, 0 < ß < a. 

2. Interpolating sequences. Let p(z,w) denote the pseudo 
hyperbolic metric 

p(z,w) = 

For a £ U and 0 < S < 1 let 

z — w 
, z,weU. 

Dfi(a) = {z eU : p(z,a) < 6}. 

The following lemma is a simple consequence of the fact that Df>(a) 

is a disc in the Euclidean metric with center c = Re a -f i Im a j^j and 
radius R = ~^\n\a. 
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LEMMA 2.1. For given 0 < 6 < 1 there exist positive integers 

™i,n2, 7*3,724, depending only on <5, such that if a G Q3k then D^(a) C 

Q-u , where Q), is a rectangle in U. 

{z = x + iy: {k-nx)2
J <x < {k + 1 + T I 2 ) 2 J , 2J"~W3 < ,y < 2 J ' + 1 + " 4 } . 

Let £.sr denote the mixed norm space of all double sequences a — 
{fljfc}, jik e Z, for which 

IMI- - E ( E M s ) r / S < *> (0 < ̂ r < °°)-

A sequence {zj^}, j,k G Z, in 17 is said to be (^-separated if there 
exists a ò > 0 such that if (771,71) ^ ( j . A*) then 

P{Zmn,Zjk) > 6. 

A sequence {^jjt} in U is called an interpolation sequence for A[^r 

if whenever {xjk} £ ( s r , then there exists / e A3
sr satisfying 

f(zjk){lmzjky
j+i^s — Xjk, i.e., if the operator R defined by Rf = 

{f(zjk)(lmzjk)^+l/s} is a bounded map of A%r onto £,sr. 

It follows from the open mapping theorem tha t a constant M may be 
associated with any given interpolation sequence {ZJ^} such tha t any 
{xjk} with \\{xjk:}\\sr < 1 is the image under R of a function / G A[*r 

with |l/l|.s>rß < M. This M will be referred to as the interpolation 
constant of {ZJ^}-

THEOREM A. [3] Let n, m be positive integers and m 0 € {0 ,1 , 2 , 
n — 1}. Suppose that {zmo+jn,k}rj,k £ Z , is a sequence in U which 
satisfies the following conditions: 

(i) 2^o+(j+i)n- i < imZmo+jnk < 2™o+(j + i)»? for an k e Z ; 

(ii) | R e 2 m o + j „ . f c l - R e z m o + j n . , 2 | > (m + l)2m»+U+l)n-\ if k, / * 2 . 

/ / n and m are /arge enough, then T^r defined by 

T?TU) = {f(zmo+JnM)lmzmn+J1lMf+t'°}, f G At, 

is a continuous linear map Asr onto £sr. In fact, there is a continuous 
linear map V of £sr into Afr so that Tj?rV is the identity mapping on 
f 
*- sr • 
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Throughout the paper we use C, C i ,C2 , . . . , to denote positive con
stants, depending on the particular parameters r, s , . . . , M, <5,77, / 3 , . . . , 
concerned in the particular problem in which they appear. They are 
not necessarily the same on any two occurrences. 

3. Embedding theorem for mixed norm spaces. Before stating 
the main result we establish two more preliminary lemmas. 

LEMMA 3.1. Let 6 > 0 and s, r, ß > 0. If f is a holomorphic function 
in U, then the following statements are equivalent: 

i) / 6 Al, 

i i ){2^+ ' / ' ' ) sup 2 6 Q j J / ( 2 ) | }€4 r , 

i ü ) {2i(/»+i/«) sup2 6 Q , t , | / ( 2) |} e lm. 

PROOF. From the decomposition theorem for the spaces A%r, 
F. Ricci and M. Taibleson have obtained that ||/||Ä,r,/3 is equivalent 
to | |{2^ / 3 + 1 / s )sup2 € Q j f c |/0z)|}||Ä,r (Lemma 6.3 in [6]j. Obviously, iii) 

implies ii). It remains to show that ii) implies iii). Recall that C L is 
the rectangle 

{z = x + iy: (k-m)2j <x< (k + 1 + n2)2
j,2j"n3 <y< 2 J + 1 + n 4 } 

for some positive integers ni,712,713 and n$ depending only on 6. Thus, 
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E 2 J ( / 3 + 1 / s ) r ( E SUP i/(*>r) 
r Is 

* *eQ%> 

j + l+n 4 k+l+n2 

<£*«»'/•>'( £ E E |/(z) |.) 
j fc m=j-n3 n=k-ni zei*mn 

j + n 4 ^ fc+l+n2 v rjs 

<c E 2^+ . / . ,)r E (E E s u p | / ( z ) | - ) 

j rn=j —ri3 k n=k — n\ 2 t t * m n 

j + 14-ri4 

< C ^ 2 i O + l / . ) r E (E s u p | / ( Z ) | . ) P / " 

m = 7 - n 3 A: 2 € Q " 

r/.s 

LEMMA 3.2. [4] Le* 0 < p < s < oo, 0 < q < r < oo, \ju = 1/p- l / s , 
\jv — \jq— \jr. Then, for any {xjk} £ /Mî;, we /mve 

{^jfc}||u,t; = SUp \\{xjkyjk}\\p,q. 
\\{yjk}\\sr=i 

THEOREM 3.3. Let 0 < p < s < oo, 0 < g < r < oo, 
l/u = l/p — l/s, l/v — \jq — 1/r. TTiere zs a constant C such that 

( £ ( £ / l / (^) l p^(^)) ' / P ) 1 / 9 < CH/IU.^, for all f e Ai, 

if and only if 

||{2-^+1/*V(Qi*)1/"}||„,,, < oo. 

PROOF. Let \\{2~j(0+x,s)ß(Qjk)x,p}\\u,v < oo and / e A%.. By using 
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Holder's inequality, with indices s/p and r/q respectively, we obtain 

( £ ( £ / i/wp^))'")'" 
j k JQJ* 

/ \~^ / x-^ \Q/P\ xlq 

M E ( E SUP \tt*)\p)p{Qjk)) ) 
j k z^Qjk 

^ (E(E( s»p \f(z)nq/iY,^wi/p)q/y/q 

< ||{2J«*+1/*> sup |/(^)|}|U.r||{2--*w+I/*V(Q>fc)I/''}ll«.,. 

< C | | / | | , . ^ | | { 2 - ^ + 1 / S > M ( ^ ) 1 / P } I I « . , 

by Lemma 3.1. 

To prove necessity, we fix n and m large enough, so that any sequence 
satisfying the conditions of Theorem A is an interpolating sequence for 
A%r, and construct a ^-lattice, that is, a ^-separated sequence {WJ^} 
such that discs D^{wjk) cover U. Without loss of generality we may 
suppose that 2n~1+J < lmwjk < 2n + J ' , j , k € Z . 

Since {wjk} is separated we can split it into no sequences Xa such that 
each of them has at most one point in any square Qjk- Now split each 
of the sequences Xn into m sequences Xai, 7 = l , 2 , . . . , r a , defined 
by wjk € Xal if and only if Wjk £ Xn D Qu, where t — 7(modra). 
Finally, we split Xnl into n sequences Xniu,v = 1,2, . . . , n , so that 
Wjk 6 Xniv if and only if Wjk € Xnl fl Q//;, where / = v(modn). To 
obtain N = n^ran interpolation sequences for A%r we enumerate the 
sequences Xnlu, so that the conditions of Theorem A are satisfied. 
We may suppose that all are //-separated for some 77. Let {djk} = 
{wmo+jn, Sk}, 0 < rao < n — 1 , be one of the sequences Xaiu. By 
Theorem A, any sequence {y3k} with ||{î/jik}||.s.r — 1 is of the form 
{/(a j f c)(Ima j f e)^1/Ä} for some / € Aß

sr with \\j\\„^ß < M, where M 
is an interpolation constant associated with {ÛJA}- (Note that M is 
also an interpolation constant for any sequence Xniu.) 

Thus, by Lemma 3.2, 

(3.1) 
< C\\{f(ajkMDs(ajk))V»}\\p.g, 
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for some / G Aß
8T with ||/||Ä,r,/8 < M. Let / satisfy (3.1). Then 

(3.2) / \M\pdß{z) 

Juttas) 
fD6(ajk) 

>Ci\f(ajk)\*n(D6{ajk))-C2 [ \f(z) - f(ajk)\
pdp(z), 

JD6(ajk) 

where C\ and C2 are positive constants depending only on p. Summing 
over A:, raising both sides of the inequality (3.2) to the power q/p, 
applying inequality of type (3.2) with p replaced by q/p and summing 
over j , we obtain 

( £ ( £ / WirM.))*")'" 
(3.3) , , . 

^ c 3 ( Ç ( £ l / ( ° > * ) I W « ( a ; * ) ) ' ) 

We may assu^p iljfc # j , / 4 . So, i f / ^ Dfäfo^j)'")1". 

j k JD,(a]k) ' ' 

\f(z) - / (a j f c) |p < C6» \ f \f(z)\*dm(z) 
m(Dr,(ajk)) JDv(ajk) 

where the constant C depends only on 77 and p (see [5] for details). 
Thus 

( E ( E / \f(z) - f(a}k)\
pdß(z))q/y 

<<^(E(E^D*(a;*) SUP vw)"*)1'" • 

Here, Gjk denotes the square Qm o + ( J + i ) n_i ,S t which contains the point 

Wm0+jn sfc = a,jk and Gl is the rectangle associated with Gjk (Lemma 
2.1). 
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Proceed as in the proof of sufficiency to conclude that 

( E ( E / \f(z)-f(ajk)\
pdß(z)y/P)l/q 

< C 6 | | { 2 - ^ + 1 / s V ( D ê ( a j f c ) ) 1 / p } | U 

| | { 2 * W " > sup |£>(z)|}||P,, 
zGO{Ti) 

C ^ m 0 + (j + l )n- l ,« f c 

( 3 4 ) < C ó | | { 2 - ^ + 1 / s V ( D é ( a j f c ) ) 1 / p } I U 

\\{V»W) sup | / (^ ) | } | | P , , 
Z t ^ m 0 + (j + l)n-l,fc 

< C 6| |{2-^"+ 1 / ' )M(Dé(a j f c))1 / p}IU.« 
||{2i(/»+i/.) SUp | / ( 2 ) | } | | p , , 

< c- «||{2->"^+1/«V(ö«(ajfc))1/p}IU.»ll/ll.,r^ 

by Lemma 3.1. 

Since the discs Ds(ajk) are disjoint, we have 

S ( E ( E L i/wr*w)**) 
g/p\ i/<7 

j fc vm0+(i+i)n-i,fc 

s(?(E/, , i«')HT 
J fc 

Now proceed as in the proof of Lemma 3.1 to conclude 

J/(z)\"dß(z)) ) ' " 
i fc jQ)k 

(E(E//^M'")" 
(3.5) 

i k 
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by assumption. 

If we choose 6 small enough, then from (3.1), (3.3), (3.4) and (3.5) 
we see that 

H{2-jn('3+1/sV(^(a,fc))
1/p}||u,„ < C. 

Sum over the N sequences Xail/ to get 

(3.6) \\{2-j{0+1/s)ß(Qs(wjk))
l^}\\u,v < oo. 

Recall that each square Qjk contains at most no points of the sequence 
{wjk}. On the other hand, {wjk} is a ó-lattice. Thus, using these facts 
and (3.6), we conclude 

| | { 2 - ^ + » / - V ^ ) 1 / p } | U < oo. 

4. Multipliers of mixed normed spaces. Let M(A&r,Apq) be 
the collection of all functions which multiply A&r into A™q, i.e., fg is 

Apq for all g e A^r. In [2], M(Ali'\ApP
p) is characterized in the case 

0 < p < s < oo. Using the same method as in §3 we can find multipliers 
in the following cases. 

THEOREM 4.1. L e £ 0 < p < s < o o , 0 < g < r < o o , 
0 < ß < a < oo, \/u = 1/p - 1/s, l/v = \/q - 1/r. Then 

M(Ai,A;q) = AZ;ß. 

We omit details. 
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