GROUPS OF SMALL ORDER AS GALOIS GROUPS OVER Q

JACK SONN

1. Introduction. There has been some striking progress recently on the problem of realizing finite nonsolvable groups, especially simple groups, such as Galois groups, over the rationals \mathbf{Q} and over arbitrary number fields [5a, 6a, 8a, 13, 13a, 13b, 14a, 25a]. (See [5a, 13a, 13b] and the references cited there.)

On the other hand, it is a humbling exercise to try to realize certain nonsolvable groups of small order. For example, the binary icosahedral group $A_{5}^{+} \simeq \mathrm{SL}(2,5)$ (of order 120) was not realized over \mathbf{Q} until 1980 [25], and had apparently been known for some time to be the smallest group not realized over \mathbf{Q} since Shafarevich's realization of solvable groups in 1954 [21]. A_{5}^{+}was realized over \mathbf{Q} by means of a generalized Laguerre polynomial with Galois group $A_{5}[\mathbf{2 5}]$; Schur [17] computed Galois groups of certain generalized Laguerre polynomials and other special polynomials, and obtained polynomials with Galois group $A_{n}, n \neq 4 m+2$. The realization in [25] was achieved by choosing a realization of A_{5} over \mathbf{Q} which could be embedded into an A_{5}^{+}extension of \mathbf{Q} using a local-global principle for the embedding problem. In 1984 Serre [19a] discovered a formula relating the obstruction to embedding problems of this type (involving double covers such as $A_{5}^{+} \rightarrow A_{5}, A_{n}^{+} \rightarrow A_{n}$, etc.) to the Witt invariant of a trace quadratic form. Recently Feit [5a] computed the Witt invariants of generalized Laguerre polynomials and realized A_{5}^{+}and A_{7}^{+}over every number field, as well as A_{n}^{+}over \mathbf{Q} for $n \equiv 3(\bmod 4)$. Also Vila $[26 a]$ has realized A_{n}^{+} over $\mathbf{Q}(t)$ for most $n \equiv 0,1,2,3(\bmod 8)$, also using Serre's formula. In [25], the author's motivation in realizing A_{5}^{+}over \mathbf{Q} was the fact that if A_{5}^{+}and S_{5}^{+}(one of the two double covers of S_{5}) are Galois groups over a number field k, then so is every Frobenius group. The realizations of A_{5}^{+}and S_{5}^{+}in [25] were obtained from individual polynomials and did not imply the Frobenius group result over all number fields. In [25a], the author, using Serre's formula and Feit's computation of the

[^0]Witt invariants of generalized Laguerre polynomials, realized the two double covers S_{5}^{+}, S_{5}^{-}of S_{5} over all number fields, which, together with Feit's result, implies that every Frobenius group is realizable over every number field. In addition, Schacher and the author, using Serre's computation of the Witt invariants of trinomials with linear term $x^{n}+a x+b$, have proved that both double covers S_{n}^{+}, S_{n}^{-}of S_{n}, are realizable over every number field for $n \equiv 0,1,2,3(\bmod 8), S_{n}^{+}$is realizable for $n \equiv 6,7(\bmod 8)$, and S_{n}^{-}for $n \equiv 4,5(\bmod 8)$ [14b]. (For definitions of S_{n}^{+}, S_{n}^{-}see $[\mathbf{2 5 a}, \mathbf{1 4 b}]$.)
Zeh-Marschke [27a] has announced the realization of $\operatorname{SL}(2,7)$ (of order 336) over \mathbf{Q}, using a two parameter family of polynomials with Galois group PSL(2,7) discovered by Lamacchia [11a], and finding several specializations with vanishing Witt invariants. The group PGL $(2,7)$ has been realized for a long time (see [12]), but its three nontrivial central extensions by $\mathbf{Z} / 2 \mathbf{Z}$ (of order 672) have not. For $p>7$, the latter remains true, but $\mathrm{SL}(2, p)$ has not yet been realized over \mathbf{Q}, although $\operatorname{PSL}(2, p)$ has been realized over \mathbf{Q} if 2,3 or 7 is a quadratic nonresidue $\bmod p[\mathbf{2 3}]$, or $p \neq \pm 1(\bmod 24)[\mathbf{1 3}]$.
In order to satisfy our curiosity (and hopefully the reader's as well), we have proved the following theorem, which asserts that, at present, the smallest fugitives from realizability over \mathbf{Q} are the nontrivial central extensions of $\operatorname{PGL}(2,7)$ mentioned above.

THEOREM 1. Every group of order less than 672 is a Galois group over \mathbf{Q}.

REMARK. In reality, the most difficult part of the proof is the solvable case, due to Shafarevich [21] (just contemplate groups of order 2^{n}). Our discussion here will center about groups having A_{5} as their single composition factor, illustrating some of the obstacles encountered in realizing composite nonsolvable groups of small order.
2. Preliminaries. We collect a few known facts which will be used in the proof of Theorem 1. In what follows, C_{n} denotes a cyclic group of order n. If A is G-module, $H^{2}(G, A)$ denotes the $n^{\text {th }}$ cohomology group of G over A.

LEMMA 2. Let G be a nonabelian simple group (or any group which coincides with its commutator subgroup) acting trivially on $\mathbf{Z} / n \mathbf{Z}$. Then $H^{2}(G, \mathbf{Z} / n \mathbf{Z}) \simeq H^{2}\left(G, \mathbf{C}^{*}\right)_{n}=$ the subgroup of elements of order dividing n of the Schur multipier $H^{2}\left(G, \mathbf{C}^{*}\right)$ of G.

Proof. Considering \mathbf{C}^{*} (multiplicative group of the complex numbers \mathbf{C}) as trivial G-module, and identifying $\mathbf{Z} / n \mathbf{Z}$ with the $n^{\text {th }}$ roots of unity, the short exact sequence

$$
0 \rightarrow \mathbf{Z} / n \mathbf{Z} \rightarrow \mathbf{C}^{*} \xrightarrow{n} \mathbf{C}^{*} \rightarrow 1
$$

yields the cohomology sequence

$$
0=H^{1}\left(G, \mathbf{C}^{*}\right) \rightarrow H^{2}(G, \mathbf{Z} / n \mathbf{Z}) \rightarrow H^{2}\left(G, \mathbf{C}^{*}\right) \xrightarrow{n} H^{2}\left(G, \mathbf{C}^{*}\right)
$$

which proves the lemma.

If $1 \rightarrow N \rightarrow E \rightarrow G \rightarrow 1$ is an exact sequence of groups, we will say that E is an extension of G by N. Aut $N, \operatorname{Inn} N$ and Out N will denote the automorphism group of N, the inner automorphism group of N, and the outer automorphism group Aut $N / \operatorname{Inn} N$, respectively, and $Z(N)$ will denote the centre of N. We will use the following description of the extensions of G by N, due to Baer [2] (see [11]).
The action of E on N by conjugation induces a homomorphism

$$
\psi: G \rightarrow \operatorname{Out} N
$$

as well as an action of G on $Z(N)$, relative to which we may form $H^{2}(G, Z(N))$.

Lemma 3. Given $\psi: G \rightarrow$ Out N, the number of inequivalent extensions of G by N inducing ψ is either zero or the order of $H^{2}(G, Z(N))$.

For the proof see [11, p. 194].
Given epimorphisms of groups $a: A \rightarrow C, b: B \rightarrow C$, the pullback G of a, b is the subgroup of $A \times B$ consisting of all pairs (x, y), such
that $a(x)=b(y) . G$ is an extension of C by $\operatorname{ker}(a) \times \operatorname{ker}(b)$ and G is an extension of A by $\operatorname{ker}(b)$ and of B by $\operatorname{ker}(a)$. Similarly define the pushout H of monomorphisms $a: C \rightarrow A, b: C \rightarrow B$ as the factor group of $A \times B$ modulo the diagonal subgroup $\{(a(x), b(x)): x \in C\}$. If $a(C) \triangleleft A$ and $b(C) \triangleleft B$, then H is an extension of $\operatorname{coker}(a) \times \operatorname{coker}(b)$ by C, and H is an extension of $\operatorname{coker}(a)$ by B and of $\operatorname{coker}(b)$ by A.

The pullback G of a, b has the following universal mapping property: If G_{1} is any group and $r: G_{1} \rightarrow A, s: G_{1} \rightarrow B$ are epimorphisms such that $a r=b s$, then there exists an epimorphism $t: G_{1} \rightarrow G$. An analogous property holds for pushouts.

REMARK 4. Let $1 \rightarrow N \xrightarrow{i} E \xrightarrow{e} G \rightarrow 1$ define a group extension of G by N. Suppose N has trivial center. Then the map i and conjugation inside E defines a homomorphism $a: E \rightarrow$ Aut N whose kernel M is the centralizer of $i N$ in E. Thus $M \cap i N=1$, and we obtain the commutative diagram

where b is chosen to make the diagram commute, and can is the canonical map from Aut N to Out N. It follows, from the universal mapping property of pullbacks and the fact that the pullback P of

$$
G \rightarrow b(G) \leftarrow a(E)
$$

has the same order as E, that $P \simeq E$.

REmARK 5. Given a field k and a finite Galois extension K / k, an epimorphism $e: E \rightarrow G(K / k)$, with E a finite group, is said to define an embedding problem over K / k. A solution is a Galois extension L of k containing K and an isomorphism $f: G(L / k) \rightarrow E$ such that $e \cdot f=\operatorname{res}(L / K)$, the restriction map.
Let $e: E_{i} \rightarrow G(K / k), i=1,2$ be two embedding problems over K / k, and let $f_{i}: G(L / k) \rightarrow E_{i}$ be respective solutions. If
$L_{1} \cap L_{2}=K$, then $G\left(L_{1} L_{2} / k\right)$ is isomorphic to the pullback of the maps $e_{i}: E_{i} \rightarrow G(K / k), i=1,2$. Conversely, if G is a pullback of epimorphisms $e_{i}: E_{i} \rightarrow F$, and if $G(M / k) \simeq G$, then $M=L_{1} L_{2}$, where L_{i} are Galois over $k, i=1,2, G\left(L_{i} / k\right) \simeq E_{i}$ and $G\left(L_{1} \cap L_{2} / k\right) \simeq F$. In the degenerate case $L_{1} \cap L_{2}=k$ if and only if $G\left(L_{1} L_{2} / k\right) \simeq E_{1} \times E_{2}$.
3. Proof of Theorem 1. By virtue of Shafarevich's theorem [21], we may confine ourselves to nonsolvable groups G of order less than 672. It is clear that G has exactly one nonabelian composition factor since 60 is the order of the smallest nonabelian simple group A_{5}. The next simple group in order of size is $\operatorname{PSL}(2,7)$ of order 168 ; the third is A_{6} of order 360 ; the fourth is $\operatorname{PSL}(2,8)$ of order 504 , the last of order <672.
If G has $\operatorname{PSL}(2,8)$ as composition factor, then $G \simeq \operatorname{PSL}(2,8)$ which is realized over \mathbf{Q} [13, p.209]. The same is true for A_{6} by [7]. If G has composition factor $\operatorname{PSL}(2,7)$, then either $G=\operatorname{PSL}(2,7)$ which is realizable $[\mathbf{2 3} ; 27$, p. 12], or contains $\operatorname{PSL}(2,7)$ as a subgroup of index 2 , or G has a center C of order 2, with $G / C \simeq \operatorname{PSL}(2,7)$.
Suppose first that G contains $N \simeq \operatorname{PSL}(2,7)$ of index 2. Since $Z(N)=1$, it follows from Lemma 3 that, for each homomorphism $\psi: G / N \rightarrow$ Out N, there is at most one extension of $G / N \simeq C_{2}$ by N. Now, Out $N \simeq C_{2}$ since Aut $N \simeq \operatorname{PGL}(2,7)[\mathbf{1 6}, 5]$, hence there are exactly two extensions G of C_{2} by $\operatorname{PSL}(2,7)$, namely $C_{2} \times \operatorname{PSL}(2,7)$ and $\operatorname{PGL}(2,7)$. The first is clearly realizable since $\operatorname{PSL}(2,7)$ is, and PGL $(2,7)$ is realizable by Weber-Macbeath [12].
Suppose next that G is an extension of $\operatorname{PSL}(2,7)$ by C_{2}. Such extensions are described by $H^{2}(\operatorname{PSL}(2,7), \mathbf{Z} / 2 \mathbf{Z})[\mathbf{9}$, p. 120]. The Schur multiplier $H^{2}\left(\operatorname{PSL}(2,7), \mathbf{C}^{*}\right)$ of $\operatorname{PSL}(2,7)$ is $\mathbf{Z} / 2 \mathbf{Z}[\mathbf{9}$, p. 646] , hence by Lemma $2, H^{2}(\operatorname{PSL}(2,7), \mathbf{Z} / 2 \mathbf{Z}) \simeq \mathbf{Z} / 2 \mathbf{Z}$, so the only extensions of $\operatorname{PSL}(2,7)$ by C_{2} are the direct product and $\operatorname{SL}(2,7)$.
It remains to consider G having A_{5} as a composition factor. Then $|G|=60 . n, 1 \leq n \leq 11$. We consider several cases.
Case 1. G is an extension of a group H (of order n) by A_{5}. Out $A_{5} \simeq C_{2}[\mathbf{1 8}$, p. 314], so, by Remark $4, G$ is either the direct product $H \times A_{5}$ or G is a pullback of $H \rightarrow C_{2} \leftarrow S_{5} . H \times A_{5}$ is clearly realizable since both H and A_{5} are. In the latter case, H has order 2, 4,

6,8 , or 10 . If H has order 2 , then $G \simeq S_{5}$ is realizable. There are two groups of order 4 , two of order 6,5 of order 8 , and 2 of order 10 ; and all are realizable. By Remark 5, an extension with Galois group G is a composite of two Galois extensions K / \mathbf{Q} and L / \mathbf{Q} with $G(K / \mathbf{Q}) \simeq S_{5}$, $G(L / \mathbf{Q}) \simeq H$, and $K \cap L=\mathbf{Q}(\sqrt{d}) \neq \mathbf{Q}$ for some $d \in \mathbf{Q}$. Gaddis [6] has proved that any quadratic field $\mathbf{Q}(\sqrt{d}), d \neq-1$, can be embedded into an S_{n} extension, for any $n>2$. It suffices therefore to show that, for each H, there exists a Galois extension L / \mathbf{Q} with $G(L / \mathbf{Q}) \simeq H$ and such that every quadratic subfield of L is of the form $\mathbf{Q}(\sqrt{d})$, where $d \neq-1$:

$$
\begin{array}{ll}
\text { For } H=C_{2} \times C_{2}, & L=\mathbf{Q}(\sqrt{2}, \sqrt{3}) ; \\
\text { For } H=C_{4}, & L=\mathbf{Q}\left(e^{2 \pi i / 5}\right) \supseteq Q(\sqrt{5} ; \\
\text { For } H=C_{6}, & L=\mathbf{Q}\left(e^{2 \pi i / 7}\right) \supseteq Q(\sqrt{-7}) ; \\
\text { For } H=S_{3}, & L=\mathbf{Q}(\sqrt{-3}, \sqrt[3]{2}) ; \\
\text { For } H=C_{8}, & L=\mathbf{Q}\left(e^{2 \pi i / 17}+e^{-2 \pi i / 17}\right) ; \\
\text { For } H=C_{4} \times C_{2}, & \left.L=\mathbf{Q}(\sqrt{2}), e^{2 \pi i / 5}\right) ; \\
\text { For } H=C_{2} \times C_{2} \times C_{2}, & L=\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})
\end{array}
$$

For $H=D_{8}$ (the dihedral group) or Q_{8} (the quaternion group), it is an old fact that if $p \neq q$ are primes $\equiv 1(\bmod 4)$ and p is a quadratic residue $\bmod q($ say $p=29, q=5)$, then $\mathbf{Q}(\sqrt{p}, \sqrt{q})$ can be embedded into both D_{8} and Q_{8} extensions (see, e.g., $[20]: \mathbf{Q}(\sqrt{p}, \sqrt{q}) / \mathbf{Q}$ is Scholz with respect to 4$)$. For $C_{10}, L=\mathbf{Q}\left(e^{2 \pi i / 11}\right)$. For the dihedral group D_{10} of order 10 , we resort to Scholz's theorem [15; 8, p. 100], which implies that any quadratic extension is embeddable into a D_{10}-extension. This completes Case 1.

Case 2. G is an extension of A_{5} by a group N of order \leq 11. By Lemma 3, these extensions are characterized by elements of $\operatorname{Hom}\left(A_{5}, \operatorname{Out} N\right) \times H^{2}\left(A_{5}, Z(N)\right)$. We first observe that, for groups N of order $\leq 11, \operatorname{Hom}\left(A_{5}, \operatorname{Out} N\right)=0$. Indeed it is easy to check that, in every case except $C_{2} \times C_{2} \times C_{2}$, Aut N is solvable, which suffices. Aut $\left(C_{2} \times C_{2} \times C_{2}\right) \simeq \mathrm{GL}(3,2)$, the simple group of order 168. Since 168 is not divisible by $60, \operatorname{Hom}\left(A_{5}, \operatorname{Out}\left(C_{2} \times C_{2} \times C_{2}\right)=0\right.$. It follows that these extensions are characterized by elements of $H^{2}\left(A_{5}, Z(N)\right)$, with A_{5} acting trivially on $Z(N)$. For N abelian, G is a central extension of A_{5} by N, which is always realizable over $\mathbf{Q}[\mathbf{2 5}$; Corollary,

Theorem 3]. For $N=S_{3}, Z\left(S_{3}\right)=1$ so $G \simeq A_{5} \times S_{3}$. This leaves $N=D_{8}, Q_{8}$ and D_{10}, all having center C_{2}. By $[\mathbf{9}$, p. 646], the Schur multiplier $H^{2}\left(A_{5}, C^{*}\right)=H^{2}\left(\operatorname{PSL}(2,5), C^{*}\right) \simeq \mathbf{Z} / 2 \mathbf{Z}$, so, by Lemma $2, H^{2}\left(A_{5}, \mathbf{Z} / 2 \mathbf{Z}\right) \simeq \mathbf{Z} / 2 \mathbf{Z}$. Thus, in addition to the direct products $N \times A_{5}$, we get the pushouts $N \rightarrow C_{2} \leftarrow \mathrm{SL}(2,5)$, which are factor groups of $N \times \operatorname{SL}(2,5)$, and hence realizable over \mathbf{Q}. This completes Case 2.

Case 3. A_{5} is neither a subgroup nor a factor group of G. This is possible only for $n=4$ or 8 . In every case, G acts on the invariant composition factor A_{5} by inner automorphisms, so there is induced a homomorphism of G into Aut $A_{5} \simeq S_{5}$ which, by our present hypothesis, must be surjective. Hence G is an extension of S_{5} by a (sub)group N of order 2 or 4 . If $N \simeq C_{2}$, then, by [25, Theorem 2], G is realizable over \mathbf{Q}. There are in fact four nonisomorphic extensions of S_{5} by C_{2}.
The remaining case is when G is an extension of S_{5} by a group N of order 4. This extension does not split since, by hypothesis, A_{5} is not a subgroup of G. Suppose that G contains a subgroup U of index 2 such that $U N=G$. Then U is an extension of S_{5} by C_{2} and so realizable. U acts on N by conjugation inside G. Let $U \cdot N$ be the semidirect product of U and N with this action. By Scholz's theorem [15; 8, p. 100], $U \cdot N$ is realizable, hence so is G, which is a homomorphic image of $U \cdot A$ under the map $(u, a) \rightarrow u a$.

We may therefore assume that the only subgroup U of G, such that $U N=G$ is $U=G$. G has a unique subgroup H of index 2 containing N, and $H / N \simeq A_{5}$. Since A_{5} acts trivially on N, H is a central extension of A_{5} by N. By hypothesis, H does not have A_{5} as a subgroup, so, by [25, proof of Corollary to Theorem 3], H has a subgroup $U \simeq \operatorname{SL}(2,5)$ such that $U N=H . U$ is clearly normal in G, so G is an extension of a group B of order 4 by $U \simeq \operatorname{SL}(2,5)$. If $B \simeq C_{2} \times C_{2}$ is in the kernel, then G has three distinct subgroups of index 2 , only one of which contains N, namely H. Let H^{\prime} be another. Then $H^{\prime} N>H^{\prime}$; hence $H^{\prime} N=G$, contrary to hypothesis. We may therefore assume that $B \simeq C_{4}$. We apply Lemma 3. Now $\operatorname{AutPSL}(2,5) \simeq \operatorname{Aut} A_{5} \simeq S_{5} \simeq \operatorname{PGL}(2,5)$. Furthermore, $\operatorname{AutSL}(2,5)=\operatorname{Aut} \operatorname{PSL}(2,5)$. (Indeed, every automorphism of $\operatorname{SL}(2,5)$ induces one on $\operatorname{PSL}(2,5)$, so we have a natural homomorphism from $\operatorname{Aut} \operatorname{SL}(2,5)$ to $\operatorname{Aut} \operatorname{PSL}(2,5)$ which is clearly surjective.

If $\sigma \in \operatorname{Aut} \operatorname{SL}(2,5)$ is in the kernel then, for every $x \in \operatorname{SL}(2,5), x^{\sigma}=$ $\varepsilon(x) \cdot x, \varepsilon(x)= \pm 1 . \varepsilon: \operatorname{SL}(2,5) \rightarrow\{ \pm 1\}$ is a homomorphism which is necessarily trivial, since $\operatorname{SL}(2,5)$ coincides with its commutator subgroup.) It follows that $\operatorname{Out} \operatorname{SL}(2,5) \simeq \operatorname{PGL}(2,5) / \operatorname{PSL}(2,5) \simeq C_{2}$. Now $\operatorname{Hom}(B, \operatorname{Out} \operatorname{SL}(2,5)) \simeq \operatorname{Hom}\left(C_{4}, C_{2}\right) \simeq \mathbf{Z} / 2 \mathbf{Z}$.
The trivial homomorhpism implies that $\operatorname{PSL}(2,5) \simeq A_{5}$ is a factor group of G, contrary to hypothesis, hence there is only one homomorphism (nontrivial) to consider. Corresponding to this homomorphism, we compute $H^{2}\left(B, Z(\mathrm{SL}(2,5)) \simeq H^{2}\left(C_{4}, \mathbf{Z} / 2 \mathbf{Z}\right) \simeq \mathbf{Z} / 2 \mathbf{Z}\right.$. By Lemma 3 there are at most two extensions of C_{4} by $\mathrm{SL}(2,5)$ to consider. One such extension is $\operatorname{GL}(2,5)$, which is realizable over $\mathbf{Q}[\mathbf{1 9}$, p. 21]. (It is in fact an essential extension of S_{5} by C_{4}. For, if $\mathrm{GL}(2,5)$ contained a proper subgroup U such that $U Z=\mathrm{GL}(2,5)$, where $Z=Z(\mathrm{GL}(2,5))$, U would necessarily contain $\operatorname{SL}(2,5)$ and would therefore have to be $\mathrm{SL}(2,5)$ or $Z \cdot \mathrm{SL}(2,5)$, neither of which satisfy $U Z=\mathrm{GL}(2,5)$.
The other extension is the pullback G of $S_{5}^{+} \rightarrow C_{2} \leftarrow C_{4}$, where S_{5}^{+}is the central extension of S_{5} by C_{2} whose Sylow 2-subgroup is the generalized quaternion group of order 16 [$\mathbf{2 4}$, Lemma 2.6]. G is not isomorphic to $\mathrm{GL}(2,5)$ since $\mathbf{Z}(G) \simeq C_{2} \times C_{2}$ and $\mathbf{Z}(\mathrm{GL}(2,5)) \simeq C_{4}$. To realize G over \mathbf{Q}, let K be the splitting field of

$$
f(x)=x^{5}+2 x^{4}-3 x^{3}-5 x^{2}+x+1
$$

$G(K / \mathbf{Q}) \simeq S_{5}$ and K is embeddable into an extension $L=K(\sqrt{\alpha})$ such that $G(L / \mathbf{Q}) \simeq S_{5}^{+}[\mathbf{2 5}$, Theorem 2]. The unique quadratic subfield of K is $\mathbf{Q}(\sqrt{D})$, where $D=36,497$, a prime $\equiv 1(\bmod 4)$. Therefore $\mathbf{Q}(\sqrt{D})$ is embeddable into a cyclic quartic subfield M of the field of $D^{\text {th }}$ roots of unity. By Remark $5, G(M L / \mathbf{Q}) \simeq G$.

This completes the proof of Case 3 and of Theorem 1.

Added in Proof. J.F. Mestre has proved that $\tilde{A}_{n}=A_{n}^{+}$is realizable over every number field for all n.

REMARK. It has not been proved that the group G in the last paragraph is realizable over every number field.

REFERENCES

1. E. Artin, The orders of the classical simple groups, Com. Pure Appl. Math. 8 (1955), 455-472.
2. R. Baer, Erweiterung von Gruppen und ihren Isomorphismen, Math. Z. 38 (1934), 375-416.
3. C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
4. L.E. Dickson, Linear Groups, Dover, 1958.
5. J. Dieudonné, On the automorphisms of the classical groups, Mem. A.M.S. 2 (1951), 1-95.

5a. W. Feit, \tilde{A}_{5} and \tilde{A}_{7} are Galois groups over number fields, preprint.
6. T. Gaddis, G-closed fields and imbedding of quadratic number fields, J. Number Th. 8 (1976), 58-72.

6a. D. Gorenstein, Classifying the finite simple groups, Bull. A.M.S. (New Series) 14 (1986), 1-98.
7. D. Hilbert, Über die Irreduzibilität ganzer rationaler Funktionen, J.R. Ang. Math. 110 (1892), or Ges. Abh II, 264-286.
8. K. Hoechsmann, Zum Einbettungsproblem, J.R. Ang. Math. 229 (1968), 81-106.
8a. G. Hoyden and B.H. Matzat, Realisierung sporadischer einfacher Gruppen als Galoisgruppen über Kreisteilunskörpern, J. Algebra, to appear.
9. B. Huppert, Endliche Gruppen I., Springer-Verlag, 1967.
10. V.V. Ishkhanov, On the semidirect imbedding problem with nilpotent kernel, Math. USSR. 10 (1976), 1-23.
11. C.E. Johnson, H. Zassenhaus, On equivalence of finite group extensions, Math. Z. 123 (1971), 191-200.

11a. S.E. LaMacchia, Polynomials with Galois group PSL(2, 7), Comm. Alg. 8 (1980), 983-992.
12. A.M. Macbeath, Extensions of the rationals with Galois group $\operatorname{PGL}\left(2, \mathbf{Z}_{n}\right)$, Bull. London Math. Soc. 1 (1969), 332-338.
13. B.H. Matzat, Konstruktion von Zahl-und Funktionen körpern mit vorgegebener Galoisgruppe, J.R. Ang. Math. 349 (1984), 179-220.

13a. , Realisierung endlicher gruppen als Galoisgruppen, Manusc. Math. 51 (1985), 253-265.

13b. - Über das Umkehrproblem der galoisschen Theorie, Lecture at the 1985 Austrian Math. Congress.
14. E. Noether, Gleichungen mit vorgeschriebener gruppe, Math. Ann. 78 (1916), 221-229.

14a. K.A. Ribet, On ℓ-adic representations attached to modular forms, Inv. Math. 28 (1975), 245-275.

14b. M. Schacher and J. Sonn, Double covers of the symmetric groups as Galois groups over number fields (preprint).
15. A. Scholz, Über die Bildung algebraischer Zahlkörper mit auflösbarer Galoissche Gruppe, Math. Z. 30 (1929), 332-356.
16. O. Schreier, and B.L. Van der Waerden, Die Automorphismen der Projectiven gruppen, Abh. Math. Sem. Hamburg 6 (1928), 303-332.
17. J. Schur, Affectlöse Glechungern in der theorie der Laguerreschen und Hermiteschen Polynome, J.R. Ang. Math. 165 (1931), 52-58.
18. W.R. Scott, Group Theory, Prentice-Hall, 1964.
19. J.P. Serre, Abelian ℓ-adic representations and elliptic curves, Benjamin, N.Y., 1968.

19a. L', L'invariant de Witt de la forme $\operatorname{Tr}\left(x^{2}\right)$, Comm. Math. Helv. 59 (1984), 651-676.
20. I.R. Shafarevich, On Construction of fields with a given Galois group of order $\ell^{\text {th }}$, A.M.S. Transl. (2) 4 (1956), 107-142.
21. -, Construction of fields of algebraic numbers with given solvable Galois group, A.M.S., Transl. (2) 4 (1956), 185-237.
22. - The imbedding problem for splitting extensions (Russian) Dokl. Akad. Nauk SSSR 128 (1958), 1217-1219.
23. K.Y. Shih, On the construction of Galois extensions of function fields and number fields, Math. Ann. 207 (1974), 99-120.
24. J. Sonn, Frobenius Galois groups over quadratic fields, Israel J. Math. 31 (1978), 91-96.
25. -, SL(2,5) and Frobenius Galois groups over Q, Can. J. Math. 32 (1980), 281-293.

25a. Double covers of S_{5} and Frobenius groups as Galois groups over number fields (preprint).
26. B.L. Van derWaerden, Modern Algebra, Vol. I, Ungar, N.Y., 1949.

26a. N. Vila, On central extensions of A_{n} as Galois groups over \mathbf{Q}, Arch. Math. 44 (1985), 424-437.
27. H.G. Zimmer, Computational problems, methods and results in algebraic number theory, Lecture Notes in Math., Springer, New York, 1972.
27a. A. Zeh-Marschke, $\mathrm{SL}_{2}(7)$ als Galoisgruppe über \mathbf{Q}, preprint, 1987.

[^0]: This research was supported by the Fund for the Promotion of Research at the Technion.

 Copyright © 1989 Rocky Mountain Mathematics Consortium

