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u = 4 AND QUADRATIC EXTENSIONS 

JAN MINÄC AND MICHEL SPIRA 

1. Introduction. Throughout this paper L will denote a non
formally real field of characteristic =̂  2. By u(L) we mean the u-
invariant of L, i.e., u(L) = max{n € N: there exists an n-dimensional 
anisotropic quadratic form over L} (see [16, Chapter X]). 

The motivation for our work is the following conjecture, which is part 
of the folklore of quadratic forms theory. 

CONJECTURE l.l. IfaeL, then u(L(y/E)) = u(L). 

In §2 we will present a couple of examples related to this conjecture 
in the particular case when u(L) = 4. Our strategy is to translate the 
condition u(L) = 4 into the Galois theory of L and then use some well 
known results on the cohomology of pro - 2 - groups. For the basic 
concepts and notation we use, the reader may consult [16] and [28]. 

One of our main tools will be the following important result. We let 
cdp(G) denote the cohomological p - dimensional of the pro - p - group 
G (see [28, p. 1-17]). 

THEOREM 1.2. (SERRE [30]). Let G be a pro-p-group that does not 
contain an element of order p and let H be an open subgroup of G. 
Then cdp(G) = cdp(H). 

We now let L(2) := quadratic closure of L and GL := Gal(L(2)/L). 
Then Theorem 1.2 (with p = 2) applies to G = GL since nonformally 
real fields L are characterized by the fact that GL does not contain 
nontrivial involutions [7, Chapter 2, Theorem 3]. 

To our knowledge the first explicit connection between cd2(G/,) and 
u(L) was found by Ware in [34], where it was shown that u(L) = 2 <=> 
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cd.2(G) = 1. Notice that u(L) = 1 <3> CÔ.2(GL) = 0 is trivial since 
u(L) = 1 <=> L is quadratically closed «=> GL — {1}- We can now give a 
quick proof of the following well known result. 

PROPOSITION 1.3. Let L be a nonformally real field and let a € L. 

Then 

(1) u(L) = 2 =» u(L(v/a)) = 2; 

(2) u(L) > 2 => u(L(v/ä)) > 2. 

77ms w(L) = 2 <^ u(L(> /ä)) = 2. 

PROOF. We let GL(^ be the subgroup of GL corresponding to 
L(y/ä). Then G L ( v ^ } is open in G L , so cd 2 (G L ( v ^) ) = cd 2 (C L ) by 
Theorem 1.2. The result then follows by the preceding comments. D 

REMARK. Statement (1) above can easily be proved by standard 
methods in quadratic forms theory. 

We denote by HX(GL) the zth cohomology group of GL with coeffi
cients in Z /2Z . There exist canonical isomorphisms L/L2 = H1(GL) 
and Br2(L) ^ H2(GL) given respectively by at2 F-+ (a) and [ ( ^ ) ] ^ 
(a) U (b) for a, fe G L [29, Chapter XIV]. Merkurjev's theorem ([20]; see 
also [2], [32]) states that the classes of quaternion algebras generate 
Br2{F), so the latter is indeed a good description of the isomorphism 
Br2(L)^H2(GL). 

Our next lemma is a strengthening of [11, Theorem 4.7] using 
Merkurjev's theorem and results in [3] and [4]. Recall that a field 
is linked if the classes quaternion algebras form a subgroup of Br2(L). 
In view of the comments above this is the same as saying that the cup 
map HX(GL) x Hl(GL) -> H2(GL) is surjective. 

LEMMA 1.4. Let L be a nonformally real field. Then u(L) — 4 if ûnd 
only if following two conditions hold: 

( l )cd 2 (Gt ) = 2; 
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(2) the cup map H1(GL) X H1(GL) —* H2(GL) is surjective. 

PROOF. Suppose u(L) = 4. Then, by [11, Theorem 4.7] (see 
also [12]), L is linked and PL = {0}; also Br2(£) ^ {1} because 
^(L) > 4. From the preceding comments we see that (2) holds; and 
from PL = {0} it follows by [3, Property 5.16] that cd2(GL) < 2. 
Therefore (1) holds. 

Now suppose (1) and (2) hold. Then H2(GL) ^ {0} and H3(GL) = 
{0}. Since cd2(GL) < 3 it follows from [4, Theorem 3] that PL/PL 9* 
H2{GL) and PL/PL *Ê H3(GL). Therefore PL ^ {0} and PL = 
PL; by the Arason - Pfister Korollar 2 [6] we see that InL = {0} for 
n > 3. Again by [11, Theorem 4.7], we conclude that u(L) = 4. D 

We remark that there is another conjecture relating the notions of 
cohomological dimension and the u - invariant: 

CONJECTURE 1.5. / / L is a nonformally real field, then 

(Note added in proof: Recently A.S. Merkurjev showed that u(L) can 
be any even number. In particular, Conjecture 1.5 is false.) 

Notice that Conjecture 1.5 implies Conjecture 1.1. Indeed, we have 
cd2(GfL(v/ä)) = C^2(GL) f°r a n y a £ i by Theorem 1.2, so, if we assume 
Conjecture 1.5, we get 

u(L) = 2 c d 2 ( G L ) = 2 c d 2 ( G ^ ) ) = u(L(y/a)). 

Conjecture 1.5 is true in the following cases: 

(1) L = F(i/~T) where F is a formally real pythagorean field of finite 
chain length [21], [22]. 

(2) L is a finitely generated extension of a hereditarily quadratically 
closed field F [13]. 

(3) L is a finite nonformally real 2 - extension of a superpythagorean 
field. This follows easily from results in [33] (see Case 1 in the proof 
of Proposition 1.6). 
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We finish this section by giving one more example related to Conjec
ture 1.1. This example seems to be well known, but since we cannot 
find a reference, we provide a proof for the reader's convenience. 

Recall that an element a e F\ ± F2 is rigid if DF(1, a) = F2 U aF2, 
double rigid if both a and —a are rigid, and that F is a C - field if all 
a E F\ ± F2 are rigid. In [8] it is shown that in the nonformally real 
field case the notions of rigid and double rigid coincide (see remarks 
after the next proposition). 

PROPOSITION 1.6. Let L be a nonformally real field and a G L a rigid 
element. Then u(L(\fa)) = u(L). 

PROOF. Let B be the set of non rigid elements of L. In particular 
a £ B. We divide our proof into two cases: 

Case 1. B = L2 U — L2. In this case L is a C - field and therefore so 
is L{yfa) by [33, Corollary 2.8]. The square class exact sequence [16, 
Theorem VIL 3.4] shows that \L/L2\ = \L(y/a~)/L(y/a~)2\ if \L/L2\ < oo 
and that if \L/L2\ = oo, then \L(y/â)/L(y/a~)2\ = oo, too. In the first 
case we have u(L) — \L/L2\ = u{L{y/a)) [33, Example l . l l ( i i i ) ] . In the 
second case we get u(L) — u(L(y/a)) = oo since it is easy to see that 
a C - filed with infinitely many square classes has anisotropic forms of 
arbitrarily large dimension. 

Case 2. B ^ L2 U -L2. By [35, Theorem 2.16] there exists a 2 
- Henselian valuation v on L such that v(a) is not 2 - divisible in the 
value group Tv oîv. By [5, Lemma 4.4] it follows that v is non - dyadic. 
Denote by Lv the residue field of L with respect to v. Since v is 2 -
Henselian, there exists a unique extension w of v to K := L(y/a). 
We denote by Tw and Kw the value group and residue field of w 
respectively, and as usual we consider Tv C Tw and Kv C Kw. 

The fundamental inequality for extension of valuations [27, Proposi
tion G.4] shows that 

[Kw : L„][r„, : r„] < 2 

and, in particular, 

[rw : r„] < 2. 
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Now w(a) G rw is 2 - divisible since it;(a) = 2w(y/a). Since v(a) G Tv 

is not 2 - divisible, we conclude that TV^TW, and hence 

[Tw : rw] = 2 and [#„ : Lv] = 1. 

The second equality above shows that L?, = Kw. From the first one we 
see that 2TW C IV Furthermore, w(a) G 2 r w \ 2 r v which shows that 
21 v~f2\. w , i.e., 

1 ^ [2TW : 2I\,]. 

Since 
[2rw : 2TV] < [Tw : r„] = 2 

we conclude that 
[2TW : 2I\,] = 2. 

Hence 

drniz/2z[r,i;/2rw] = dimZ/2z[rw/r, ;] + dimZ /2z[rü /2rw] 

= d im z / 2 Z [2r w /2 r , ] + dim z / 2 Z [ r î ; /2r w ] 

= dimz/2z[rü /2rv]. 

Since v is nondyadic we can use Springer theory (see [17, p. 36]). Set 
m = dimZ/2z[rw/2rw]ï then 

u(L) = 2mu(Lv) 

u(K) = 2mu(Kw) 

or u(L) = u(K) = oo if m = oo. Since we have seen that L„ = ATW, we 
conclude that u(L) = u(K). u 

REMARK 1.7. In [8] rigidity is defined as follows: an element a G L 
is rigid if Di{\,a) = R(L) UaR(L) where R(L) denotes the Kaplansky 
radical of F. R(L) can be defined as 

R(L) = f)h€tDL(l,b). 

It is then easy to check that the existence of a rigid element (according 
to our previous definition) forces the two definitions of "rigid" to 
coincide. 
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REMARK 1.8. Note that , in the proof of Proposition 1.6, we 
actually proved that W{L(y/R)) ^ W(L). Indeed W{L(^ä)) ^ 
W(KW)[TW/2TW] ^ W(LV)[TV/2TV] ^ W(L), cf. [35]. (Added in proof: 
This was done earlier by L. Ber man, see Pacific J. Math. 89 (1980), 
Corollary 26, p. 261. 

2. Examples . 

DEFINITION 2.1. Let F be a field and b e F. We say that F 
is uniformly linked with slot b if every quaternion algebra over F is 
equivalent to (-j=r) for some x G F. 

The preceding definition was suggested by B. Jacob. To him we also 
owe the statement of the next proposition, which is an improvement of 
our previous version. Recall that R(L) denotes the Kaplansky radical 
of L (cf. Remark 1.7). 

PROPOSITION 2.2. Let L be a nonformally real field such that 

(1) cd 2 G L - 2, 

(2) L is uniformly linked with slot b. 

Then u(L) = 4. If a G R(L) then (1) and (2) also hold for L(yfa) {in 

particular (2) holds with the same slot (b) and therefore u(L(y/a)) = 4. 

PROOF. From Lemma 1.4 and Merkurjev's theorem, it follows imme
diately that u(L) = 4. The fact that (1) holds for L(y/a) follows from 
Theorem 1.2. 

Now let A G Br 2(L(v /ä)) and let cor : Br 2 (L( v
/ a) ) -» Br2(L) denote 

the corestriction homomorphism [29, Chapter VII.7]. From (2) we 
conclude that corvi = [(-^f)] for some c G L. Since a G R(L) there 
exists d G L(yfa) such that c = NL^^yL(d). By the well known 
projection formula [32, (1.4)] we see that 

»Kzm)l -[(¥)] 
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and thus 

cor ,4 
Ld 

[ (L(VO))J L 

From Arason's long exact sequence [1, Satz 4.5], it then follows that 

b,d 
Al\L(y/a))\ [\L(y/a))\ 

for some e G L. Therefore A 
LU('V^)JJ and we are done. D 

REMARK 2.3. Conditions (1) and (2) of Proposition 2.2 can be 
rephrased as follows: 

(1)' / 2 L ^ { 0 } , / 3 L = {0}; 

(2)' PL = ((-b))IL for some bet. 

One can actually give a completely analogous proof by using Schar-
lau's transfer and reciprocity [16, Chapter VII]. We leave this to the 
interested reader. 

EXAMPLE 2.4. We now construct a field which satisfies the conditions 
of Proposition 2.2. Let F be a formally real pythagorean field with 
order space Xp = Xi 0 X2, where 

(1) X\ = Xs x H where H = Z/2Z and X3 is a direct sum of ra 1 -
element spaces, m > 0. 

(2) X2 is the direct sum of n 1 - element spaces, n > 0. 

For the concepts and notation needed above, see [17], [18]. We can 
also see Xp by its graph ([24, Definition 0.3]; see also [10]). 

XF 

m 
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Now let L = F ( v / Z î ) . Note that s t (F) = 2 [19] and therefore 
u(L) = 2 s t(F) = 4 by [22], so cd2(GL) = 2. If {b} is a basis of H 
over Z /2Z , it is easily seen by the methods of [23] that L is uniformly 
linked with slot b and that n > 0 implies that the Kaplansky radical 
R(L) of L is nontrivial. 

We now recall some important facts that will be needed in the proof 
of the next proposition. 

Let G be a finitely generated pro - 2 - group and let n = d i m Z / 2 Z ^ 1 (G); 
then n is the cardinality of any minimal set of generators of G. Let 
J be the free pro - 2 - group in n generators. We then get an exact 
sequence 

l - > Ä - > J ^ G ^ 1 

where R is the group of relations of G. We can make Hl(R) into a J -
module by defining, for j G J,u G ^(R) and r £ R, 

{j-u)(r) = î x ( j - 1 r j ) . 

Then there is an exact sequence (via spectral sequences) 

0 ^ ff1(G)^fi/1(J)^^1(Ä)J-^H2(G) - 0 

where inf = inflation, res = restriction and tg = transgression. H1(R)J 

is the set of elements in Hl(R) invariant under the action of J . Since 
inf is an isomorphism in our case, tg : H1(R)J —> H2(G) is also an 
isomorphism. 

Fix a set {x\,..., xn} of generators of J . Each Xi induces a character 
Xi £ H1 (J) by Xi(xj) = àij (àij ls t n e Kronecker delta; 6{j = 1 
if i — j and 0 otherwise). Since inf : Hl(G) —» H1^) is an 
isomorphism, we can look at the Xi's as characters in HX(G). Then, for 
1 < h j < n, Xi U Xj € H2(G). We want to compute [ tg _ 1 (x ; U Xj)]( r) 
for r € Ä. 

We define a filtration {Ji} of J by 

^ = J, Jl+1 = jf[Ji,J] ( z > l ) 

where [Ji, J] denotes the commutator of Ji and J , i.e., the closure of 
the subgroup of J generated by elements of the form g~1j~1gj for 
g G Ji,j G J . Each r £ R can be written in the form 

(1) r = x f • . . . a* 1 » n ^ . ^ ] 6 y ( m o d J 3 ) 
2<j 
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where the a^'s and bij's are in Z/2Z. Then 

(2) [*-*(* U*)](r) = { * î[; = j: 

All these results can be found in [31]; see also [15] for an excellent 
exposition and explicit computations with tg. 

PROPOSITION 2.5. Let G i , . . . , G m be finitely generated nontrivial 
pro - 2 - groups and let G = H^JG?; be the free product of the Gj's in 
the category of pro - 2 - groups. Suppose that, for all 1 < i < n, we 
have 

(i) cd2<?i < 2 (and hence G{ has not nontrivial involution); 

(ii) if H is any open subgroup of Gi, then the cup map 

is surjective. Then conditions (i) and (ii) hold for G in place of Gi. In 
particular we have cd2<5 = maxi<j<m{cd20i}. 

PROOF. Let H be an open subgroup of G. By [9] we can write 
H = M * (^YL\H fi Gij) where M is a free finitely generated pro 
- 2 - group and, for each 1 < i < n, the G;7's run over a certain 
finite set of conjugates of Gi (more precisely, Gij runs over the set 
{G<*zn}a where {o~ii(y}a is a complete set of representatives of the 
double coset decomposition G = Ua(HaiiûtGi). We will not need this 
specific description). Since M is free, we have cd2M = 1; from [25, 
Satz 4.1] we see that cd2# = maxi<ij<m{cd2(# fi Gij)i}. Now each 
H H Gij is an open subgroup of Gij. Since Gij = Gj, Theorem 1.2 
gives cd 2 (# H Gij) - cd2(Gij) = cd2(G*) < 2. Hence cd2H < 2 and 
cd2<3 = maxx<i<m cd2Gi < 2. 

For each 1 < i < n, fix a minimal set X{ = { x i i , . . . , ^ } of 
generators of G{. Since Hl(G) = e ^ t f 1 ^ ) [25> S a t z *-ll [t follows 
that X — {x\,... ,xn} = U'iLiXi is a minimal set of generators of G 
(n = X^i™«)- Similarly, if A?; is a minimal set of relations for Gi 
then R = U^Ri is a minimal set of relations for G; this follows from 
H2(G) = 0™ ! H2(Gi) [25, Satz 4.1] and from [28, Corollary, p. 1.41] 
and subsequent remarks. 
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Now let J be the free pro -2 - group on X. Then G = J/R where 
R is the closed normal subgroup of J generated by R. We are now 
in the situation described in the remarks preceding this proposition, 
and we use the notations explained therein. For each z, 1 < i < n, 
we get characters \ij € H1(Gi)i 1 < j < rii. We now claim that 
Xij U\ki — 0 if i / k. Suppose the claim proved for the moment. Since 
H2(G) = e1

jllH
2(Gl), any element \ € H2(G) can be written as 

m 
X = ] L [( H airXir) U ( X] &«X«)J 

i = l l<r<rii l<s<m 

for some a;r,òj(S G Z /2Z. The claim then allows us to write 

X = Yl a 
i=l 

l<r<7ii 

irXir u Y bisxi 
2 = 1 

l<s<m 

•=Xi UX2 

where XuX2 e H\G) = eT=iH
1(Gl). 

Since any open subgroup H of G has the form M * l*^iHf)Gij) (see 

beginning of this proof) and H H Gij is an open subgroup of Gij = G{, 
the proof above also works for H and therefore (ii) holds for G. 

We now prove the claim. Choose r E Rh- Expression (1) can be 
written as 

f = x\l" • --x2Xn n[xir,xjs]
b^° Y[[xit,xiv]

bit'(modJ3). 
i<j 

t<V 

Our choice of Xk and Rk show that all the birjs are 0. Hence, for i / j 
and any 1 < r < rii, 1 < s < n3;, we have 

[tg_1terUxJS)](f) = o. 

Since Ä = URk generates R we conclude that tg 1(x«v U Xjs) = 0 G 
i / 1 ^ » 2 ) J f o r i ^ 3- But tg : Hl(R)J - • # 2 ( G ) is an isomorphism and 
hence Xir U Xjs = 0 G H2(G) for z / j . D 
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COROLLARY 2.6. Let L be a nonformally real field such that GL = 
*™rl Gi where the GVs are finitely generated pro - 2 - groups satisfying 
conditions (i) and (ii) of Proposition 2.7 and such that cd2(Gi) = 2 /or 
a£ least one i (here * denotes free product in the category of pro - 2 -
groups). Then u(K) = 4 /or any finite 2 - extension K of L. 

PROOF. This is an immediate consequence of Propositions 2.5 and 
1.4. D 

We finish by exhibiting an example to which Corollary 2.6 can be 
applied. 

EXAMPLE 2.7. Let F be a formally real pythagorean field with 
cl(F) < oo. In [23] it is shown that GF,^zr[) is a Demushkin pro -
2 - group if and only if F is of the type (4,23) (i.e., \Xp\ = 4 and 
\F/F2\ = 23). Since any open subgroup of a Demushkin group is again 
a Demushkin group [28, Corollary p. 1-51] we see that the conditions 
of Proposition 2.5 hold for GF^^ZÏ)> 

Now let K = n^Ffc, where all Fj's are of type (4, 23) and assume 
XF = ©XFi . Let L = K(sf-i). From [14, Lemma 9] it follows that 

GF = *™ i G ^ ' a n d f r o m (91 w e S e t GL - M * [ *?=I(GL nGFi)i w h e r e 

M is some finitely generated free pro - 2 - group and * denotes free 
product in the category of pro - 2 - groups. Since GL^GFÌ — GFu^/zzj) 
we get GL = M * [*™iGF.(yiï)] and therefore GL satisfies the 
hypothesis of Corollary 2.6. D 
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