$u=4$ AND QUADRATIC EXTENSIONS

JÁN MINÁČ AND MICHEL SPIRA

1. Introduction. Throughout this paper L will denote a nonformally real field of characteristic $\neq 2$. By $u(L)$ we mean the u invariant of L, i.e., $u(L)=\max \{n \in \mathbf{N}$: there exists an n-dimensional anisotropic quadratic form over $L\}$ (see [16, Chapter X]).

The motivation for our work is the following conjecture, which is part of the folklore of quadratic forms theory.

CONJECTURE 1.1. If $a \in L$, then $u(L(\sqrt{a}))=u(L)$.

In $\S 2$ we will present a couple of examples related to this conjecture in the particular case when $u(L)=4$. Our strategy is to translate the condition $u(L)=4$ into the Galois theory of L and then use some well known results on the cohomology of pro - 2-groups. For the basic concepts and notation we use, the reader may consult [16] and [28].

One of our main tools will be the following important result. We let $\operatorname{cd}_{p}(G)$ denote the cohomological p-dimensional of the pro-p-group G (see [28, p. I-17]).

THEOREM 1.2. (SERRE [30]). Let G be a pro-p-group that does not contain an element of order p and let H be an open subgroup of G. Then $\operatorname{cd}_{p}(G)=\operatorname{cd}_{p}(H)$.

We now let $L(2):=$ quadratic closure of L and $G_{L}:=\operatorname{Gal}(L(2) / L)$. Then Theorem 1.2 (with $p=2$) applies to $G=G_{L}$ since nonformally real fields L are characterized by the fact that G_{L} does not contain nontrivial involutions [7, Chapter 2, Theorem 3].
To our knowledge the first explicit connection between $\operatorname{cd}_{2}\left(G_{L}\right)$ and $u(L)$ was found by Ware in [34], where it was shown that $u(L)=2 \Leftrightarrow$
$\operatorname{cd}_{2}(G)=1$. Notice that $u(L)=1 \Leftrightarrow \operatorname{cd}_{2}\left(G_{L}\right)=0$ is trivial since $u(L)=1 \Leftrightarrow L$ is quadratically closed $\Leftrightarrow G_{L}=\{1\}$. We can now give a quick proof of the following well known result.

Proposition 1.3. Let L be a nonformally real field and let $a \in L$. Then
(1) $u(L)=2 \Rightarrow u(L(\sqrt{a}))=2$;
(2) $u(L)>2 \Rightarrow u(L(\sqrt{a}))>2$.

Thus $u(L)=2 \Leftrightarrow u(L(\sqrt{a}))=2$.

Proof. We let $G_{L(\sqrt{a})}$ be the subgroup of G_{L} corresponding to $L(\sqrt{a})$. Then $G_{L(\sqrt{a})}$ is open in G_{L}, so $\operatorname{cd}_{2}\left(G_{L(\sqrt{a})}\right)=\operatorname{cd}_{2}\left(G_{L}\right)$ by Theorem 1.2. The result then follows by the preceding comments.

REmARK. Statement (1) above can easily be proved by standard methods in quadratic forms theory.

We denote by $H^{i}\left(G_{L}\right)$ the $i^{\text {th }}$ cohomology group of G_{L} with coefficients in $\mathbf{Z} / 2 \mathbf{Z}$. There exist canonical isomorphisms $\dot{L} / \dot{L}^{2} \cong H^{1}\left(G_{L}\right)$ and $B r_{2}(L) \cong H^{2}\left(G_{L}\right)$ given respectively by $a \dot{L}^{2} \mapsto(a)$ and $\left[\left(\frac{a, b}{L}\right)\right] \mapsto$ $(a) \cup(b)$ for $a, b \in \dot{L}[\mathbf{2 9}$, Chapter XIV]. Merkurjev's theorem ([20]; see also [2], [32]) states that the classes of quaternion algebras generate $B r_{2}(F)$, so the latter is indeed a good description of the isomorphism $B r_{2}(L) \cong H^{2}\left(G_{L}\right)$.
Our next lemma is a strengthening of [11, Theorem 4.7] using Merkurjev's theorem and results in [3] and [4]. Recall that a field is linked if the classes quaternion algebras form a subgroup of $B r_{2}(L)$. In view of the comments above this is the same as saying that the cup map $H^{1}\left(G_{L}\right) \times H^{1}\left(G_{L}\right) \rightarrow H^{2}\left(G_{L}\right)$ is surjective.

Lemma 1.4. Let L be a nonformally real field. Then $u(L)=4$ if and only if following two conditions hold:
(1) $\operatorname{cd}_{2}\left(G_{L}\right)=2$;
(2) the cup map $H^{1}\left(G_{L}\right) \times H^{1}\left(G_{L}\right) \rightarrow H^{2}\left(G_{L}\right)$ is surjective.

Proof. Suppose $u(L)=4$. Then, by [11, Theorem 4.7] (see also [12]), L is linked and $I^{3} L=\{0\}$; also $\operatorname{Br}_{2}(L) \neq\{1\}$ because $u(L) \geq 4$. From the preceding comments we see that (2) holds; and from $I^{3} L=\{0\}$ it follows by $\left[3\right.$, Property 5.16] that $\operatorname{cd}_{2}\left(G_{L}\right) \leq 2$. Therefore (1) holds.
Now suppose (1) and (2) hold. Then $H^{2}\left(G_{L}\right) \neq\{0\}$ and $H^{3}\left(G_{L}\right)=$ $\{0\}$. Since $\operatorname{cd}_{2}\left(G_{L}\right) \leq 3$ it follows from $\left[\mathbf{4}\right.$, Theorem 3] that $I^{2} L / I^{3} L \cong$ $H^{2}\left(G_{L}\right)$ and $I^{3} L / I^{4} L \cong H^{3}\left(G_{L}\right)$. Therefore $I^{2} L \neq\{0\}$ and $I^{3} L=$ $I^{4} L$; by the Arason - Pfister Korollar $2[6]$ we see that $I^{n} L=\{0\}$ for $n \geq 3$. Again by [11, Theorem 4.7], we conclude that $u(L)=4$.

We remark that there is another conjecture relating the notions of cohomological dimension and the u - invariant:

CONJECTURE 1.5. If L is a nonformally real field, then $u(L)=2^{\mathrm{cd}_{2}\left(G_{L}\right)}$.
(Note added in proof: Recently A.S. Merkurjev showed that $u(L)$ can be any even number. In particular, Conjecture 1.5 is false.)

Notice that Conjecture 1.5 implies Conjecture 1.1. Indeed, we have $\operatorname{cd}_{2}\left(G_{L(\sqrt{a})}\right)=\operatorname{cd}_{2}\left(G_{L}\right)$ for any $a \in i$ by Theorem 1.2, so, if we assume Conjecture 1.5, we get

$$
u(L)=2^{\operatorname{cd}_{2}\left(G_{L}\right)}=2^{\operatorname{cd}_{2}\left(G_{L(\sqrt{a})}\right)}=u(L(\sqrt{a}))
$$

Conjecture 1.5 is true in the following cases:
(1) $L=F(\sqrt{-1})$ where F is a formally real pythagorean field of finite chain length [21], [22].
(2) L is a finitely generated extension of a hereditarily quadratically closed field $F[13]$.
(3) L is a finite nonformally real 2 - extension of a superpythagorean field. This follows easily from results in [33] (see Case 1 in the proof of Proposition 1.6).

We finish this section by giving one more example related to Conjecture 1.1. This example seems to be well known, but since we cannot find a reference, we provide a proof for the reader's convenience.
Recall that an element $a \in \dot{F} \backslash \pm \dot{F}^{2}$ is rigid if $D_{F}\langle 1, a\rangle=\dot{F}^{2} \cup a \dot{F}^{2}$, double rigid if both a and $-a$ are rigid, and that F is a C - field if all $a \in \dot{F} \backslash \pm \dot{F}^{2}$ are rigid. In [8] it is shown that in the nonformally real field case the notions of rigid and double rigid coincide (see remarks after the next proposition).

Proposition 1.6. Let L be a nonformally real field and $a \in \dot{L}$ a rigid element. Then $u(L(\sqrt{a}))=u(L)$.

Proof. Let B be the set of non rigid elements of L. In particular $a \notin B$. We divide our proof into two cases:

Case 1. $B=\dot{L}^{2} \cup-\dot{L}^{2}$. In this case L is a C-field and therefore so is $L(\sqrt{a})$ by [33, Corollary 2.8]. The square class exact sequence $[\mathbf{1 6}$, Theorem VII. 3.4] shows that $\left|\dot{L} / \dot{L}^{2}\right|=\left|\dot{L}(\sqrt{a}) / \dot{L}(\sqrt{a})^{2}\right|$ if $\left|\dot{L} / \dot{L}^{2}\right|<\infty$ and that if $\left|\dot{L} / \dot{L}^{2}\right|=\infty$, then $\left|\dot{L}(\sqrt{a}) / \dot{L}(\sqrt{a})^{2}\right|=\infty$, too. In the first case we have $u(L)=\left|\dot{L} / \dot{L}^{2}\right|=u(L(\sqrt{a}))[33$, Example 1.11(iii)]. In the second case we get $u(L)=u(L(\sqrt{a}))=\infty$ since it is easy to see that a C - filed with infinitely many square classes has anisotropic forms of arbitrarily large dimension.

Case 2. $B \neq \dot{L}^{2} \cup-\dot{L}^{2}$. By [35, Theorem 2.16] there exists a 2 - Henselian valuation v on L such that $v(a)$ is not 2 - divisible in the value group Γ_{v} of v. By [5 , Lemma 4.4] it follows that v is non-dyadic. Denote by L_{v}, the residue field of L with respect to v. Since v is 2 Henselian, there exists a unique extension w of v to $K:=L(\sqrt{a})$. We denote by Γ_{w}, and K_{w} the value group and residue field of w respectively, and as usual we consider $\Gamma_{v} \subset \Gamma_{w}$ and $K_{v} \subset K_{w}$.

The fundamental inequality for extension of valuations [27, Proposition G.4] shows that

$$
\left[K_{w}: L_{v}\right]\left[\Gamma_{w}: \Gamma_{v}\right] \leq 2
$$

and, in particular,

$$
\left[\Gamma_{w}: \Gamma_{v}\right] \leq 2
$$

Now $w(a) \in \Gamma_{w}$ is 2 - divisible since $w(a)=2 w(\sqrt{a})$. Since $v(a) \in \Gamma_{v}$ is not 2 -divisible, we conclude that $\Gamma_{v} \subsetneq \Gamma_{w}$, and hence

$$
\left[\Gamma_{w}: \Gamma_{v}\right]=2 \text { and }\left[K_{w}: L_{v}\right]=1
$$

The second equality above shows that $L_{v} \cong K_{w}$. From the first one we see that $2 \Gamma_{w} \subset \Gamma_{v}$. Furthermore, $w(a) \in 2 \Gamma_{w} \backslash 2 \Gamma_{v}$ which shows that $2 \Gamma_{v} \subsetneq_{\subsetneq} 2 \Gamma_{w}$, i.e.,

$$
1 \neq\left[2 \Gamma_{w}: 2 \Gamma_{v}\right]
$$

Since

$$
\left[2 \Gamma_{w}: 2 \Gamma_{v}\right] \leq\left[\Gamma_{w}: \Gamma_{v}\right]=2
$$

we conclude that

$$
\left[2 \Gamma_{w}: 2 \Gamma_{v}\right]=2
$$

Hence

$$
\begin{aligned}
\operatorname{dim}_{\mathbf{Z} / 2 \mathbf{Z}}\left[\Gamma_{w} / 2 \Gamma_{w}\right] & =\operatorname{dim}_{\mathbf{Z} / 2 \mathbf{Z}}\left[\Gamma_{w} / \Gamma_{v}\right]+\operatorname{dim}_{\mathbf{Z} / 2 \mathbf{Z}}\left[\Gamma_{v} / 2 \Gamma_{w}\right] \\
& =\operatorname{dim}_{\mathbf{Z} / 2 \mathbf{Z}}\left[2 \Gamma_{w} / 2 \Gamma_{v}\right]+\operatorname{dim}_{\mathbf{Z} / 2 \mathbf{Z}}\left[\Gamma_{v} / 2 \Gamma_{w}\right] \\
& =\operatorname{dim}_{\mathbf{Z} / 2 \mathbf{Z}}\left[\Gamma_{v} / 2 \Gamma_{v}\right] .
\end{aligned}
$$

Since v is nondyadic we can use Springer theory (see [17, p. 36]). Set $m=\operatorname{dim}_{\mathbf{Z} / 2 \mathbf{Z}}\left[\Gamma_{w} / 2 \Gamma_{w}\right]$; then

$$
\begin{aligned}
u(L) & =2^{m} u\left(L_{v}\right) \\
u(K) & =2^{m} u\left(K_{w}\right)
\end{aligned}
$$

or $u(L)=u(K)=\infty$ if $m=\infty$. Since we have seen that $L_{v}=K_{w}$, we conclude that $u(L)=u(K)$.

REMARK 1.7. In [8] rigidity is defined as follows: an element $a \in \dot{L}$ is rigid if $D_{L}\langle 1, a\rangle=R(L) \cup a R(L)$ where $R(L)$ denotes the Kaplansky radical of $F . R(L)$ can be defined as

$$
R(L)=\cap_{b \in \dot{L}} D_{L}\langle 1, b\rangle
$$

It is then easy to check that the existence of a rigid element (according to our previous definition) forces the two definitions of "rigid" to coincide.

REMARK 1.8. Note that, in the proof of Proposition 1.6, we actually proved that $W(L(\sqrt{a})) \cong W(L)$. Indeed $W(L(\sqrt{a})) \cong$ $W\left(K_{w}\right)\left[\Gamma_{w} / 2 \Gamma_{w}\right] \cong W\left(L_{v}\right)\left[\Gamma_{v} / 2 \Gamma_{v}\right] \cong W(L)$, cf. [35]. (Added in proof: This was done earlier by L. Berman, see Pacific J. Math. 89 (1980), Corollary 26, p. 261.

2. Examples.

Definition 2.1. Let F be a field and $b \in \dot{F}$. We say that F is uniformly linked with slot b if every quaternion algebra over F is equivalent to ($\frac{b, x}{F}$) for some $x \in \dot{F}$.

The preceding definition was suggested by B. Jacob. To him we also owe the statement of the next proposition, which is an improvement of our previous version. Recall that $R(L)$ denotes the Kaplansky radical of L (cf. Remark 1.7).

PROPOSITION 2.2. Let L be a nonformally real field such that
(1) $\operatorname{cd}_{2} G_{L}=2$,
(2) L is uniformly linked with slot b.

Then $u(L)=4$. If $a \in R(L)$ then (1) and (2) also hold for $L(\sqrt{a})$ (in particular (2) holds with the same slot (b) and therefore $u(L(\sqrt{a}))=4$.

Proof. From Lemma 1.4 and Merkurjev's theorem, it follows immediately that $u(L)=4$. The fact that (1) holds for $L(\sqrt{a})$ follows from Theorem 1.2.

Now let $A \in \operatorname{Br}_{2}(L(\sqrt{a}))$ and let cor : $\mathrm{Br}_{2}(L(\sqrt{a})) \rightarrow \mathrm{Br}_{2}(L)$ denote the corestriction homomorphism [29, Chapter VII.7]. From (2) we conclude that $\operatorname{cor} A=\left[\left(\frac{b, c}{L}\right)\right]$ for some $c \in \dot{L}$. Since $a \in R(L)$ there exists $d \in \dot{L}(\sqrt{a})$ such that $c=N_{L(\sqrt{a}) / L}(d)$. By the well known projection formula [32, (1.4)] we see that

$$
\operatorname{cor}\left[\left(\frac{b, d}{L(\sqrt{a})}\right)\right]=\left[\left(\frac{b, c}{L}\right)\right]
$$

and thus

$$
\operatorname{cor} A\left[\left(\frac{b, d}{L(\sqrt{a})}\right)\right]=1
$$

From Arason's long exact sequence [1, Satz 4.5], it then follows that

$$
A\left[\left(\frac{b, d}{L(\sqrt{a})}\right)\right]=\left[\left(\frac{b, e}{L(\sqrt{a})}\right)\right]
$$

for some $e \in \dot{L}$. Therefore $A=\left[\left(\frac{b, e d}{L(\sqrt{a})}\right)\right]$ and we are done.

Remark 2.3. Conditions (1) and (2) of Proposition 2.2 can be rephrased as follows:
$(1)^{\prime} I^{2} L \neq\{0\}, \quad I^{3} L=\{0\} ;$
(2) $I^{2} L=\langle\langle-b\rangle\rangle I L$ for some $b \in \dot{L}$.

One can actually give a completely analogous proof by using Scharlau's transfer and reciprocity [16, Chapter VII]. We leave this to the interested reader.

EXAMPLE 2.4. We now construct a field which satisfies the conditions of Proposition 2.2. Let F be a formally real pythagorean field with order space $X_{F}=X_{1} \oplus X_{2}$, where
(1) $X_{1}=X_{3} \times H$ where $H=\mathbf{Z} / 2 \mathbf{Z}$ and X_{3} is a direct sum of $m 1-$ element spaces, $m>0$.
(2) X_{2} is the direct sum of $n 1$ - element spaces, $n>0$.

For the concepts and notation needed above, see $[\mathbf{1 7}],[\mathbf{1 8}]$. We can also see X_{F} by its graph ([24, Definition 0.3]; see also [10]).

m

Now let $L=F(\sqrt{-1})$. Note that $\operatorname{st}(F)=2[\mathbf{1 9}]$ and therefore $u(L)=2^{\text {st }(F)}=4$ by $[\mathbf{2 2}]$, so $\operatorname{cd}_{2}\left(G_{L}\right)=2$. If $\{b\}$ is a basis of H over $\mathbf{Z} / 2 \mathbf{Z}$, it is easily seen by the methods of $[\mathbf{2 3}]$ that L is uniformly linked with slot b and that $n>0$ implies that the Kaplansky radical $R(L)$ of L is nontrivial.
We now recall some important facts that will be needed in the proof of the next proposition.
Let G be a finitely generated pro-2-group and let $n=\operatorname{dim}_{\mathbf{Z} / 2 \mathbf{Z}} H^{1}(G)$; then n is the cardinality of any minimal set of generators of G. Let J be the free pro-2-group in n generators. We then get an exact sequence

$$
1 \rightarrow R \rightarrow J \rightarrow G \rightarrow 1
$$

where R is the group of relations of G. We can make $H^{1}(R)$ into a J module by defining, for $j \in J, u \in H^{1}(R)$ and $r \in R$,

$$
(j \cdot u)(r)=u\left(j^{-1} r j\right)
$$

Then there is an exact sequence (via spectral sequences)

$$
0 \rightarrow H^{1}(G) \xrightarrow{\inf } H^{1}(J) \xrightarrow{\text { res }} H^{1}(R)^{J} \xrightarrow{\operatorname{tg}} H^{2}(G) \rightarrow 0
$$

where inf $=$ inflation, res $=$ restriction and $\operatorname{tg}=$ transgression. $H^{1}(R)^{J}$ is the set of elements in $H^{1}(R)$ invariant under the action of J. Since inf is an isomorphism in our case, $\operatorname{tg}: H^{1}(R)^{J} \rightarrow H^{2}(G)$ is also an isomorphism.

Fix a set $\left\{x_{1}, \ldots, x_{n}\right\}$ of generators of J. Each x_{i} induces a character $\chi_{i} \in H^{1}(J)$ by $\chi_{i}\left(x_{j}\right)=\delta_{i j}\left(\delta_{i j}\right.$ is the Kronecker delta; $\delta_{i j}=1$ if $i=j$ and 0 otherwise). Since inf : $H^{1}(G) \rightarrow H^{1}(J)$ is an isomorphism, we can look at the χ_{i} 's as characters in $H^{1}(G)$. Then, for $1 \leq i, j \leq n, \chi_{i} \cup \chi_{j} \in H^{2}(G)$. We want to compute $\left[\operatorname{tg}^{-1}\left(\chi_{i} \cup \chi_{j}\right)\right](r)$ for $r \in R$.
We define a filtration $\left\{J_{i}\right\}$ of J by

$$
J_{1}=J, \quad J_{i+1}=J_{i}^{2}\left[J_{i}, J\right] \quad(i \geq 1)
$$

where $\left[J_{i}, J\right]$ denotes the commutator of J_{i} and J, i.e., the closure of the subgroup of J generated by elements of the form $g^{-1} j^{-1} g j$ for $g \in J_{i}, j \in J$. Each $r \in R$ can be written in the form

$$
\begin{equation*}
r \equiv x_{1}^{2 a_{1}} \ldots x_{n}^{2 a_{n}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{b_{i j}}\left(\bmod J_{3}\right) \tag{1}
\end{equation*}
$$

where the a_{i} 's and $b_{i j}$'s are in $\mathbf{Z} / 2 \mathbf{Z}$. Then

$$
\left[\operatorname{tg}^{-1}\left(\chi_{i} \cup \chi_{j}\right)\right](r)= \begin{cases}a_{i} & \text { if } i=j \tag{2}\\ b_{i j} & \text { if } i \neq j\end{cases}
$$

All these results can be found in [31]; see also [15] for an excellent exposition and explicit computations with tg.

PROPOSITION 2.5. Let G_{1}, \ldots, G_{m} be finitely generated nontrivial pro-2-groups and let $G=*_{i=1}^{m} G_{i}$ be the free product of the G_{i} 's in the category of pro-2-groups. Suppose that, for all $1 \leq i \leq n$, we have
(i) $\operatorname{cd}_{2} G_{i} \leq 2$ (and hence G_{i} has not nontrivial involution);
(ii) if H is any open subgroup of G_{i}, then the cup map

$$
H^{1}(H) \times H^{1}(H) \rightarrow H^{2}(H)
$$

is surjective. Then conditions (i) and (ii) hold for G in place of G_{i}. In particular we have $\mathrm{cd}_{2} G=\max _{1 \leq i \leq m}\left\{\operatorname{cd}_{2} G_{i}\right\}$.

Proof. Let H be an open subgroup of G. By [9] we can write $H=M *\left(*_{i=1}^{m} H \cap G_{i j}\right)$ where M is a free finitely generated pro - 2 - group and, for each $1 \leq i \leq n$, the $G_{i j}$'s run over a certain finite set of conjugates of G_{i} (more precisely, $G_{i j}$ runs over the set $\left\{G_{i}^{\sigma_{i, \alpha}}\right\}_{\alpha}$ where $\left\{\sigma_{i, \alpha}\right\}_{\alpha}$ is a complete set of representatives of the double coset decomposition $G=\cup_{\alpha}\left(H \sigma_{i, \alpha} G_{i}\right)$. We will not need this specific description). Since M is free, we have $\operatorname{cd}_{2} M=1$; from [25, Satz 4.1] we see that $\operatorname{cd}_{2} H=\max _{1 \leq i, j \leq m}\left\{\operatorname{cd}_{2}\left(H \cap G_{i j}\right) i\right\}$. Now each $H \cap G_{i j}$ is an open subgroup of $G_{i j}$. Since $G_{i j} \cong G_{i}$, Theorem 1.2 gives $\operatorname{cd}_{2}\left(H \cap G_{i j}\right)=\operatorname{cd}_{2}\left(G_{i j}\right)=\operatorname{cd}_{2}\left(G_{i}\right) \leq 2$. Hence $\operatorname{cd}_{2} H \leq 2$ and $\operatorname{cd}_{2} G=\max _{1 \leq i \leq m} \operatorname{cd}_{2} G_{i} \leq 2$.
For each $1 \leq i \leq n$, fix a minimal set $X_{i}=\left\{x_{i 1}, \ldots, x_{i n_{i}}\right\}$ of generators of G_{i}. Since $H^{1}(G)=\oplus_{i=1}^{m} H^{1}\left(G_{i}\right)$ [25, Satz 4.1], it follows that $X=\left\{x_{1}, \ldots, x_{n}\right\}=\cup_{i=1}^{m} X_{i}$ is a minimal set of generators of G $\left(n=\sum_{i=1}^{m} n_{i}\right)$. Similarly, if \tilde{R}_{i} is a minimal set of relations for G_{i} then $\tilde{R}=\cup_{i=1}^{m} \tilde{R}_{i}$ is a minimal set of relations for G; this follows from $H^{2}(G)=\oplus_{i=1}^{m} H^{2}\left(G_{i}\right)[\mathbf{2 5}$, Satz 4.1] and from [28, Corollary, p. I.41] and subsequent remarks.

Now let J be the free pro - 2 - group on X. Then $G \cong J / R$ where R is the closed normal subgroup of J generated by \tilde{R}. We are now in the situation described in the remarks preceding this proposition, and we use the notations explained therein. For each $i, 1 \leq i \leq n$, we get characters $\chi_{i j} \in H^{1}\left(G_{i}\right), 1 \leq j \leq n_{i}$. We now claim that $\chi_{i j} \cup \chi_{k l}=0$ if $i \neq k$. Suppose the claim proved for the moment. Since $H^{2}(G)=\oplus_{i=1}^{m} H^{2}\left(G_{i}\right)$, any element $\chi \in H^{2}(G)$ can be written as

$$
\chi=\sum_{i=1}^{m}\left[\left(\sum_{1 \leq r \leq n_{i}} a_{i r} \chi_{i r}\right) \cup\left(\sum_{1 \leq s \leq n_{i}} b_{i s} \chi_{i s}\right)\right]
$$

for some $a_{i r}, b_{i s} \in \mathbf{Z} / 2 \mathbf{Z}$. The claim then allows us to write

$$
\chi=\left[\sum_{\substack{i=1 \\ 1 \leq r \leq n_{i}}}^{m} a_{i r} \chi_{i r}\right] \cup\left[\sum_{\substack{i=1 \\ 1 \leq s \leq n_{i}}}^{m} b_{i s} \chi_{i s}\right]:=\chi_{1} \cup \chi_{2}
$$

where $\chi_{1}, \chi_{2} \in H^{1}(G)=\oplus_{i=1}^{m} H^{1}\left(G_{i}\right)$.
Since any open subgroup H of G has the form $M *\left(*_{i=1}^{m} H \cap G_{i j}\right)$ (see beginning of this proof) and $H \cap G_{i j}$ is an open subgroup of $G_{i j} \cong G_{i}$, the proof above also works for H and therefore (ii) holds for G.
We now prove the claim. Choose $\tilde{r} \in \tilde{R}_{k}$. Expression (1) can be written as

$$
\tilde{r} \equiv x_{11}^{2 a_{11}} \cdots x_{n i_{n}}^{2 a_{n i n}} \prod_{\substack{i<j \\ r, s}}\left[x_{i r}, x_{j s}\right]^{b_{i r j s}} \prod_{\substack{i \\ t<v}}\left[x_{i t}, x_{i v}\right]^{b_{i t v}}\left(\bmod J_{3}\right)
$$

Our choice of X_{k} and \tilde{R}_{k} show that all the $b_{i r j s}$ are 0 . Hence, for $i \neq j$ and any $1 \leq r \leq n_{i}, 1 \leq s \leq n_{j}$, we have

$$
\left[\operatorname{tg}^{-1}\left(\chi_{i r} \cup \chi_{j s}\right)\right](\tilde{r})=0
$$

Since $\tilde{R}=\cup \tilde{R}_{k}$ generates R we conclude that $\operatorname{tg}^{-1}\left(\chi_{i r} \cup \chi_{j s}\right)=0 \in$ $H^{1}(R, 2)^{J}$ for $i \neq j$. But $\operatorname{tg}: H^{1}(R)^{J} \rightarrow H^{2}(G)$ is an isomorphism and hence $\chi_{i r} \cup \chi_{j s}=0 \in H^{2}(G)$ for $i \neq j$.

COROLLARY 2.6. Let L be a nonformally real field such that $G_{L}=$ ${ }^{* m}{ }_{i=1} G_{i}$ where the G_{i} 's are finitely generated pro-2-groups satisfying conditions (i) and (ii) of Proposition 2.7 and such that $\operatorname{cd}_{2}\left(G_{i}\right)=2$ for at least one i (here $*$ denotes free product in the category of pro-2groups). Then $u(K)=4$ for any finite 2 - extension K of L.

Proof. This is an immediate consequence of Propositions 2.5 and 1.4.

We finish by exhibiting an example to which Corollary 2.6 can be applied.

ExAmple 2.7. Let F be a formally real pythagorean field with $\operatorname{cl}(F)<\infty$. In [23] it is shown that $G_{F(\sqrt{-1})}$ is a Demushkin pro2 - group if and only if F is of the type $\left(4,2^{3}\right)$ (i.e., $\left|X_{F}\right|=4$ and $\left|\dot{F} / \dot{F}^{2}\right|=2^{3}$). Since any open subgroup of a Demushkin group is again a Demushkin group [28, Corollary p. I-51] we see that the conditions of Proposition 2.5 hold for $G_{F(\sqrt{-1})}$.
Now let $K=\cap_{i=1}^{m} F_{i}$, where all F_{i} 's are of type $\left(4,2^{3}\right)$ and assume $X_{F}=\oplus X_{F_{i}}$. Let $L=K(\sqrt{-1})$. From [14, Lemma 9$]$ it follows that $G_{F} \cong{ }_{* i=1}^{m} G_{F_{i}}$, and from [9] we get $G_{L} \cong M *\left[{ }_{*}^{m}\left(G_{L=1} \cap G_{F_{i}}\right)\right]$ where M is some finitely generated free pro - 2-group and $*$ denotes free product in the category of pro-2-groups. Since $G_{L} \cap G_{F_{i}} \cong G_{F_{i}(\sqrt{-1})}$ we get $G_{L} \cong M *\left[*_{i=1}^{m} G_{F_{i}(\sqrt{-1})}\right]$ and therefore G_{L} satisfies the hypothesis of Corollary 2.6.

Acknowledgements. We are grateful to Professor T.Y. Lam for his support and interest. We are very indebted to Professors B. Jacob and R. Ware for their suggestions which improved the content and the style of this paper. Finally we thank the referee for his valuable comments.

We also acknowledge the excellent conditions at the Mathematical Sciences Research Institute at Berkeley.

REFERENCES

1. J. Arason, Cohomologische invarianten quadratischen formen, J. Algebra 36 (1975), 448-491.
2. -, A proof of Merkurjev's theorem, Canad. Math. Soc. Conf. Proc. 4 (1984), 121-130.
3. -, R. Elman and B. Jacob, The graded Witt ring and Galois cohomology, Canad. Math. Soc. Conf. Proc. 4 (1984), 17-50.
4. ___ and ___ Fields of cohomological 2-dimension three, Math. Ann. 274 (1986), 649-657.
 Witt rings, J. of Algebra 110 (1987), 449-467.
5. -_ and A. Pfister, Beweis des Krullschen Durchschnittsatzes für Wittring, Invent. Math. 12 (1971), 173-176.
6. E. Becker, Hereditarily Pythagorean Fields and Orderings of Higher Level, Monografias de Matemática No. 29, IMPA, Rio de Janeiro, 1978.
7. L. Berman, The Kaplansky radical and values of binary quadratic forms, Ph.D. Thesis, Univ. of Calif. Berkeley, 1979.
8. J. Binz, J. Neukirch and G.H. Wenzel, A subgroup theorem for free products of pro - finite groups, J. Algebra 19 (1971), 104-109.
9. T.C. Craven, Characterizing reduced Witt rings of fields, J. Algebra 53 (1978), 68-77.
10. R. Elman, Quadratic forms and the u - invariant. III. Conference on quadratic forms 1976, Queen's Papers in Pure and Applied Math. 46 (1977), 422444.
11. and T.Y. Lam, Quadratic forms and the u - invariant. I., Math. Z. 131 (1973), 283-304.
12. and A. Wadsworth, Hereditarily quadratically closed fields, J. of Algebra 111 (1987), 475-482.
13. B. Jacob, On the structure of pythagorean fields, J. Algebra 68 (1981), 247267.
14. J.P. Labute, Classification of Demushkin groups, Canad. J. Math. 19 (1966), 106-132.
15. T.Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin, Reading, MA, 1973.
16. -, Orderings, valuations and quadratic forms, Conference Board of the Mathematical Sciences, Amer. Math. Soc., 1983.
17. M. Marshall, Classification of finite spaces of orderings, Canad. J. Math. XXXI (2) (1979), 329-330.
18. —, Spaces of orderings. IV, Canad. J. Math. XXXII (3) (1980),

603-627.
20. A. Merkurjev, On the norm residue symbol of degree 2, Dokladi Akad. Nauk SSSR 26 (1981), 542-547.
21. J. Mináč, Stability and cohomological dimension, C.R. Math. Rep. Acad. Sci. Canada VIII (1) (Feb. 1986), 13-18.
22. Stability index and the u - invariant, C.R. Math. Rep. Acad. Sci. Canada IX (3) (June 1987), 167-171.
23. - Classes of quaternion algebras in the Brauer group, Rocky Mountain J. Math. 19 (1989) 815-827.
24. -, Galois groups, order spaces and valuations, Ph.D. Thesis, Queen's University, 1986.
25. J. Neukirch, Freie Produkte pro - endlicher Gruppen und ihre Kohomologie, Arch. Math. XXII (1971), 337-357.
26. R. Pierce, Associative Algebras, GTM 88, Springer-Verlag, 1982.
27. P. Ribenboim, Théorie des valuations, Les Presses de l'Université de Montréal, 1965.
28. J.P. Serre, Cohomologie Galoisienne, Springer Verlag Lecture Notes in Math., vol. 5, 1965.
29. -, Local Fields, Springer Verlag, GTM 67, 1979.
30. , Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413-420.
31. \longrightarrow, Structure de certains pro-p-groupes, Séminaire Bourbaki (1962/63), no. 252 .
32. A.R. Wadsworth, Merkurjev's elementary proof of Merkurjev's theorem, Cont. Math. 55 (II) (1986), 741-775.
33. R. Ware, When are Witt rings group rings? II, Pac. J. Math. 76 (2) (1978), 541-564.
34. - Quadratic forms and profinite 2 - groups, J. Algebra 58 (1979), 227-237.
35. -_, Valuation rings and rigid elements in fields, Canad. J. Math. 33 (1981), 1338-1355.

[^0]
[^0]: Department of Mathematics, University of California, Berkeley, CA 94720

 Current address: University of Ontario, Department of Mathematics, Middlesex College, London, Ontario, Canada N6A 5B7
 Department of Mathematics, University of California, Berkely, CA 94720
 AND
 Departamento de Matemática, ICEX, Universidade Federal de Minas Gerais, 30.161 Belo Horizonte MG, Brasil

