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PROPER EMBEDDING INTO A UNIT LATTICE 

YOSHIO MIMURA 

0. Introduction. An n-dimensional quadratic lattice is a free 
module of rank n over the rational integer ring Z, which is endowed 
with a symmetric bilinear form B. Let En be a unit lattice, that is an 
n-dimensional quadratic lattice which has an orthonormal basis with 
respect to B, i.e., 

En = Zei H h Zen, B(ei, ej) = 6ij, 

where 8jj is the Kronecker delta. Let A be a positive integer. A 
sublattice F of En is an r-frame of scale A if 

F = Z/i + - - - + Z / r , B(/i, ft) = ASij. 

A frame F in En is proper if B(Fi e7) 7̂  {0} for each j . In this situation 
we have a problem: 

(*) When does En contain a proper r-frame of scale Al 

We shall give a complete answer in the case of r = 2. Why proper? 
The Siegel Mass Formula can answer the question: When does En 

contain an r-frame of scale Al 

This problem leads to diophantine equations in the following: 

(#) En contains a proper 1-frame of scale A if and only if there are 
integers X\,..., xn in Z satisfying 

x\ + • • • + x\ = A, x\ / 0 , . . . , xn ^ 0; 

(##) En contains a proper 2-frame of scale A if and only if there are 
integers xx,..., xn, y\,..., yn in Z satisfying 

x\ -f • • • + x\ = y\ + • • • + yl = A, xxyx H + xnyn = 0, 

a?i ^ 0 or yx ^ 0 , . . . , xn / 0 or yn ^ 0. 
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T. Ono proposed an interesting problem - a skew hanging of picture 
frames - which leads to the above problem (*) in the case of n = 3 and 
r = 2. 

We can write A = 2eAiA3, where p = j mod 4 for all prime divisors 
p o f ^ ( j = l , 3 ) . 

1. 1-frames. This case is to characterize the set Sn of sums of n 
non-zero squares by ( # ) . 

THEOREM 1. Let n / 3. En contains a proper 1-frame of scale A if 
and only if one of the following is satisfied: 

(1) n — 1, A is a square; 

(2) n = 2, A% is a square, e is odd or A\ > 1; 

(3) n = 4, A / 1,3, 5 ,9,11,17,29,41,2 • 4fc, 6 • 4fc, 14 • 4fc; 

(4) n = 5, A / 1,2,3,4,6, 7 ,9,10,12,15,18,33; 

(5 )n > 6, A / l , 2 , . . . , n - l , n + l , n + 2 , n + 4 , n + 5 , n + 7 , n 4 4 0 , n + 1 3 . 

PROOF. It is classical for n = 1,2. Assume n > 4. All the con
ditions are clearly necessary by direct calculations. In case n — 
4, it suffices to show that A G S 4 if A ^ 0 mod 8 and A / 
1 ,3 ,5 ,9 ,11,17,29,41,2 ,6 ,14. When A ^ 1 mod 4, we define an in
teger C by A = a2 + C, where a = 1 (if A = 4, 7 mod 8), a = 2 
(if A = 2 m o d 8 ) , and a = 4 (if A = 3 , 6 m o d 8 ) . When A = 
1 mod 4, we define an integer C by A = a2 + 4C, where a = 1 
(if A = 13,25 mod32), a = 3 (if A = 1,21 mod 32), a = 5 (if 
^ = 5,17 mod 32), and a = 7 (if A = 9,29 mod 32). Then C is a posi
tive integer with C = 3,6 mod 8; Hence we have C G S3 by a classical 
result. Therefore A G S4. In case n > 5, we use induction on n. Put 
Tn = {n ,n + 3,n + 6,n + 8,n + 9 , n + l l , n + 12}U{m G Z : m > n + 14}. 
Take ^ G T5 with ,4 / 33. If ,4 < 45, then we have A G S5 by di
rect calculations. If 4̂ > 45, then either A - l 2 or A - 22 is an odd 
positive integer > 41. Hence it is a sum of four non-zero squares from 
the case of n = 4. Then we have A G S5. Take i G Tn with n > 6. 
Then we have A — l 2 G T n _ i . By the inductive hypothesis, we have 
A - l 2 G 5 n _ i (except n = 6 and A = 34). Thus A e Sn (and 
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34 = 22 + 22 4- 22 + 22 + 32 4- 32). D 

REMARK. In case n = 3, the problem is: what A is a sum of three 
non-zero squares? This is a famous and open problem. We may assume 
that A = 1,2,5 mod 8 (because we know the following: A G S3 if and 
only if 4A G S3 , A e S3 iî A = 3,6 mod8 , A g S3 if A = 7 mod8) . 
Under the notation A — 2eA1A3, we may assume that A3 is a square 
(because we know that A G S3 if ^ 3 is not a square). If A contains an 
odd square > 1, then we have 

A - u2 4- v2 4 w2 or A = u2 = t>2 4- w2 

for some non-zero integers u,v,w by Theorem 2 (in case n = 3) in 
the next section. If A is the first, then we have A e S3. If A is the 
second, then u contains a prime p = 1 mod 4 since VIL; =̂  0. First 
suppose that A ^ p2. The same argument implies that A/p2 G S3 or 
A/p2 = v2 + w2 with ?;iu?i / 0. Hence A e S3 or A = (pvi)2+ (pwi)2 = 
(p^i)2 + ((s2 - t2)w\)2 -f- (2stwi)2 e 53, since we can write p — s2 + £2 

with s > * > 0. Let i4 = p2 = (s2 - t 2 ) 2 + (2s^)2. If s = 0 or t = 0 
or s2 = ^2 mod 5, then we have A G S3 since (5r)2 = (3r)2 4- (4r) 2 . 
Otherwise, we have s2 = —t2 mod 5, so p — 5. We note that 25 0 S3. 
After all we may consider the case where A is square-free, A > 1, and 
p = 1 mod 4 for all prime divisors of A In this case, we have the known 
formulas 

# { ( a , 6 ) € Z 2 : a 2 + 62 + c2 = ,4} = 2<+1 

and 

# { ( a , 6, c) € Z 3 : a2 + 62 4- c2 - 4 } - 12h(-A) > 12 • 2 E " 1 , 

where t is the number of distinct primes in 4a, and h(—A) is the ideal 
class number of quadratic field Q(y/—A). Hence we have A G S3 if and 
only if h(—A) = 2t~1. This result shows that A G S3 if and only if each 
genus contains only one ideal class in the quadratic field Q(y/—A). A 
numerical example shows that if A < 1376256, then it occurs if and 
only if A = 1 ,2,5,10,13,25,37,58,85,130. 

2. 2-frames. 
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THEOREM 2. En contains a proper 2-frame of scale A if and only if 
one of the following is satisfied'. 

(1) n = 2, As is a square; 

(2) n — 3, As is a square, A contains an odd square > 1; 

(3) n > 4, n is even, A > n /2 ; 

(4) n = 5, A^ 1 ,2 ,3 ,5 ,6 ,9 ,21; 

(5) n = 7, A^ 1,2,3,4,7; 

(6) n > 9, n is odd, A > (n + 3 ) /2 . 

PROOF. Consider the Gaussian integer ring T = Z[i] with i — yf^\. 
Putt ing Zj = Xj+yji in ( # # ) , the lattice En contains a proper 2-frame 
of scale A if and only if 

($) there are Gaussian integers Z\,..., zn G T satisfying 

zj±-- + z2
n = 0, N(zl) + -.' + N(zn) = 2A, * i ^ 0 , . . . , 2 n ^ 0 , 

where N(z) — z~z is the norm of z. If the condition ($) holds, then we 
have n > 2. 

(1). Case n — 2. By ($), we have z2 — —z2, so N(z\) — N(z2). Hence 
A = N(z\), which shows ^ 3 is a square. Conversely assume that ^ 3 is 
a square. Then we have A = N(z\) with 0 ^ z\ G I \ Put t ing 22 = izi, 
we see that the condition ($) holds. 

(2). Case n = 3. Assume that the condition ($) holds. By 6 we 
denote a G.C.D. of 21,22 a n d 23. Put Zj = 6WJ with Wj G T. Take a 
prime n = 1 + i. We may suppose that w\ = w2 = 1, ^ 3 = 0 mod7r, 
since w\ + w2 + w\ — 0. Then we have w\ = 0 mod 4, by noticing that 
w2 = ± 1 , w2 = ± 1 , wl = 0, 2z mod 4 and wj + wf + w2 = 0 mod 4. 
Hence we see that 

(itü! + w2)/2 = ß2e, (iwi - w2)/2 = 7 V 1 , w3 = 2/Î7 

with ß, 7 G T and £ G {±1 , ±z}. Hence we have 

wi = -i{32£ + 7 2 £ - 1 ) , W2 = /?2£ - 7 2 £ ~ \ 

whence 2,4 = 7V((5)(iV(w;1) + iV(w2) + ^ ( ^ 3 ) ) = 2N(6)(N(ß) + N(y))2. 
Using the fact 

1 = W2 = ß2 — 7 2 = ß — 7 mod 7T and /?7 / 0, 
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we see that N(ß) + N(*f) is odd and greater than 1, and that A contains 
an odd square > 1. We note that N(6) is of form 2ka\a^ with a% a 
square (see the end of §0). 

Conversely assume that A3 is a square and A contains an odd square 
a2 > 1. Thus we can write A = N(S)a2 with 8 G T. A classical result 
shows that a = x\ + x\ + x2 + x\ with x\,x<i,x$,X4 G Z and X\X$ ^ 0. 
Put ß = xi + ix2, 7 = X3 + ÌX4, Mi = -z(/?2 + 72), ^2 = ß2 - 72, 
W3 — 2ßj and Zj = <$Wj. Then we have u?iw;2W3 7̂  0 from the fact that 
a is odd. Hence the condition ($) holds. 

(3). Case n > 4, even. The necessity is clear. Assume that 2A > n. 
Then we have A + 2 — n/2 = a\4-a2 + a\ + a | with ai,a2,a3,a4 € Z and 
ai^2 7̂  0, since A-\-2 — n/2 > 2. Put 21 = a\ + ^ 3 , 22 = &2 + ^ 4 , ^3 = 
a3 — ia\,Z4 — CL4 — id2, z§ = • • • = zm = 1 and 2;m+i = • • • = zn = £, 
where m = 2 -f TI/2. Thus the condition ($) holds. 

(4). Case n = 5. The necessity is clear. We shall show the sufficiency. 
By Lemma 4 below, if A / 5, 7, 9,15,21,39,4fc, 2 • 4fc, 3 • 4fc, 6 • 4fc, then 
we can write 

A = a2+b2 + g2(c2+d2), 

where a,ò, c, d G Z, ac ^ 0, # > 1 and # odd. From the case n = 3, 
there are 23, 24, 25 in T satisfying 

z£ + z\ + zl= 0, A ^ ) -f W(24) + N(Z5) = 0, 2 3 ^ 5 / 0. 

Putting z\ = a + bi and 22 = b — ai, we see that the condition ($) holds. 

We write z = (21, 22, 23, 2:4,25) shortly. If 4̂ = 7,15,39, then we put 
z = (2, l+2z, 1-z, 1-z, z), (3+z, 2-2z, 1+z, 1,3z), (6, l-3z, l+2z, 1+z, 5z) 
respectively. \i A — 4^,2 • 4fc,3 • 4^,6 • 4k with k > 1, then we put 
^ = 2*-1(2,z,z,z,z), 2A;~1(2 - 2z, 1 + z, 1 + z, 1 + z, 1 + z),2^-1(3,1,1 + 
2z, l -2 i ,2z) ,2 f c - 1 (4-2i ,2 + 3z,2 + z,z,3z) respectively. Thus ($) holds. 

(5). Case n = 7. The necessity is clear. If ^ - 1 / 0,1,2,3,5,6,9,21, 
then ($) holds, using the Zj's in the case n — 5 for A—I and putting ZQ — 
1, Z'j = z. If A — 2 7̂  —1,0,1,2,3,5,6,9,21, then we use the z?'s in the 
case n = 5 for A — 2 and put 2:0=1+ 2,27 = 1 — z. Hence if A ^ 1,2,3,4,7, 
then ($) holds. We shall give another proof without using the case n — 
5. If ;4=5,6,8,9,10, then we put z = (1,1,1,1,1, z, 2z), (1,1,1,1,2z, 1 + 
z , l - z ) , ( l , l , l , l , 2z ,2z ,2 ) , ( l , l , l , l , l , 2 ,3z ) , ( l , l , l + z , l - z , l + 2 z , l -
2z, 2) respectively. If A > 11 then we put z = (a\ + 03z, a2 + a4Z, —aiz, 
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a4 - aj,2 + 2z, 2 - i, 1 - 2i), where A - 9 = a2 -f a?> + a§ + a2 with 

(6). Case n > 9, odd. If ($) holds, then we have 2A > n, so 
2A > n + 1. If 2A = n + 1, then we may suppose that N(zi) — 
2, iV(22) = • • • = 7V(2n) = 1. Hence zi=±l±i and *, = ±1 (j > 2), 
which contradicts the fact z\ + • • • + z2 = 0. Thus A > (n + 3)/2. We 
shall prove the sufficiency. If A = (n + 3)/2, then we put zi = 2i, 22 = 
• • • = z(n-3)/2 = i, and 2(n_i)/2 = • • • = zn = 1. If A = (n + 5)/2 
then we put 21 = 2z, 22 = 1 + i, 23 = 1 — i, 24 = • • • = 2(n-i)/2 — h 
and 2(n+i)/2 = ••• =,zn = 1. If v4 > (n + 9)/2, then we put 
m — A — {n — 7)/2. Then we have m > 8, so there are z\,..., 27 in T 
such that z?H + 2? = 0,7V(zi) + h N(z7) = 2m, zx ^ 0 , . . . z7 / 0 
by the case n — 1. We put 28 = • • • = 2(n+7)/2 = 1 and 2(n+9)/2 = i. 
Thus the condition ($) holds. D 

LEMMA 3. Let m be a positive integer = ±1 mod 5. Then there are 
integers a,b,c,d G Z such that 

ra = a2 + 25(ò2 + c 2 + d 2 ) , ac / 0, 

i/ and only if m £ G, where G is the set defined by 

G = {19,21,31,39,49,69,71,81,119,121,179,191,211,239,379,391} 

U {4fc,9 • 4fc, 11 • 4fc, 6 • 4fc, 14 • 4fc,46 • 4fc, 94 • 4fc : k > 0}. 

PROOF. Put T = {m = a2 + 25(b2 + c2 + d2) : a,b,c,d G Z, ac 
^ 0, m = ±1 mod 5}. We note that if m = 0 mod 8, then m G T if and 
only if m/4 G T. The necessity follows from direct calculations. Take 
a positive integer m # G such that m ^ 0 mod 8 and m = ±1 mod 5. 
Then we can find an integer a such that m = a2 mod 25 with 1 < a < 
24. We can assume that m—a2 = 1,2,3,5,6 mod 8 (replacing a by 25—a 
if necessary). Thus, if m > a2, then we have (m — a2)/25 = b2 + c2 + d2 

with c ^ 0 , which proves that m G T if m > 242. When m < 242, then 
we see that m G T by a direct calculation. 

LEMMA 4. For a positive integer m, there are integers a, 6, c, d, # m 
Z such that 

m = a2 + b2 + #2(c2 + d2), ac / 0, # > 1, g odd, 
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if and only if m / 5,7,9,15,21,39,4fc, 2 • 4fc, 3 • 4fc, 6 • 4fc 

PROOF. We lose nothing by supposing m ^ 0 mod 8. The ne
cessity follows from a direct calculation. For the sufficiency, it suf
fices to show that m is of the desired form if m ^ 0 mod 8 and m 
Ï 1,2,3,4,5,6,7,9,12,15,21,39. 

(1). Case m ^ 0 mod3. Putting c = 2 (if ml mod4) or c = 1 
(otherwise), we have m — 9c2 ^ 0,4,7 mod8. This implies that 
m - 9c2 = a2 + b2 + d2 with a, 6, d G Z if m > 9c2 (that is m ^ 
1,2,4,5,7,13,17,25,29). We may assume that d = 0 mod3, since 
m ^ 0 mod 3. Thus we can write m = a2 + ò2 + 9(c2 + d2) with 
ac ^ 0, noticing that if a — b = 0 then we would have m = 0 mod 3. A 
direct calculation shows that it is true for m = 13,17, 25, 29. 

(2). Case m = 0 mod 9. If m > 9, then we can write ra/9 
= a2 + b2 + c2 + d2 with ac ^ 0, so m = (3a)2 + (3Ò)2 + 9(c2 + d2). 

(3). Case m = 0 mod 3 with m ^ 0 mod 9. Put m = 3/i with /i G Z 
so /i ^ 0 mod 3. 

(i) If ft = 0 mod 25, then m is of the desired form by a similar 
argument like the case m = 0 mod 9. 

(ii) Suppose that ft = 0 mod 5 with ft ^ 0 mod 25. Putting d\ — 10 
(if ft = 1 mod 4) or d\ — 5 (otherwise), we have ft — d2 ^ 0,4, 7 mod 8, 
which implies that ft - d2 = a2 H- ò2 + c2 with a, ò, ci G Z if ft > d2 

(that is ft / 10,20,65,85). The two integers c = (3ci ± 4di)/5 and 
d = (4ci ± 3di)/5 are prime to 5, taking a suitable sign. Hence we 
have ft = a2 + b2 -f c2 + d2 with aòcd ^ 0 mod 5. This is also true 
for ft = 10,20,65,85. Now we may assume, since ft = 0 mod 5, that 
a = d = l , 6 = c = 2 mod 5 by changing the signs if necessary. Putting 

a\=b — c + d, b\—c — a + d, c\=a — b + d, d i = a - h ò + c, 

we have m — 3ft = a2 + b\ + c\ + d2 with 
ai 
= 1 mod5,ci = d\ = 0 mod 5. If ci = d\ = 0, then we would have 
ft = 3(a2 + 62), which is a contradiction. Hence m is of the desired 
form. 

(iii) Suppose that ft = ±1 mod 5. By Lemma 3, if ft 0 G, then we 
have ft = a2 + 25(62 + c2 4- d2) with ac ^ 0. Using a similar argument 
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as in (ii), we can write 25(ò2 + c2) = b\ + c\ with b\C\ =£ 0 mod5 . 
Hence we have h = a2 + b2 + c2 + 25d2 with afre ^ 0 mod 5. We 
may assume, since h = ± 1 mod 5, that a = b = 2c mod 5. Putt ing 
a\ — b — c + d , . . . as in (ii), we have m = 3/i = af + b2 + c2 + <f2 

with a! ^ 0, ci = d\ = 0 mod 5. If c\ — d\ = 0 then we would have 
h = 0 mod 3. Thus m is of the desired form. If /i € G with h / 1,4, 
then we see that m is of the desired form by a direct calculation. 

(iv) Suppose that h = ± 2 mod 5. Then m — 3h = ± 1 mod 5. By 
Lemma 3, if h g G, then we have m = a2 + (5Ò)2 + 25(c2 + d2) with 
ac / 0. If m G G, then m — 6,21,39,69, since m = 0 mod 3. Notice 
that 69 = 22 + 42 + 49(12 + 02). 

3. 3-frames. For 3-frames, we give the next theorem without a 
proof. But the problem is open for n = 5, 6. 

THEOREM 5. Let n / 5,6. Then En contains a proper 3-frame of 
scale A if and only if one of the following is satisfied: 

(1) n — 3,^4 is a square] 

(2) n = 4, A > 1; 

(3) n > 7, TI = 1 mod 3, A > (n + 2) /3 ; 

( 4 ) n > 8 , n = 2 m o d 3 , ^ > (n + 4) /3 ; 

( 5 ) n > 9 , n = 0 m o d 3 , A > ra/3. 
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