PROPER EMBEDDING INTO A UNIT LATTICE

YOSHIO MIMURA

0. Introduction. An n-dimensional quadratic lattice is a free module of rank n over the rational integer ring \mathbf{Z}, which is endowed with a symmetric bilinear form B. Let E_{n} be a unit lattice, that is an n-dimensional quadratic lattice which has an orthonormal basis with respect to B, i.e.,

$$
E_{n}=\mathbf{Z} e_{1}+\cdots+\mathbf{Z} e_{n}, \quad B\left(e_{i}, e_{j}\right)=\delta_{i j},
$$

where $\delta_{i j}$ is the Kronecker delta. Let A be a positive integer. A sublattice F of E_{n} is an r-frame of scale A if

$$
F=\mathbf{Z} f_{1}+\cdots+\mathbf{Z} f_{r}, \quad B\left(f_{i}, f_{j}\right)=A \delta_{i j}
$$

A frame F in E_{n} is proper if $B\left(F, e_{j}\right) \neq\{0\}$ for each j. In this situation we have a problem:
(*) When does E_{n} contain a proper r-frame of scale A ?

We shall give a complete answer in the case of $r=2$. Why proper? The Siegel Mass Formula can answer the question: When does E_{n} contain an r-frame of scale A ?

This problem leads to diophantine equations in the following:
(\#) E_{n} contains a proper 1-frame of scale A if and only if there are integers x_{1}, \ldots, x_{n} in \mathbf{Z} satisfying

$$
x_{1}^{2}+\cdots+x_{n}^{2}=A, \quad x_{1} \neq 0, \ldots, x_{n} \neq 0
$$

(\#\#) E_{n} contains a proper 2 -frame of scale A if and only if there are integers $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ in \mathbf{Z} satisfying

$$
\begin{gathered}
x_{1}^{2}+\cdots+x_{n}^{2}=y_{1}^{2}+\cdots+y_{n}^{2}=A, \quad x_{1} y_{1}+\cdots+x_{n} y_{n}=0 \\
x_{1} \neq 0 \text { or } y_{1} \neq 0, \ldots, x_{n} \neq 0 \text { or } y_{n} \neq 0 .
\end{gathered}
$$

T. Ono proposed an interesting problem - a skew hanging of picture frames - which leads to the above problem (*) in the case of $n=3$ and $r=2$.
We can write $A=2^{e} A_{1} A_{3}$, where $p \equiv j \bmod 4$ for all prime divisors p of $A_{j}(j=1,3)$.

1. 1-frames. This case is to characterize the set S_{n} of sums of n non-zero squares by (\#).

THEOREM 1. Let $n \neq 3 . E_{n}$ contains a proper 1-frame of scale A if and only if one of the following is satisfied:
(1) $n=1, A$ is a square;
(2) $n=2, A_{3}$ is a square, e is odd or $A_{1}>1$;
(3) $n=4, A \neq 1,3,5,9,11,17,29,41,2 \cdot 4^{k}, 6 \cdot 4^{k}, 14 \cdot 4^{k}$;
(4) $n=5, A \neq 1,2,3,4,6,7,9,10,12,15,18,33$;
(5) $n \geq 6, A \neq 1,2, \ldots, n-1, n+1, n+2, n+4, n+5, n+7, n+10, n+13$.

Proof. It is classical for $n=1,2$. Assume $n \geq 4$. All the conditions are clearly necessary by direct calculations. In case $n=$ 4 , it suffices to show that $A \in S_{4}$ if $A \not \equiv 0 \bmod 8$ and $A \neq$ $1,3,5,9,11,17,29,41,2,6,14$. When $A \not \equiv 1 \bmod 4$, we define an integer C by $A=a^{2}+C$, where $a=1$ (if $A \equiv 4,7 \bmod 8$), $a=2$ (if $A \equiv 2 \bmod 8)$, and $a=4($ if $A \equiv 3,6 \bmod 8)$. When $A \equiv$ $1 \bmod 4$, we define an integer C by $A=a^{2}+4 C$, where $a=1$ (if $A \equiv 13,25 \bmod 32), a=3($ if $A \equiv 1,21 \bmod 32), a=5$ (if $A \equiv 5,17 \bmod 32)$, and $a=7($ if $A \equiv 9,29 \bmod 32)$. Then C is a positive integer with $C \equiv 3,6 \bmod 8$; Hence we have $C \in S_{3}$ by a classical result. Therefore $A \in S_{4}$. In case $n \geq 5$, we use induction on n. Put $T_{n}=\{n, n+3, n+6, n+8, n+9, n+11, n+12\} \cup\{m \in \mathbf{Z}: m \geq n+14\}$. Take $A \in T_{5}$ with $A \neq 33$. If $A \leq 45$, then we have $A \in S_{5}$ by direct calculations. If $A>45$, then either $A-1^{2}$ or $A-2^{2}$ is an odd positive integer >41. Hence it is a sum of four non-zero squares from the case of $n=4$. Then we have $A \in S_{5}$. Take $A \in T_{n}$ with $n \geq 6$. Then we have $A-1^{2} \in T_{n-1}$. By the inductive hypothesis, we have $A-1^{2} \in S_{n-1}$ (except $n=6$ and $A=34$). Thus $A \in S_{n}$ (and
$\left.34=2^{2}+2^{2}+2^{2}+2^{2}+3^{2}+3^{2}\right)$.

REMARK. In case $n=3$, the problem is: what A is a sum of three non-zero squares? This is a famous and open problem. We may assume that $A \equiv 1,2,5 \bmod 8$ (because we know the following: $A \in S_{3}$ if and only if $4 A \in S_{3}, A \in S_{3}$ if $A \equiv 3,6 \bmod 8, A \notin S_{3}$ if $\left.A \equiv 7 \bmod 8\right)$. Under the notation $A=2^{e} A_{1} A_{3}$, we may assume that A_{3} is a square (because we know that $A \in S_{3}$ if A_{3} is not a square). If A contains an odd square >1, then we have

$$
A=u^{2}+v^{2}+w^{2} \text { or } A=u^{2}=v^{2}+w^{2}
$$

for some non-zero integers u, v, w by Theorem 2 (in case $n=3$) in the next section. If A is the first, then we have $A \in S_{3}$. If A is the second, then u contains a prime $p \equiv 1 \bmod 4$ since $v w \neq 0$. First suppose that $A \neq p^{2}$. The same argument implies that $A / p^{2} \in S_{3}$ or $A / p^{2}=v_{1}^{2}+w_{1}^{2}$ with $v_{1} w_{1} \neq 0$. Hence $A \in S_{3}$ or $A=\left(p v_{1}\right)^{2}+\left(p w_{1}\right)^{2}=$ $\left(p v_{1}\right)^{2}+\left(\left(s^{2}-t^{2}\right) w_{1}\right)^{2}+\left(2 s t w_{1}\right)^{2} \in S_{3}$, since we can write $p=s^{2}+t^{2}$ with $s>t>0$. Let $A=p^{2}=\left(s^{2}-t^{2}\right)^{2}+(2 s t)^{2}$. If $s \equiv 0$ or $t \equiv 0$ or $s^{2} \equiv t^{2} \bmod 5$, then we have $A \in S_{3}$ since $(5 r)^{2}=(3 r)^{2}+(4 r)^{2}$. Otherwise, we have $s^{2} \equiv-t^{2} \bmod 5$, so $p=5$. We note that $25 \notin S_{3}$. After all we may consider the case where A is square-free, $A>1$, and $p \equiv 1 \bmod 4$ for all prime divisors of A. In this case, we have the known formulas

$$
\#\left\{(a, b) \in \mathbf{Z}^{2}: a^{2}+b^{2}+c^{2}=A\right\}=2^{t+1}
$$

and

$$
\#\left\{(a, b, c) \in \mathbf{Z}^{3}: a^{2}+b^{2}+c^{2}=A\right\}=12 h(-A) \geq 12 \cdot 2^{t-1}
$$

where t is the number of distinct primes in $4 a$, and $h(-A)$ is the ideal class number of quadratic field $\mathbf{Q}(\sqrt{-A})$. Hence we have $A \in S_{3}$ if and only if $h(-A)=2^{t-1}$. This result shows that $A \in S_{3}$ if and only if each genus contains only one ideal class in the quadratic field $\mathbf{Q}(\sqrt{-A})$. A numerical example shows that if $A<1376256$, then it occurs if and only if $A=1,2,5,10,13,25,37,58,85,130$.

2. 2-frames.

THEOREM 2. E_{n} contains a proper 2 -frame of scale A if and only if one of the following is satisfied:
(1) $n=2, A_{3}$ is a square;
(2) $n=3, A_{3}$ is a square, A contains an odd square >1;
(3) $n \geq 4, n$ is even, $A \geq n / 2$;
(4) $n=5, A \neq 1,2,3,5,6,9,21$;
(5) $n=7, A \neq 1,2,3,4,7$;
(6) $n \geq 9$, n is odd, $A \geq(n+3) / 2$.

Proof. Consider the Gaussian integer ring $\Gamma=\mathbf{Z}[i]$ with $i=\sqrt{-1}$. Putting $z_{j}=x_{j}+y_{j} i$ in (\#\#), the lattice E_{n} contains a proper 2-frame of scale A if and only if
$(\$)$ there are Gaussian integers $z_{1}, \ldots, z_{n} \in \Gamma$ satisfying

$$
z_{1}^{2}+\cdots+z_{n}^{2}=0, \quad N\left(z_{1}\right)+\cdots+N\left(z_{n}\right)=2 A, \quad z_{1} \neq 0, \ldots, z_{n} \neq 0
$$

where $N(z)=z \bar{z}$ is the norm of z. If the condition (\$) holds, then we have $n \geq 2$.
(1). Case $n=2$. By ($\$$), we have $z_{2}^{2}=-z_{1}^{2}$, so $N\left(z_{1}\right)=N\left(z_{2}\right)$. Hence $A=N\left(z_{1}\right)$, which shows A_{3} is a square. Conversely assume that A_{3} is a square. Then we have $A=N\left(z_{1}\right)$ with $0 \neq z_{1} \in \Gamma$. Putting $z_{2}=i z_{1}$, we see that the condition (\$) holds.
(2). Case $n=3$. Assume that the condition (\$) holds. By δ we denote a G.C.D. of z_{1}, z_{2} and z_{3}. Put $z_{j}=\delta w_{j}$ with $w_{j} \in \Gamma$. Take a prime $\pi=1+i$. We may suppose that $w_{1} \equiv w_{2} \equiv 1, w_{3} \equiv 0 \bmod \pi$, since $w_{1}^{2}+w_{2}^{2}+w_{3}^{2}=0$. Then we have $w_{3}^{2} \equiv 0 \bmod 4$, by noticing that $w_{1}^{2} \equiv \pm 1, w_{2}^{2} \equiv \pm 1, w_{3}^{2} \equiv 0,2 i \bmod 4$ and $w_{1}^{2}+w_{2}^{2}+w_{3}^{2} \equiv 0 \bmod 4$. Hence we see that

$$
\left(i w_{1}+w_{2}\right) / 2=\beta^{2} \varepsilon, \quad\left(i w_{1}-w_{2}\right) / 2=\gamma^{2} \varepsilon^{-1}, \quad w_{3}=2 \beta \gamma
$$

with $\beta, \gamma \in \Gamma$ and $\varepsilon \in\{ \pm 1, \pm i\}$. Hence we have

$$
w_{1}=-i\left(\beta^{2} \varepsilon+\gamma^{2} \varepsilon^{-1}\right), \quad w_{2}=\beta^{2} \varepsilon-\gamma^{2} \varepsilon^{-1}
$$

whence $2 A=N(\delta)\left(N\left(w_{1}\right)+N\left(w_{2}\right)+N\left(w_{3}\right)\right)=2 N(\delta)(N(\beta)+N(\gamma))^{2}$. Using the fact

$$
1 \equiv w_{2} \equiv \beta^{2}-\gamma^{2} \equiv \beta-\gamma \bmod \pi \quad \text { and } \beta \gamma \neq 0
$$

we see that $N(\beta)+N(\gamma)$ is odd and greater than 1 , and that A contains an odd square >1. We note that $N(\delta)$ is of form $2^{k} a_{1} a_{3}$ with a_{3} a square (see the end of $\S 0$).
Conversely assume that A_{3} is a square and A contains an odd square $a^{2}>1$. Thus we can write $A=N(\delta) a^{2}$ with $\delta \in \Gamma$. A classical result shows that $a=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$ with $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbf{Z}$ and $x_{1} x_{3} \neq 0$. Put $\beta=x_{1}+i x_{2}, \gamma=x_{3}+i x_{4}, w_{1}=-i\left(\beta^{2}+\gamma^{2}\right), w_{2}=\beta^{2}-\gamma^{2}$, $w_{3}=2 \beta \gamma$ and $z_{j}=\delta w_{j}$. Then we have $w_{1} w_{2} w_{3} \neq 0$ from the fact that a is odd. Hence the condition (\$) holds.
(3). Case $n \geq 4$, even. The necessity is clear. Assume that $2 A \geq n$. Then we have $A+2-n / 2=a_{1}^{2}+a_{2}^{2}+a_{3}^{3}+a_{4}^{2}$ with $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbf{Z}$ and $a_{1} a_{2} \neq 0$, since $A+2-n / 2 \geq 2$. Put $z_{1}=a_{1}+i a_{3}, z_{2}=a_{2}+i a_{4}, z_{3}=$ $a_{3}-i a_{1}, z_{4}=a_{4}-i a_{2}, z_{5}=\cdots=z_{m}=1$ and $z_{m+1}=\cdots=z_{n}=i$, where $m=2+n / 2$. Thus the condition ($\$$) holds.
(4). Case $n=5$. The necessity is clear. We shall show the sufficiency. By Lemma 4 below, if $A \neq 5,7,9,15,21,39,4^{k}, 2 \cdot 4^{k}, 3 \cdot 4^{k}, 6 \cdot 4^{k}$, then we can write

$$
A=a^{2}+b^{2}+g^{2}\left(c^{2}+d^{2}\right)
$$

where $a, b, c, d \in \mathbf{Z}, a c \neq 0, g>1$ and g odd. From the case $n=3$, there are z_{3}, z_{4}, z_{5} in Γ satisfying

$$
z_{3}^{2}+z_{4}^{2}+z_{5}^{2}=0, \quad N\left(z_{3}\right)+N\left(z_{4}\right)+N\left(z_{5}\right)=0, \quad z_{3} z_{4} z_{5} \neq 0
$$

Putting $z_{1}=a+b i$ and $z_{2}=b-a i$, we see that the condition (\$) holds.
We write $z=\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)$ shortly. If $A=7,15,39$, then we put $z=(2,1+2 i, 1-i, 1-i, i),(3+i, 2-2 i, 1+i, 1,3 i),(6,1-3 i, 1+2 i, 1+i, 5 i)$ respectively. If $A=4^{k}, 2 \cdot 4^{k}, 3 \cdot 4^{k}, 6 \cdot 4^{k}$ with $k \geq 1$, then we put $z=2^{k-1}(2, i, i, i, i), 2^{k-1}(2-2 i, 1+i, 1+i, 1+i, 1+i), 2^{k-1}(3,1,1+$ $2 i, 1-2 i, 2 i), 2^{k-1}(4-2 i, 2+3 i, 2+i, i, 3 i)$ respectively. Thus (\$) holds.
(5). Case $n=7$. The necessity is clear. If $A-1 \neq 0,1,2,3,5,6,9,21$, then (\$) holds, using the z_{j} 's in the case $n=5$ for $A-1$ and putting $z_{6}=$ $1, z_{7}=i$. If $A-2 \neq-1,0,1,2,3,5,6,9,21$, then we use the z_{j} 's in the case $n=5$ for $A-2$ and put $z_{6}=1+i, z_{7}=1-i$. Hence if $A \neq 1,2,3,4,7$, then (\$) holds. We shall give another proof without using the case $n=$ 5. If $A=5,6,8,9,10$, then we put $z=(1,1,1,1,1, i, 2 i),(1,1,1,1,2 i, 1+$ $i, 1-i),(1,1,1,1,2 i, 2 i, 2),(1,1,1,1,1,2,3 i),(1,1,1+i, 1-i, 1+2 i, 1-$ $2 i, 2)$ respectively. If $A \geq 11$ then we put $z=\left(a_{1}+a_{3} i, a_{2}+a_{4} i,-a_{1} i\right.$,
$\left.a_{4}-a_{i}, 2+2 i, 2-i, 1-2 i\right)$, where $A-9=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$ with $a_{1} a_{2} \neq 0$.
(6). Case $n \geq 9$, odd. If (\$) holds, then we have $2 A \geq n$, so $2 A \geq n+1$. If $2 A=n+1$, then we may suppose that $N\left(z_{1}\right)=$ $2, N\left(z_{2}\right)=\cdots=N\left(z_{n}\right)=1$. Hence $z_{1}= \pm 1 \pm i$ and $z_{j}= \pm 1(j \geq 2)$, which contradicts the fact $z_{1}^{2}+\cdots+z_{n}^{2}=0$. Thus $A \geq(n+3) / 2$. We shall prove the sufficiency. If $A=(n+3) / 2$, then we put $z_{1}=2 i, z_{2}=$ $\cdots=z_{(n-3) / 2}=i$, and $z_{(n-1) / 2}=\cdots=z_{n}=1$. If $A=(n+5) / 2$ then we put $z_{1}=2 i, z_{2}=1+i, z_{3}=1-i, z_{4}=\cdots=z_{(n-1) / 2}=i$, and $z_{(n+1) / 2}=\cdots=, z_{n}=1$. If $A \geq(n+9) / 2$, then we put $m=A-(n-7) / 2$. Then we have $m \geq 8$, so there are z_{1}, \ldots, z_{7} in Γ such that $z_{1}^{2}+\cdots+z_{7}^{2}=0, N\left(z_{1}\right)+\cdots+N\left(z_{7}\right)=2 m, z_{1} \neq 0, \ldots z_{7} \neq 0$ by the case $n=7$. We put $z_{8}=\cdots=z_{(n+7) / 2}=1$ and $z_{(n+9) / 2}=i$. Thus the condition (\$) holds.

Lemma 3. Let m be a positive integer $\equiv \pm 1 \bmod 5$. Then there are integers $a, b, c, d \in \mathbf{Z}$ such that

$$
m=a^{2}+25\left(b^{2}+c^{2}+d^{2}\right), \quad a c \neq 0
$$

if and only if $m \notin G$, where G is the set defined by

$$
\begin{aligned}
G=\{ & 19,21,31,39,49,69,71,81,119,121,179,191,211,239,379,391\} \\
& \cup\left\{4^{k}, 9 \cdot 4^{k}, 11 \cdot 4^{k}, 6 \cdot 4^{k}, 14 \cdot 4^{k}, 46 \cdot 4^{k}, 94 \cdot 4^{k}: k \geq 0\right\}
\end{aligned}
$$

Proof. Put $T=\left\{m=a^{2}+25\left(b^{2}+c^{2}+d^{2}\right): a, b, c, d \in \mathbf{Z}, a c\right.$ $\neq 0, m \equiv \pm 1 \bmod 5\}$. We note that if $m \equiv 0 \bmod 8$, then $m \in T$ if and only if $m / 4 \in T$. The necessity follows from direct calculations. Take a positive integer $m \notin G$ such that $m \not \equiv 0 \bmod 8$ and $m \equiv \pm 1 \bmod 5$. Then we can find an integer a such that $m \equiv a^{2} \bmod 25$ with $1 \leq a \leq$ 24. We can assume that $m-a^{2} \equiv 1,2,3,5,6 \bmod 8($ replacing a by $25-a$ if necessary). Thus, if $m>a^{2}$, then we have $\left(m-\dot{a}^{2}\right) / 25=b^{2}+c^{2}+d^{2}$ with $c \neq 0$, which proves that $m \in T$ if $m>24^{2}$. When $m<24^{2}$, then we see that $m \in T$ by a direct calculation.

Lemma 4. For a positive integer m, there are integers a, b, c, d, g in \mathbf{Z} such that

$$
m=a^{2}+b^{2}+g^{2}\left(c^{2}+d^{2}\right), \quad a c \neq 0, \quad g>1, g \text { odd }
$$

if and only if $m \neq 5,7,9,15,21,39,4^{k}, 2 \cdot 4^{k}, 3 \cdot 4^{k}, 6 \cdot 4^{k}$

Proof. We lose nothing by supposing $m \not \equiv 0 \bmod 8$. The necessity follows from a direct calculation. For the sufficiency, it suffices to show that m is of the desired form if $m \not \equiv 0 \bmod 8$ and m $\neq 1,2,3,4,5,6,7,9,12,15,21,39$.
(1). Case $m \not \equiv 0 \bmod 3$. Putting $c=2($ if $m 1 \bmod 4)$ or $c=1$ (otherwise), we have $m-9 c^{2} \not \equiv 0,4,7 \bmod 8$. This implies that $m-9 c^{2}=a^{2}+b^{2}+d^{2}$ with $a, b, d \in \mathbf{Z}$ if $m>9 c^{2}$ (that is $m \neq$ $1,2,4,5,7,13,17,25,29)$. We may assume that $d \equiv 0 \bmod 3$, since $m \not \equiv 0 \bmod 3$. Thus we can write $m=a^{2}+b^{2}+9\left(c^{2}+d^{2}\right)$ with $a c \neq 0$, noticing that if $a=b=0$ then we would have $m \equiv 0 \bmod 3$. A direct calculation shows that it is true for $m=13,17,25,29$.
(2). Case $m \equiv 0 \bmod 9$. If $m>9$, then we can write $m / 9$ $=a^{2}+b^{2}+c^{2}+d^{2}$ with $a c \neq 0$, so $m=(3 a)^{2}+(3 b)^{2}+9\left(c^{2}+d^{2}\right)$.
(3). Case $m \equiv 0 \bmod 3$ with $m \not \equiv 0 \bmod 9$. Put $m=3 h$ with $h \in \mathbf{Z}$ so $h \not \equiv 0 \bmod 3$.
(i) If $h \equiv 0 \bmod 25$, then m is of the desired form by a similar argument like the case $m \equiv 0 \bmod 9$.
(ii) Suppose that $h \equiv 0 \bmod 5$ with $h \not \equiv 0 \bmod 25$. Putting $d_{1}=10$ (if $h \equiv 1 \bmod 4$) or $d_{1}=5\left(\right.$ otherwise), we have $h-d_{1}^{2} \not \equiv 0,4,7 \bmod 8$, which implies that $h-d_{1}^{2}=a^{2}+b^{2}+c_{1}^{2}$ with $a, b, c_{1} \in \mathbf{Z}$ if $h>d_{1}^{2}$ (that is $h \neq 10,20,65,85)$. The two integers $c=\left(3 c_{1} \pm 4 d_{1}\right) / 5$ and $d=\left(4 c_{1} \pm 3 d_{1}\right) / 5$ are prime to 5 , taking a suitable sign. Hence we have $h=a^{2}+b^{2}+c^{2}+d^{2}$ with $a b c d \not \equiv 0 \bmod 5$. This is also true for $h=10,20,65,85$. Now we may assume, since $h \equiv 0 \bmod 5$, that $a \equiv d \equiv 1, b \equiv c \equiv 2 \bmod 5$ by changing the signs if necessary. Putting

$$
a_{1}=b-c+d, \quad b_{1}=c-a+d, \quad c_{1}=a-b+d, \quad d_{1}=a+b+c
$$

we have $m=3 h=a_{1}^{2}+b_{1}^{2}+c_{1}^{2}+d_{1}^{2}$ with a_{1}
$\equiv 1 \bmod 5, c_{1} \equiv d_{1} \equiv 0 \bmod 5$. If $c_{1}=d_{1}=0$, then we would have $h=3\left(a^{2}+b^{2}\right)$, which is a contradiction. Hence m is of the desired form.
(iii) Suppose that $h \equiv \pm 1 \bmod 5$. By Lemma 3, if $h \notin G$, then we have $h=a^{2}+25\left(b^{2}+c^{2}+d^{2}\right)$ with $a c \neq 0$. Using a similar argument
as in (ii), we can write $25\left(b^{2}+c^{2}\right)=b_{1}^{2}+c_{1}^{2}$ with $b_{1} c_{1} \not \equiv 0 \bmod 5$. Hence we have $h=a^{2}+b^{2}+c^{2}+25 d^{2}$ with $a b c \not \equiv 0 \bmod 5$. We may assume, since $h \equiv \pm 1 \bmod 5$, that $a \equiv b \equiv 2 c \bmod 5$. Putting $a_{1}=b-c+d, \ldots$ as in (ii), we have $m=3 h=a_{1}^{2}+b_{1}^{2}+c_{1}^{2}+d_{1}^{2}$ with $a_{1} \not \equiv 0, c_{1} \equiv d_{1} \equiv 0 \bmod 5$. If $c_{1}=d_{1}=0$ then we would have $h \equiv 0 \bmod 3$. Thus m is of the desired form. If $h \in G$ with $h \neq 1,4$, then we see that m is of the desired form by a direct calculation.
(iv) Suppose that $h \equiv \pm 2 \bmod 5$. Then $m=3 h \equiv \pm 1 \bmod 5$. By Lemma 3 , if $h \notin G$, then we have $m=a^{2}+(5 b)^{2}+25\left(c^{2}+d^{2}\right)$ with $a c \neq 0$. If $m \in G$, then $m=6,21,39,69$, since $m \equiv 0 \bmod 3$. Notice that $69=2^{2}+4^{2}+49\left(1^{2}+0^{2}\right)$.
3. 3-frames. For 3 -frames, we give the next theorem without a proof. But the problem is open for $n=5,6$.

THEOREM 5. Let $n \neq 5,6$. Then E_{n} contains a proper 3 -frame of scale A if and only if one of the following is satisfied:
(1) $n=3, A$ is a square;
(2) $n=4, A>1$;
(3) $n \geq 7, \quad n \equiv 1 \bmod 3, \quad A \geq(n+2) / 3$;
(4) $n \geq 8, \quad n \equiv 2 \bmod 3, \quad A \geq(n+4) / 3$;
(5) $n \geq 9, \quad n \equiv 0 \bmod 3, \quad A \geq n / 3$.

