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DECOMPOSING WITT RINGS OF CHARACTERISTIC TWO 

MURRAY MARSHALL 

The Witt rings considered here are the abstract Witt rings in the 
sense of [6]. A major problem is the following: Is every finitely 
generated Witt ring necessarily of elementary type? We restrict our 
attention to Witt rings of characteristic 2. This simplifies matters 
considerably. Just as an example, the classification of Witt rings with 
a 1-sided rigid element is pretty complicated [2]. If the characteristic 
is 2, then 1-sided rigids are automatically 2-sided so the classification 
is comparatively easy [1]. 

The main result here is to give necessary and sufficient conditions 
for a Witt ring of characteristic 2 to be a product (in the category of 
Witt rings) of group rings (see Theorem 1) or group rings and dyadic 
local types (see Theorem 2). This has similarities with the problem 
tackled in [4]. However the motivation here is different: we try to 
generalize the characterization of a product of two group rings given 
in [3, Theorem 3.10]. Once this result is established, it is used to 
obtain a characterization of elementary Witt rings of characteristic 2 
(see Theorems 7 and 8). It is not clear how to generalize any of this to 
the characteristic ^ 2 case. 

An earlier version of this paper [7] was submitted for publication 
and then later withdrawn in favor of the present paper. The results 
presented here, although they still leave something to be desired, are a 
substantial improvement over the results in [7]. 

Terminology and notation are as in [3, 6, 8]. Throughout, R denotes a 
Witt ring of characteristic 2, and G denotes the distinguished subgroup 
of units of R. The associated quaternionic pairing is denoted by 
q : G x G —• Q. For a £ G, D(l ,a) denotes the value group of 
the 1-fold Pfister form (l ,a) , i.e., £>(l,a) = {x e G\q(x,a) = 0}. Of 
course, we are assuming char(jR) = 2, so —a = a holds for all a e G. 
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1. T h e decompos i t i on criterion. Define the radical of an element 
a G G to be the set of all b G G satisfying D(l,a) Ç Z)(l,ò). This is a 
subgroup of G which we denote by rad (a). Clearly { l , a } Ç rad (a) Ç 
D ( l , a) . Observe that rad (1) = {x G G|<?(a;, y) = 0 V ? / G G } . rad( l ) is 
sometimes referred to as the Kaplansky radical of q. 

Suppose now that there is some element 1 / a G G with | D ( l , a ) | 
finite. Of all such elements a pick one with |Z)( l ,a) | smallest possible, 
say | D ( l , a ) | = 2 m . If m = 1, then D ( l , a ) = { l , a } , i.e., a is rigid, so 
by [1] (or [6]), R is a group ring. If m = 2, then D ( l , a ) = {l,a,b,ab} 
for some 6 G G , SO, by [3], Ä is a product of two group rings. 

If m = 1 or 2, then clearly rad (a) = D ( l , a) . However, if m = 3 there 
are two possibilities. Either (1) rad(a) = Z)(l ,a) or (2) rad(a) = { l , a } . 
(One checks that these are the only possibilities.) In case (1) one might 
expect that R is the product of 3 group rings. In case (2) one might 
expect that R is the dyadic local type L^Q. Neither of these results has 
been proved. 

Define n > 1 by |rad(a) | = 2 n . (Conceivably, this depends on 
our choice of a G G.) Thus, for example, if R is a group ring, 
D(l,a) = { l , a } = rad(a) and m — n — 1. Also, if R is a dyadic local 
type, say R — Z/2ï;,(b then D(l,a) has index 2 in G and rad(a) = { l , a } 
so m. = 2v — 1, n = 1. More generally, suppose R is the product of 
Wit t rings R\,.. .R( and that Ri — L2vi,o for i < k and that Ri is a 
group ring for i)k. Then m = J2\ {2vi — 1) + (^ — fc) and n = L Thus, in 
general, one might expect n (not m) to reflect the number of factors of 
R in its decomposition as a product. Also, one might expect the case 
when m — n (i.e., when rad(a) = D(l,a)) to correspond to the case 
when R is a product of n group rings. Of course, there is no proof of 
these assertions in general. 

Suppose m > 2. Then, by [1], the basic part of G is all of G. Define 
X\ = D ( l , a) and for i > 2 define X2 inductively by Xi = U{D(1, x) |x G 
Xi_ i , a: ^ 1}. According to [3], G = X i X f U XXX3. This is the best 
general result known and is valid for any a G G, a / 1. There is some 
evidence (e.g., see [5] and [9]) that this result is not best possible. 
Since the element a G G being considered has been chosen so that 
| D ( l , a ) | = 2 m is smallest possible, there is even hope that a much 
stronger result may hold, namely: 

(*) G = D(l,b)D(l,ab) forall beD{l,a). 
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For example, this is true if R is of elementary type. Also observe that 
(*) is true (trivially) if m = 1. The proof of (*) in case m = 2 was an 
important step in the proof that R is a product of two group rings in 
this case. Another case where (*) holds will be considered in the next 
section. 

We are now ready to state the main results: 

THEOREM 1. Suppose R is a Witt ring of characteristic 2. Then, in 
the category of Witt rings, R is a product of n group rings if and only 
if there exists an element 1 ^ a G G satisfying: 

(i) rad(a) = D(l,a) has 2n elements and 

(ii) D(l,b)D(l,ab) = G holds for all b G rad(a). 

THEOREM 2. Suppose R is a Witt ring of characteristic 2. Then, in 
the category of Witt rings, R is a (finite) product of Witt rings which 
are either group rings of dyadic local types if and only if 3 an element 
1 ^ a G G satisfying: 

(i) D(l,a) is finite and 3 a set B Ç D(l,a) which is a basis for 
D(l,a) modulo rad(a) such that D(l, b) has index 2 in G for all b G B; 
and 

(ii) D(l,b)D(l,ab) = G holds for all b G rad(a). 

In both of the above Theorems, one implication is easy. For suppose 
R is the product of n Witt rings R\,..., Rn where each Ri is either 
a group ring or a dyadic local type. Thus G — G\ x • • • x Gn where 
Gi denotes the distinguished subgroup of units in Ri. Fix an element 
ai E GÌ such that a7; ^ 1 and â  is rigid if Ri is a group ring. Take 
a = ( a i , . . . ,an). (i) and (ii) are now straightforward to check. 

The non-trivial portion of the proof of Theorems 1 and 2 is deferred 
until §3. 

2. Characterization of elementary types. Fix a G G. For 
each y E G define Hy — D(l,a)D(l,y). For fixed x G G, the union 
of the groups Hi>x, b G D(l,a), is precisely the value set of the 2-
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fold Pfister form ( l , a , x , ax ) and is thus itself a group. In case R is of 
elementary type, the explanation of this fact is easy enough: In this case 
the set {Hbx\b G D ( l , a)} actually has a largest element (with respect to 
inclusion). For R of elementary type, the set {Hbx\b G rad(a)} also has 
a largest element and both of these sets are closed under intersection 
so also have smallest elements. All these facts are easy (but tedious) 
to check, e.g., see [7]. The proofs are omitted. 

The results which follow show the importance of determining to 
what extent the above properties hold in case R is arbitrary, i.e., not 
necessarily of elementary type. To date, very little is known. Here is 
one general result. 

LEMMA 3. For any b G rad (a), Hx D Hax Ç H^. 

PROOF. Let y G HxnHax, b G rad(a) . Then y = cz where c G D(l,a) 
and z G D(l,x) D D(l,a)D(l,ax). Thus 3 d G D(l,a) such that 
q(dz,ax) = 0, and so q(z,a) = q(d,x). Since b G rad(a), q(ab,d) = 0 
implies q(d,x) = q(d,abx). Then q(z,a) = q(d,abx), and, by linkage, 
3 e G D(l,a) such that q(z,a) = q(ez,a) = q(ez,abx) = q(d,abx). 
Thus ez G D(\,bx), giving y = cz = (ce)(ez) G D(l,a)D(l,bx) — Hbx. 
D 

LEMMA 4. (i) The set {Hbx\b G rad(a)} has a smallest element if and 
only if 3 c G rad(a) such that Hcx Ç Hacx (in which case Hcx is the 
smallest element). 

(ii) If the set {Ht>x\b G rad(a)} has a largest element, then it also has 
a smallest element. 

PROOF. The first assertion is immediate from Lemma 3. For the 
second assertion, if Hacx is the largest element, then, by (i), Hcx is the 
smallest element. D 

The next two results indicate how the lattice structure of {Hbx\b G 
D(l,a)} relates the property (*) considered in §1. 
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LEMMA 5. Suppose 1 ^ a G G is chosen so that \D{l,a)\ = 2m 

is finite and smallest possible. Suppose further that x £ G satisfies 
Hx Ç Hax. Then \D(l,x)\ = 2m and, for each b G D(l,a), x G 
D(l,b)D(l,ab). 

PROOF. TO begin let a,x G G be arbitrary. If £ G D(l,x) D 
£>(l,a)£)(l,a#), then 3c G D(l ,a) such that q(ct,ax) = 0 and 
so c = (0 ( c 0 ^ D(l,tt) PI D(l,x)D(l,ax). Conversely, each c G 
D(l,a) H Z)(l,x)D(l,ax) arises in this way for some t G D(l,x) D 
D(l,a)D(l,ax). Observe that c G D(l,x) O e e D(l,ax) <^ £ G 
D(l,ax) & t G D(l ,a) . We have a group isomorphism 

D(lix)n D{l,a)D{l,ax) 
D(l ,a>n D(l,x) 

^ D ( M > n D ( M ) D ( i , a x ) 
1 ; D(l,a)C\ D(l,x) 

induced by t <-» c. 

Now suppose that x, a satisfy the special hypothesis in the state
ment of the lemma. Then Hx Ç Hax so D(l,x) Ç D(l,a)D{l,ax). 
Since JD(1,X) has at least 2rn elements (by choice of ra), (**) im
plies that D(l,x) has exactly 2m elements and further that D{l,a) Ç 
D(l,x)D(l,ax). Finally, suppose b G D(l,a) is arbitrary. Then 
3 t G D(l,ar) with q(bt,ax) = 0, i.e., q(b,x) — q(t,a). Thus, by linkage 
3 d G D(l ,a) such that q(t,a) = q(dt,a) = q(dt,b) = q(x,b) so ofó G 
D(l,aò) and dt a: G £>(l,fc>. Therefore x = (dtx)(dt) G D(l,b)D(l,ab). 
u 

LEMMA 6. Suppose 1 ^ a G G is chosen so that |D(l ,a) | = 2m is 
finite and smallest possible. Suppose further that, for each x G G, the 
set {Hcx\c G rad(a)} has a smallest element (with respect to inclusion). 
Then, for each b G D(l,a), D(l,b)D(l,ab) = G. 

PROOF. Let y e G, b € £>(l,a) be arbitrary. By assumption 
3c G rad(a) such that a: := cy satisfies Hx Ç Hax. Thus, by Lemma 
5, a: G D(l,b)D(l,ab). Since c G rad(a) Ç D(l,ò), this implies that 
y = ex is also in D{l,b)D{l,ab). u 



798 M. MARSHALL 

We introduce some notation. Denote by So (respectively Si) the 
smallest class of Witt rings containing Z /2 (respectively Z /2 and all 
the dyadic local types L2?;,o^ > 2) and closed under the following two 
operations: 

(1) group ring formation R —• i2[C2], C2 cyclic of order 2 and 

(2) product formation (R, S) —• R x S. 

Thus Si is just the class of elementary types of characteristic 2. 
According to [3, Corollary 4.4], Si is also characterized as the smallest 
class of Witt rings containing Z / 2 and closed under operation (1) and 
under the formation of weak products. 

THEOREM 7. Suppose R has characteristic 2, |G|(oo. Then R belongs 
to the class So if and only if the following two conditions hold for all 
elements 1 ^ a G G with D ( l , a ) minimal (with respect to inclusion): 

(i) D ( l , a ) = rad(a); 

(ii) For all x G G, the set {Hbx\b G rad(a)} has a smallest element. 

Caution. D ( l , a ) can be minimal without | D ( l , a ) | being minimal. 

THEOREM 8. Suppose R has characteristic 2 and |G|(oo. Then R 
belongs to the class Si if and only if the following two conditions hold 
for all a G G with D ( l , a ) minimal: 

(i) D ( l , a ) is generated by elements b € D(l,a) such that the group 
D ( l , 6) H D{1, a) has index 1 or 2 in D(l, a); 

(ii) For all X G G , the set {Hbx\b G rad(a)} has a smallest element. 

Note, lib e D ( l , a ) , then D( l ,6 ) fi D( l ,a> has index 1 in D(l,a) if 
and only if b G rad(a). Thus condition (i) of Theorem 8 is just a bit 
weaker than the corresponding condition of Theorem 7. 

PROOF. One implication is easy so the proof is omitted. For the 
other, assume hypotheses (i) and (ii) hold for all 1 ^ a G G with 
D ( l , a ) minimal. Choose an element 1 / a G G with | D ( l , a ) | smallest 
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possible. Then D(l ,a) is obviously minimal, so, by (ii) and Lemma 6, 
£>(1, b)D(l,ab) = G holds for all ò G £>(1, a). By (i) there is a basis B of 
D{1, a) modulo rad(a) such that D( l ,6 )nD( l , a ) has index 2 in J9{1, a) 
for all b G £ . (Of course, B = 0 if rad(a) = £>(l,a).) By (ii), each 6 G B 
can be modified by multiplying by a suitable element of rad(a) so as to 
satisfy H ab Ç H^. This doesn't change the index of D(l,b) D D{l,a) 
so we may as well assume, to begin with, that this holds for all 6 G B. 
Thus we have D(l,6)D(l,a6) = G and D(l,ab) Ç D(l ,a)D(l ,6) , so 
D(l,a)£>(l,6) = G. Then £>(1,6) has index 2 in G for each 6 G B, 
and, by Theorem 2, R = R\ x - • - x Rn where each i?i is a group 
ring or a dyadic local type. (If rad(a) = D(l ,a) , apply Theorem 1 
instead to conlcude that all the Ri are group rings in this case.) The 
desired conclusion now follows by induction on \G\. To be able to 
apply induction one has to make sure that if Rj is a group ring, say 
Ri = 54G2], then (i) and (ii) hold for each Xj, G Hi (= the distinguished 
group of units of Si) with Dj(l,x,;) minimal. The reason this works is 
that any such Xi is the z-th component of some x G G with D{\,x) 
minimal, o 

3. End of proofs. First we give a proof of Theorem 2, assuming 
Theorem 1. This turns out to be fairly easy. 

Thus we suppose that R has characteristic 2 and that there exists 
an element 1 ^ a G G satisfying conditions (i) and (ii) of Theorem 
2. Suppose B / 0, say b\ G B. Since b\ £ rad(a), there exists 
62 G B with ^(61,62) 7̂  0. Thus G decomposes as G = [61, b2] _L G 
where G = D(l,6i) H D(1,Ò2). (Here, [òi, ò2] denotes the subgroup 
generated by 61,62.) Continuing in this way, working with the induced 
quaternionic structure on G, one sees that \B\ is even, say \B\ — 2s, 
and G has a decomposition 

G = [61,62] J . . - . X [62,-1,62, ±G 7 . 

Observe that a £ Gf and that rad(a) = radr(a) = D'( l ,a) . Also, 
D /(l,6)D /(l,a6) = G' for all 6 G £>'(l,a). Thus, by Theorem 1, the 
Witt ring of Gf is a product of group rings. Clearly the Witt ring of 
each [62*-1,62«] is the local type Z/2,o- Thus R is a weak product of 
local types and group rings so the result follows from [3, Corollary 3.8 
and Remark 3.9]. 
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It remains to prove Theorem 1. This takes up the remainder of the 
paper. Assume R has characteristic 2 and that there exists an element 
a G G satisfying (i) and (ii) of Theorem 1. WTe want to show that R is 
the product of n group rings. If R is degenerate (i.e., if 3 x G G, x / 1 
such that D(l,x) = G), then R decomposes as a Wit t product, namely 
R = R' x Z/2[C2], C2 cyclic of order 2. Denote by a' the component of a 
in G' Ç R'. Then a' has all the properties of a except that now D'(l,a') 
has order 2 n _ 1 . Thus, by induction on n, R' is the Wit t product of n — 1 
group rings and we are done. Thus we may as well assume to begin with 
that R is non-degenerate. The proof is by means of several lemmas. 

LEMMA 9. Suppose ß G D ( l , a ) , x G G. Suppose x = x\X2 
is a decomposition of x with X\ G D(l , /3) , x2 G D(l,aß). Then 
D(l,x) H D(l, a) is a subgroup of D(l, Xi) D D ( l , a) , i — 1,2. 

PROOF. Let a G D ( 1 , X ) n D ( l , a ) . Then q(x,aß) = q{x,ß) = 
q(x2,ß) = ç(x2,a) . By linkage, 3 7 G D ( l , a ) such that q(x2,a) = 
(7(7x2,a) = q(<yx2,aß) = q{x,aß). Thus 0(7x1, a/3) = 0. By (i), 
0(7, a/3) = 0, so this implies tha t q(x\,aß) = 0. Since q(x\,ß) = 0, 
this in turn implies that ç ( x i , a ) = 0. Finally, ö (x ,a ) = 0, so this 
implies q(x2,a) = 0, too. D 

LEMMA 10. Under the hypothesis of Lemma 9, suppose q(x,ß) 
^ 0, o(x,a/3) ^ 0. Then q(xi,a) / 0, i = 1,2, and f/ie inclusions 
in Lemma 9 are proper. 

PROOF. If q{x\,a) = 0, then q(x,aß) = q{x\,aß) — q(x\,a) = 0, a 
contradiction. Thus q(x\, a) ^ 0. Similarly, since o(x,/3) / 0, it follows 
that g(x2,a) ^ 0. The second assertion is clear since ß G D ( l , x i ) but 
/? £ D ( l , x ) and a/3 G £>(l,x2) but a/? £ D ( l , x ) . a 

We will say x G G \ D ( l , a ) is maximal if the group D ( l , x ) fl D ( l , a ) 
is maximal with respect to inclusion. It follows from Lemmas 9 and 10 
that 

(1) x G G\D(l,a) is maximal if and only if D(l,x) fl D(l,a) has 
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index 2 in D(l ,a) and 

(2) Each element x G G\D(l,a) is a finite product of maximal 
elements. (This follows by induction on the index of D{l,x) D D(l,a) 
in D(l,a).) 

Put an equivalence relation on the set of maximal elements by 
declaring x ~ y to mean D(l,x) D D(l,a) = D(l,y) D D(l ,a) . Note: 

(3) If a G D(l ,a) and x is maximal, then ax is also maximal and 
ax ~ x. (This is immediate from hypothesis (i).) 

(4) If x,y are maximal and x ~ y, then either xy G D(l ,a) or xy is 
maximal and xy ~ x. 

It follows from (3) and (4) that, for any maximal x G G\D(l ,a) , the 
set 

A = {y : t/ is maximal and y ~ x} U D(l, a) 

is a subgroup of G. n 

LEMMA 11. If t\,... ,t8 are pairwise inequivalent maximal elements, 
then 

(1) £i , . . . ,ts are linearly independent modulo £>(l,a) and 

(2) D ( l , t 1 , . . . , ^ ) n £>(l,a) = n» D(l, t , ;)nD(l,f l) . 

PROOF. For (1) we show, by induction on s, that if s > 1 then 
g(£i . . . t.s,o) ^ 0. Suppose to the contrary that q(t\ . . . ts,a) = 0. 
Then s > 2. Since £i and ts are inequivalent there is some ß G D(l ,a) 
such that q(ts,ß) = 0 and q{t\,aß) — 0. Rearranging £i,...,£,s we 
have 1 < fc < s such that q{tj,aß) = 0 for i < fc and q(U,ß) — 0 for 
i > A:. Thus </(£i.. .tk,ß) = q(t\... £&, a) and <7(£fc+i . . . ts, ß) = 0, so 
q{t\ ...ts,ß) = q(t\ . . . tk, a). On the other hand, since q{t\ .. .ts,a) = 
0, it follows from (i) that q(t\ .. .ts,ß) = 0. Thus q(t\ .. .tk,a) — 0. 
Since 1 < k < s this is a contradiction. 

For (2) suppose to the contrary that ß G D(l ,a) q(t\ .. .ts,ß) = 0, 
but q{t\,aß) = 0. Then, rearranging £i,...,£ tS, we have 1 < k < s 
such that q(tj,aß) — 0 for i < k and q(U,ß) = 0 for i)k. Then 
q(t\ . ..tk,a) — q(t\ .. Ak,ß) = q(t\ .. .ts,ß) = 0. This contradicts 
(1).D 
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Suppose there are s equivalence classes of maximal elements so 
we have pairwise inequi valent maximal elements ^ i , . . . , ^2 and every 
maximal t is equivalent to one of these. Let A i , . . . , A s be the 
corresponding subgroups of G. Thus G — Ai . . . As and, by Lemma 11, 
this product is direct modulo D ( l , a) . Since there are 2 n — 1 subgroup of 
index 2 in D(l,a) it follows that s < 2 n . We want to show that s — n. 
We do this by showing that the t{ correspond to linearly independent 
characters on D(l,a). The proof uses the following Lemma which will 
also be used later. 

LEMMA 12. Suppose x G D( l , /? ) , y G D(l,aß) for some ß G D(l,a). 
Then 3 7 G D{l,a) such that qi^x^y) = 0. 

PROOF. q(xy, ß) = q(y, ß) = q(y, a) , so, by linkage, 3 6 G D(l, a) such 
that q(y, a) = q{6y,a) = q(ôy,xy) = q{xy,ß). Thus q(xy,6ßy) = 0. 
Since q(60y, ößy) = 0, this implies q(6ßx, ößy) = 0. Now take 7 = öß. 
D 

LEMMA 13. Suppose £ i , . . . , £ Ä are pairwise inequivalent maximal 
elements. Then the group f \D( l ,£ i ) fi Z)(l ,a) has index 2s in D(l,a). 
In particular, s < n. 

PROOF. It is clear that this index is < 2s and that it is equal to 
2 s if s — 1 or 2. By induction on s we can assume that s > 2, 
that H := ri;D(l,£7;) D D(l,a) has index 2 s and that t is some 
maximal element such that H Ç D(l,t). We must show this implies 
t ~ U for some i G { l , . . . , s } . Since H has index 2 s , 3 elements 
ßi,...,ßs G D{l,a) satisfying q(U,aßi) = 0 and q(tj,ßi) = 0 for 
j / i. In particular, /? i , . . . , /? . , generate ,D(l ,a) modulo H. Now 
q(t,aßi) = 0 for some z. (Otherwise q(t,ßi) = 0 for all i, so q(t,ß) = 0 
for all /3 G D ( l , a ) , a contradiction.) Without loss of generality, we can 
assume q(t,aßs) = 0. Then q(ttSiaßs) = 0 and q(t\ ...ts-i,ßs) = 0. 
Take x = t\...ts-\, y = tts. Thus, by Lemma 12, 37 G D(l,a) 
such that qi'yx.yy) = 0. Replacing t\ by 7^1 and ts by 7^,s we can 
assume 7 = 1 so that q(x,y) = 0. Also, for each i = l , . . . , s — 1, 
we can apply Lemma 12 again (but to the elements x,ßiy instead 
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of x, y) to get an element a £ D ( l , a ) (depending on i) such that 
q(ax,aßiy) = 0. Expanding, this yields q(a,xy) = q(ßi,x). Now 
q(ßi,x) = q{ßi,ti...ts-i) = q{ßi,U) = q(a,U). Say a = Iljß^ö, Ô£ 
H, ej £ {0,1}. Thus q(a,xy) = q(a,tu.. .tst) = q^t? ...te

8*tf) 
where / £ {0,1} is defined by q(a, t) = q(a,t-f). Then the equation 
q(a, xy) = q(ßi,x) reduces to q(a, t\l . . . ^ i + 1 . . . te

s*tf) = 0. According 
to Lemma 11 this can only hold if e7; = 1, ej = 0, for j ^ z, and / = 0. 
This gives a = /3?; mod H and #(/?*, £) = q(a, t) = 0 (since / = 0). Thus 
q(ßi,t) = 0 for i = 1 , . . . , s — 1. Since q(aßs,t) = 0 and (?(£, t) = 0 for 
all 6 £ H, this implies that t ~ ts. 

Now suppose £ i , . . . , t,s is a maximal set of pairwise inquivalent max
imal elements and that A i , . . . , AiS are the associated subgroups of G. 
Thus H = r\iD(l,ti) H D(l,a) has index 2s in £>{l,a) so that s < n. 
For any ß £ H, q{ß, U) = 0 for i = 1 , . . . , s so <?(/?, t) = 0 for all t € G. 
Since we are assuming R is non-degenerate this implies H — 1, s — n. 
D 

LEMMA 14. Suppose t, u are inequivalent maximal elements. Then 
exactly one of the following holds: 

q(t,u) = 0, q(at1u) — 0, q(t,au) — 0, q(at,au) = 0. 

PROOF. Since t,u are inequivalent 3/9 G D ( l , a ) such that q(t,ß) — 
0, q(u,aß) = 0 (so g(*,a/3) # 0, ç(u, / î) / 0). By Lemma 12, 
37 £ D ( l , a ) such that q(ft,~fu) = 0. Since £,w are maximal, there 
are 4 possibilities: 

( 1 ) ^ ( 7 , 0 = 0, 3 ( 7 , « ) = 0; 

(2 )g (7 , i ) = 0, < / ( O 7 , M ) = 0 ; 

(3) <?(a7,£) = 0, g ( 7 , w ) = 0 ; 

(4) q(a-y,t) = 0, 9(^7,«) = 0 . 

Expanding the equation q^t, 7w) = 0 in each of these 4 cases yields 
the 4 possibilities listed in the statement of the Lemma. Using q(t, a) ^ 
0, q(u,a) ^ 0, and q{tu,a) 7̂  0, one verifies easily that these 4 
possibilities are mutually exclusive. 

Now let A i , . . . , A n be the subgroups of G corresponding to the n 
equivalence classes of maximal elements. Thus D ( l , a ) Ç Aj and 
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ti G A7; is maximal if and only if U £ D(l,a). Let us say that a 
maximal element U G Aj is Aj-compatible (j ^ i) if q(U,tj) — 0 or 
q(ti,atj) = 0 for ail maximal tj G A j . 

LEMMA 15. For each i,j,i / j and each maximal ti G A ^ either ti 
or ati is A j-compatible. 

PROOF. If the result is false, then there exist maximal tj,Uj G Aj 
such that q{U,tj) = 0, q(ati,Uj) = 0. Consider the element tjUj G Aj. 
If this is maximal, then, by Lemma 14, we either have 

(1) q{ti,aetjUj) = 0 

or 

(2) q{ati, aHjUj) = 0 

for suitable e, / G {0,1}. In case (1), q(ti, aeUj) = 0 and q(ati,Uj) = 0, 
contradicting Lemma 14. Similarly, in case (2), q(ati,aHj) = 0 and 
q(ti,tj) = 0, contradicting Lemma 14. The other possibility is that 
tjUj is not maximal so tjUj G D ( l , a ) . In this case (1) and (2) both 
hold for suitable e, / and again we have a contradiction to Lemma 14. 

Let ßi,..., ßn denote the canonical basis for Z)(l, a) as in the proof of 
Lemma 13. Thus, if U is any maximal element in Aj , then q(ti,aßi) = 0 
and q{U,ßj) = 0 if j ^ i. ü 

LEMMA 16. For given i and given maximal U G At there are exactly 
two elements t,u in the coset of U modulo D(l,a) which are Aj-
compatible for all j ^ i. Further tu = ßi. 

PROOF. We are looking for the elements a = ß\l . . . ße
n
n in D{\,a) 

which satisfy q(ati,tj) = 0 for all Aj-compatible maximal elements 
tj G Aj, j = l , . . . , n , j / z . Nov/q(ati,tj) = q{ße

j
iti,tj) = q(aeHi,tj). 

Then, for i / j , we must have e7 = 0 if U is Aj-compatible and e7 = 1 if 
ati is A7-compatible. There is no restriction on e?; G {0,g}. Thus there 
are exactly two elements t,u of the form t = ati, u =.aßiU satisfying 
the required conditions. D 
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Let Si denote the set of maximal elements in Aj which are Aj-
compatible for all j ^ i. Observe that if U G Si, tj G Sj, then 
q(U,tj) = 0. Thus if U,m G Si, tj G Sj, then q(Um,tj) — 0. If Um is 
maximal, this implies Um is A7-compatible for all j / i so t ^ G Si. 
If £7;î  is not maximal, then Um G £>(l,a). Since q{Um,tj) — 0 for 
all j ^ i we are forced to conclude that Um = 1 or /%. From these 
observations it is clear that 

Gi:=SiU{ l , f t } 

is a subgroup of A?:. 

Now consider G\.. .Gn Ç Ai . . . An = G. Since ßi G G7; we have 
D(l,a) Ç Gi . . . G n . By Lemma 16, A* Ç GiD(l,a). Taken together 
these two results imply that G = G\...Gn. Suppose U € G7 and 
t\... tn = 1. Since the product G = Ai . . . An is direct modulo D(l , a) 
this implies t; G D(l ,a) , so ^ = 1 or ßi. Since ß\,... ,ßn are linearly 
independent, t?; = 1 for i = 1 , . . . , n. Thus the product G = Gi . . . Gn 

is direct. 

We have also seen that q(U,tj) = 0 whenever ^ G G7;, fy G Gj, i / j . 
Thus G = Gì x • • • x Gn is an orthogonal decomposition. Thus q induces 
a quaternionic structure on Gi. Denote the associated Witt ring by Ri. 
Suppose U G GÌ, q(U,ßi) = 0. Since q(U,ßj) — 0 for j / i, this implies 
that q{tua) = 0. Thus U G D(l,a) H G{ = { l , f t} . This shows that 
/?i G G7; is rigid so JR7; is a group ring, i = 1, . . . ,n. According to [3, 
Theorem 3.4] this implies that the induced map p : R\ x • • • x Rn —> R 
is an isomorphism. This completes the proof of Theorem 1. D 
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