ORTHOGONAL DECOMPOSITIONS OF INDEFINITE QUADRATIC FORMS

DONALD G. JAMES

Introduction. A well known theorem of Milnor (see [8] or [9]) classifies the unimodular indefinite quadratic forms over \mathbf{Z} . Either the form represents both even and odd numbers, in which case the form diagonalizes as $\langle \pm 1, \dots, \pm 1 \rangle$; or the form only represents even numbers, in which case it decomposes into an orthogonal sum of hyperbolic planes and 8-dimensional unimodular definite forms. We give here some generalizations of this theorem for indefinite forms with square free discriminant of rank at least three.

Let L be a **Z**-lattice on an indefinite regular quadratic **Q**-space V of finite dimension $n \geq 3$ with associated symmetric bilinear form $f: V \times V \to \mathbf{Q}$. Assume, for convenience, that $f(L, L) = \mathbf{Z}$ and that the signature s = s(L) of the form is non-negative. Let x_1, \ldots, x_n be a **Z**-basis for L and put $d = dL = \det f(x_i, x_j)$, the discriminant of the lattice L. We assume that d is square free. Let $\langle a_1, \ldots, a_n \rangle$ denote the **Z**-lattice $\mathbf{Z}x_1 \perp \cdots \perp \mathbf{Z}x_n$ with an orthogonal basis where $f(x_i) = f(x_i, x_i) = a_i, 1 \leq i \leq n$. Most of our notation follows O'Meara [7]. Thus L_p denotes the localization of L at the prime p.

The lattice L is called *even* if $f(x) \in 2\mathbb{Z}$ for all $x \in L$; otherwise the lattice is *odd*. The condition that L is an odd lattice is equivalent to the local condition that L_2 diagonalizes over the 2-adic integers (since d is not divisible by 4).

Odd lattices. While not all odd indefinite lattices have an orthogonal basis, we can get very close to this.

THEOREM 1. Let L be an odd indefinite **Z**-lattice of rank $n \geq 3$ with square free discriminant d. Then

$$L = \langle \pm 1, \ldots, \pm 1 \rangle \perp B$$
,

This research was partially supported by the National Science Foundation.

Copyright ©1989 Rocky Mountain Mathematics Consortium

736 D.G. JAMES

where B is a binary lattice. Moreover, if d is even, then B can be chosen to be definite or indefinite.

PROOF. It suffices, by induction, to prove that L represents both 1 and -1, for then we can split off a one-dimensional orthogonal component, although we must be careful that the other component remains odd. Also, it is enough to consider n=3. Since d is square free, by Kneser [6], the genus and the class of L coincide. Thus it remains to show that the localization L_p represents both 1 and -1 for each prime p. This is clear for the odd primes, since the Jordan form of L_p has a unimodular component of rank at least two. It remains to consider L_2 .

Assume first that d is even. Then

$$L_2 = \mathbf{Z}_2 x_1 \perp \mathbf{Z}_2 x_2 \perp \mathbf{Z}_2 x_3 = \langle \epsilon_1, \epsilon_2, 2\epsilon_3 \rangle$$

with ϵ_i all 2-adic units. Thus $f(x_1) = \epsilon_1 \equiv 1 \mod 2$. We can choose a_3 equal to 0 or 1 such that $f(x_1 + a_3x_3) \equiv \pm 1 \mod 4$ (both choices of sign are possible). Finally, choose a_2 equal to 0 or 1 so that $f(x_1 + 2a_2x_2 + a_3x_3) \equiv \pm 1 \mod 8$. By Hensel's Lemma, L_2 now represents both 1 and -1. Note that the orthogonal complement of $x_1 + 2a_2x_2 + a_3x_3$ in L_2 is not an even lattice and hence there is no problem in proceeding by induction. The choice of sign in ± 1 is made to ensure the complement remains indefinite (except at the last step).

Now assume that d is odd. Then either $L_2 = \langle \epsilon \rangle \perp H$ with H a hyperbolic plane, or

$$L_2 = \mathbf{Z}_2 x_1 \perp (\mathbf{Z}_2 x_2 + \mathbf{Z}_2 x_3) = \langle \epsilon \rangle \perp \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

(see O'Meara [7; §93]). In the first case L_2 clearly represents both 1 and -1. For the second case, the unit ϵ can be changed by a square and we may assume $\epsilon \in \{\pm 1, \pm 3\}$. If $\epsilon = 3$, then $f(x_1 + x_2 + x_3) \equiv 1 \mod 8$ and L_2 represents 1. If $\epsilon = -3$, then $f(x_1 + x_2) = -1$ and L_2 represents -1. Thus L_2 always represents either 1 or -1, and if $\epsilon = \pm 1$ then L_2 represents both 1 and -1. This would complete the proof except that in the induction step from n = 4 to n = 3 it is necessary for L_2 to represent both 1 and -1. However, for n = 4, since $\langle 3, 3 \rangle \cong \langle -1, -1 \rangle$, the lattice $\langle 3, 3 \rangle \perp \binom{2}{1}$ represents both 1 and -1. \square

REMARK. The problem of determining for which values of the discriminant d=dL the odd lattice L always has an orthogonal basis is studied in [5]. The answer is complicated and depends on the factorization of d and on the Legendre symbols of some of the prime factors. For example, if |d| is a prime $q \equiv 3 \mod 4$, then L can always be diagonalized, while if |d| is a prime $p \equiv 1 \mod 4$, then L cannot always be diagonalized.

Even lattices. We now study even lattices with square free discriminants and try to construct them as far as possible from hyperbolic planes H and the eight dimensional even definite unimodular form E_8 . Recall we are assuming that the signature s is non-negative.

THEOREM 2. Let L be an even indefinite **Z**-lattice of rank $n \geq 3$ with square free discriminant d. Then

$$L = H \perp \cdots \perp H \perp E_8 \perp \cdots \perp E_8 \perp M$$

where rank $M \leq 7$. Moreover, if d is odd, then rank $M \leq 6$.

PROOF. The idea for this proof was suggested by John Hsia. We may assume $n \geq 5$. Then L is isotropic and is split by a hyperbolic plane H (see [4, p. 18]). Hence $L = H \perp \cdots \perp H \perp L'$, where either rank $L' \leq 4$ and we are finished, or L' is positive definite. We need only consider rank $L' \geq 8$. It now suffices to show that E_8 is an orthogonal summand of $H \perp L'$. Moreover, since d is square free, the class and genus coincide and it suffices to establish this locally. For the prime 2 the localization of E_8 is the sum of four hyperbolic planes, while L'_2 must contain at least three hyperbolic planes. Hence $(H \perp L')_2$ is split by $(E_8)_2$. For odd primes the localization of E_8 is $\langle 1, 1, \ldots, 1 \rangle$ which clearly splits the localization $(H \perp L')_p = \langle 1, 1, \ldots, 1, \epsilon, \epsilon d \rangle$ (ϵ some local unit). This completes the proof, for if d is odd then L_2 must have even rank. \square

REMARK. Theorems 1 and 2 are sharper results for forms with square free discriminants of the general results of Watson [10] and Gerstein [3] on the orthogonal decomposition of indefinite forms. Our bounds

738 D.G. JAMES

on rank M are, in general, best possible. For odd d, $L=H\perp E_6$ is an example with d=-3. For even d take $L=\begin{pmatrix} 10&1\\1&-2 \end{pmatrix} \perp E_7$ so that s=7 and d=-42; that $L\neq E_8\perp \langle -42\rangle$ follows from computing Hasse symbols at 3. See also the remarks following Theorem 3.

For special classes of d the component M in Theorem 2 can be more specifically described. For |d| = 2q with $q \equiv 3 \mod 4$ a prime, this was done in [4]. We consider now the case where |d| is a prime.

THEOREM 3. Let L be an even indefinite ${\bf Z}$ -lattice with rank $n \geq 3$, signature $s \geq 0$ and discriminant $\pm q$, where $q \equiv 3 \mod 4$ is a prime. Then n is even and $s \equiv 2 \mod 4$. Moreover, for each compatible choice of n and s, there exists a unique such ${\bf Z}$ -lattice L with an orthogonal decomposition as in Theorem 2 with $M = \begin{pmatrix} \frac{1}{2}(q+1) & q \\ q & 2q \end{pmatrix}$ when $s \equiv 2 \mod 8$, and $M = E_6^q$ a definite even lattice of rank 6 and discriminant q when $s \equiv 6 \mod 8$.

PROOF. Let L be an even indefinite **Z**-lattice with discriminant $\pm q$. Then $N = L \perp \mathbf{Z}x$ where f(x) = -1 is an odd lattice and, by [5], must diagonalize as $\mathbf{Z}x_1 \perp \cdots \perp \mathbf{Z}x_{n+1} = \langle \pm 1, \ldots, \pm 1, \pm q \rangle$. Let $x = \sum a_i x_i$. Then all the coefficients a_i must be odd integers since the orthogonal complement of x in N is the even lattice L. Hence

$$-1 = f(x) = \sum a_i^2 f(x_i) \equiv \sum f(x_i) \equiv \pm 1 \pm \cdots \pm 1 \pm q \mod 8.$$

Since the signature s(N) = s(L) - 1 = s - 1, it follows that $s \equiv 2 \mod 4$. This fact also follows from the general results of Chang [2].

We now construct even indefinite lattices with discriminant $\pm q$ and even rank for each possible signature $s \equiv 2 \mod 4$. If s = 2 + 8r take

$$L = H \perp \cdots \perp H \perp E_8 \perp \cdots \perp E_8 \perp \begin{pmatrix} \frac{1}{2}(q+1) & q \\ q & 2q \end{pmatrix}$$

with r copies of E_8 and the number of hyperbolic planes chosen to match the required even rank.

Next consider $s \equiv 6 \mod 8$ and $q \equiv 3 \mod 8$. Let

$$N = \perp \mathbf{Z}x_i = \langle 1, 1, 1, 1, 1, -1, q \rangle$$

and put $z=a_1x_1+a_2x_2+a_3x_3+x_4+x_5+qx_6+x_7$ so that $f(z)=a_1^2+a_2^2+a_3^2-q^2+q+2$. By Gauss' Three Square Theorem, there exist odd integers a_i such that f(z)=-1. Let E_6^q be the orthogonal complement of z in N. Then E_6^q is an even definite lattice with rank 6 and discriminant q (since any vector orthogonal to z must have an even number of its coefficients odd, and hence have even length). By adjoining copies of H and E_8 to E_6^q we obtain lattices of all possible ranks and signatures in this case. For $s \equiv 6 \mod 8$ and $q \equiv 7 \mod 8$ a similar argument can be used to obtain E_6^q by starting with $N = \langle 1, 1, 1, 1, 1, 1, -q \rangle$.

Only the uniqueness remains to be shown. Now let N be an even indefinite ${\bf Z}$ -lattice with the same rank n, signature s and discriminant as L. Then $dN=dL=(-1)^{(n-s)/2}q$. Locally at the prime 2 we have either $N_2=H\perp\cdots\perp H$ or $N_2=H\perp\cdots\perp H\perp\binom{2\ 1}{1\ 2}$. In the first case $dN_2\equiv (-1)^{n/2}\equiv \pm q \mod 8$ and hence $q\equiv 7 \mod 8$, while in the second case $dN_2\equiv -3(-1)^{n/2}\equiv \pm q \mod 8$ and $q\equiv 3 \mod 8$. Thus, locally, $N_2\cong L_2$, and hence the Hasse symbols S_2N and S_2L are equal. For all odd primes $p\neq q$ we have $S_pN=S_pL=1$. At the infinite prime we already know $S_\infty N=S_\infty L$ since the signatures match. By Hilbert Reciprocity it follows that $S_qN=S_qL$. Thus N and L can be viewed as lying on the same quadratic space over ${\bf Q}$. Finally, N and L are locally isometric at all primes and hence globally isometric. \square

REMARKS. (i) Theorem 3 can be strengthened if we assume the lattice L has Witt index $i(L) \geq 2$. Then, from uniqueness,

$$H\perp H\perp E_6^q\cong E_8\perp \left(egin{array}{cc} -rac{1}{2}(q+1) & q \ q & -2q \end{array}
ight)$$

since these two even lattices have the same rank, signature and discriminant. Then, in Theorem 3, we have

$$L = H \perp \cdots \perp H \perp E_8 \perp \cdots \perp E_8 \perp \begin{pmatrix} \frac{\pm \frac{1}{2}(q+1)}{q} & q \\ q & \pm 2q \end{pmatrix}.$$

(ii) In general, for Theorem 2, if rank $M \geq 5$ and M is indefinite, we can split another hyperbolic plane from M and reduce the rank of M by two. If rank $M \geq 6$, M is definite and $i(L) \geq 2$, then $H \perp H \perp M$ is split by E_8 . Thus, for $i(L) \geq 2$ in Theorem 2, L has a splitting of the type

$$L = H \perp \cdots \perp H \perp E_8 \perp \cdots \perp E_8 \perp M$$

- with rank $M \le 5$ if d is even, and rank $M \le 4$ if d is odd. If d is even and $i(L) \ge 3$, we can further strengthen this to rank $M \le 3$.
- (iii) For $|d| \equiv 1 \mod 4$, Satz 2 in Chang [2] implies that $s \equiv 0 \mod 4$. Hence, for this case, we again have rank $M \leq 4$ in Theorem 2. If, moreover, |d| = p is prime, then Theorem 3 has an analogue with $M = \begin{bmatrix} \frac{1}{2}(p-1) & p \\ p & 2p \end{bmatrix}$ if $s \equiv 0 \mod 8$, and M an even definite lattice of rank 4 and discriminant p when $s \equiv 4 \mod 8$.
- (iv) For |d| = 2 we have, from [2], that n is odd and $s \equiv \pm 1 \mod 8$. In Theorem 2 we can now take $M = \langle \pm 2 \rangle$.

REFERENCES

- 1. J.W.S. Cassels, Rational Quadratic Forms, Academic Press, London, 1978.
- 2. K.S. Chang, Diskriminanten und Signaturen gerader quadratischer Formen, Arch. Math. 21 (1970), 59-65.
- 3. L.J. Gerstein, Orthogonal splitting and class numbers of quadratic forms, J. Number Theory 5 (1973), 332-338.
- 4. D.G. James, Even indefinite quadratic forms of determinant $\pm 2p$, A Spectrum of Mathematics, Oxford University Press, 1971, 17-21.
- 5. —, Diagonalizable indefinite integral quadratic forms, Acta Arith. 50 (1988), 309-314.
- 6. M. Kneser, Klassenzahlen indefiniter quadratisher Formen in drei oder mehr Veranderlichen, Arch. Math. 7 (1956), 323-332.
- O.T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1963.
 - 8. J.P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973.
- 9. C.T.C. Wall, On the orthogonal groups of unimodular quadratic forms, Math. Ann. 147 (1962), 328-338.
 - 10. G.L. Watson, Integral Quadratic Forms, Cambridge University Press, 1960.

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PA 16802