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ON THE PIERCE-BIRKHOFF CONJECTURE 
OVER ORDERED FIELDS 

CHARLES N. DELZELL 

1. Introduction. Let R be a real closed field and let K b e a 
subfield of R with the inherited order. Endow R with the usual order 
topology (generated by the open intervals), and Rn with the usual 
product topology. Let X := (X\,..., Xn) be n indeterminates, and let 
x = (xi,...xn) G Rn. For m > 1 let e := ( e i , . . . , e m ) G {( , ) , = } m 

be a sequence of m relations chosen from ( , ), and =. For any set 
A Ç Rn, a basic semi-algebraic (s.a.) subset of A is a set of the form 
fÇL^x G A\ai{x)e$}, for some e, where m > 1 and a« G ̂ [ ^ ] - An 
5.a. subset of >1 is a finite union of basic s.a. subsets of A. An s.a. 
set is an s.a. subset of Rn. We call a function h : A —> i? piecewise-
polynomial (p.p.) over if if there exist g\,... ,gi G Zfpf] such that the 
subsets J4J = {x G ̂ 4 | h(x) = gi{x)} are s.a. and cover A, i.e., A = U ^ . 
If we call a function h simply "p.p.," then h is understood to be "p.p. 
over K." Write PWP(^4) for the set of continuous p.p. functions on A; 
PWP(A) is clearly closed under sums and products, and so is a ring; 
it is also closed under pointwise suprema and infima. 

CONJECTURE 1.1. If h : Rn —+ R is continuous and piecewise-
polynomial (i.e., if h G PWP(jRn)), then h is a sup o/infs of finitely 
many polynomial functions (i.e., 

(1.1.1) h = supjinfkfjk, 

for some finite number of fjk G üf[X].) (The converse is easy.) 

A simple example is h(Xi) — \Xi\ = sup{Xi, — Xi}. 

Writing SIPD(A) for the set of "sup-inf-polynomially-definable" 
functions h : A —* R defined as in (1.1.1), we see that Conjecture 
1.1 asserts that the obvious inclusion SIPD(jRn) C PWF(Rn) can be 
reversed. 
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Note that, for A Ç B Ç Rn, any function defined sup-inf-
polynormally on A extends sup-inf-polynomially to B. This is not true 
of PWP(A) and PWP(£) if n > 2 and A and £ are properly chosen: 

EXAMPLE 1.2. [12] Let 

A = {(x\,x2) € R2 \x\ < 0 or x2 < 0 or #2 > #i}7 

Z? = Ä2, and let g : A —> R be defined by 

g(Xux2) = iXl i f ^i > ° a n d x2 > x\, and 
i 0 elsewhere. 

Then g £ P W P ( J 4 ) , but g does not extend to a function g G PWP(Ä2), 
since such a g must have unbounded partial derivative &g/dX2 as 
{x\,x2) G R2\A approaches (0,0). As a consequence, the obvi
ous inclusion SIPD(A) Ç PWP(i4) cannot be reversed for all A. 
J. Madden has suggested extending Conjecture 1.1 by asking whether 
PWP(^4) = SIPD(i4) under the hypothesis that A be a convex and/or 
compact regular algebraic subset of Rn (the above set A is neither). 

Conjecture 1.1 was proposed by G. Birkhoff and R.S. Pierce in 
[2]; however, their formulation was slightly incorrect, or at least vague. 
Apparently it was Isbell who clarified and formulated it as stated above, 
at least in the case K = R = R. Although the conjecture arose out 
of lattice theory, its proof or disproof would probably use little lattice 
theory, but mainly semi-algebraic geometry instead. 

The Pierce-Birkhoff conjecture has received active interest in re
cent years. Henriksen and Isbell [7] showed that SIPD(A) is closed un
der addition and multiplication (see Lemma 2.1), and so is a ring. Mahé 
[12] and, independently, Efroymson (unpublished) proved Conjecture 
1.1 for n < 2, but only in the case where K (and not just R) is real 
closed (specifically, K = R = R). Madden [9] has announced a proof 
that the rings SIPD(#n) and PWP(iT) have homeomorphic "Brumfiel 
spectra" (= prime convex ideal spectra). He also gave two conjectures 
[9, 10] equivalent to the Pierce-Birkhoff conjecture, in terms of total 
orders on, and ideals in, R[X], In [11], he used these to give a new 
proof of the Pierce-Birkhoff conjecture for n < 2, but again only for 
real closed K. 
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In this note we shall extend Mahé's 2-variable methods to arbitrary 
(not just real closed) subfields K of R: 

THEOREM 1.3. Conjecture 1.1 is true for n < 2. 

One way to view the Pierce-Birkhoff conjecture is to say that it 
asserts that if a p.p. function h is continuous (a property which may be 
hard to check if h is presented by giving many Ai and < )̂, then it can be 
represented in a form which makes this continuity obvious, since a sup 
of infs of finitely many continuous functions is obviously continuous. 
Viewed this way, the Pierce-Birkhoff conjecture is in the same spirit as 
some other results in real algebraic geometry, such as: (1) The various 
"Stellensätze," which say that if a polynomial / G K[X] is (a) zero, 
(b) positive semidefinite (psd), or (c) positive definite, respectively, on 
a basic closed s.a. subset W fl V of a real algebraic set V (properties 
which may be hard to check if / is presented in the usual way as a 
sum of monomials), then / can be represented in a way which makes 
(a), (b), or (c), respectively, obvious (see, for example, [8, §7]). (A 
simple case of (b) is W = V = R71; then the "Nichtnegativstellensatz" 
is Artin's solution to Hubert's 17th problem, which represents / in the 
form J2j cjr]i w n e r e 0 < Cj E K and rj G K(X), making clear that / is 
psd.) (2) Another representation theorem in this spirit is the finiteness 
theorem for open s.a. sets, which says that if an s.a. set A is open (a 
property which may be hard to check if A is presented in the usual way 
as a finite union of basic—not—necessarily open-s.a. sets), then A can 
be represented in a way which makes this openness obvious, namely as 
a finite union of basic s.a. sets in each of which the only relations Si 
which occur are either < or >, and not = (see, for example, [4]). 

There are three reasons why, in Conjecture 1.1 and Theorem 1.3, 
we have added the condition that the coefficients of the fjk come 
from the same subfield K of R from which the coefficients of the 
polynomials defining h come: (1) The new method of proof may help 
prove Conjecture 1.1 for n > 2. (2) This refinement has also been made 
to other results in real algebraic geometry, such as Artin's solution 
to Hubert's 17 problem, the Tarski-Seidenberg theorem, and the 
finiteness theorem for open semi-algebraic sets. (3) The third reason is 
that it might help improve our continuous solution [5] to Hubert's 17 
problem, which we now review. Here we can let K — Q. A function 
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from one s.a. set to another is called s.a. if its graph, in the product 
space, is s.a. Let / € Z[C; X] be the general polynomial of even degree 

d in X with coefficients C := (Cfc), 1 < k < (n+d\ and let 

Pud := {e e dn-d) | / ( c ; X) is psd over i? in X } . 

This is a closed, convex, s.a. set. Then we constructed ((5.1) of [5]) 
s G N and finitely many continuous s.a. functions qj : Pnd —> Ä (qj > 0) 
and a^j : Pnd —> Rmi such that Vc G Pn(i, 

E > ^ ( c ) / i ( a i . i ( c ) ; ^ ) 2 

Here ra^ = (n*C i ) (where z = 1,2, ei = ds + d/2, and 62 — ds) and /^ 
is the general polynomial of degree a in X. The main shortcoming of 
this result was that if the components of some fixed c lie in a subfield 
K C R which is not real closed, then the qj(c) and aij(c) may lie in 
some proper (real algebraic) extension of K, since the qj and a^ are 
only s.a. While we showed that the qj and a\j may not be chosen to be 
(even discontinuous) rational functions G K(C) (unless d < 2, where 
they may be chosen to be polynomial functions G A"[C]), we have 
conjectured [5] that they may be chosen to be continuous piecewise-
rational, or perhaps even p.p., functions defined on Pnd- If this is 
true, and if Conjecture 1.1 (or Conjecture 2.2 below) could be proven 
also for functions defined on convex domains as Madden suggested in 
Example 1.2, then we could represent the qj and a^ as sups of infs of 
finitely many polynomial (or rational) functions of C with coefficients 
in Q. Then both the positive semidefiniteness of f(c;X) in X and the 
continuity in C of the qj and CLÌJ would be obvious; this would be the 
best possible outcome. Of course, most of this is speculative; but we 
hope it helps motivate our refinement of the Pierce-Birkhoff conjecture 
to arbitrary ordered, not necessarily real closed, subfields K Ç R. 

In §2 we shall present those lattice-ordered ring identities of Hen-
riksen and Isbell which show that SIPD(yl) is a ring; we shall also 
consider what can happen when we replace the word "(piecewise-
)polynomial" with "(piecewise-)rational". In §3 we shall review Mahé's 
cylindrical algebraic decomposition of Rn, which represents each con
tinuous p.p. function as a sup-inf-polynomially-definable function, but 
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only within 1 cylinder at a time. Finally, in §4, we shall complete the 
proof of Theorem 1.3. 

I am grateful to James Madden for calling my attention to this 
problem, and to the referee for several suggestions and corrections. 

2. Piecewise-rational functions. 

LEMMA 2.1. For A an arbitrary subset of Rn, SIPD(^4) is a ring. 

PROOF. We must show that SIPD(^4) is closed under differences 
and products. Closure under - is easy, using identities such as 

-sup{a, 6} = inf{-a, - ò } , 

a + sup{6, c} = sup{a + 6, a + c}, 

and 
a + inf{6, c} = inf{a -\-b,a + c}. 

To show closure under -, write a+ = sup{a,0} and a~ = inf{a,0} for 
every a G SIPD(A), and note that the identities 

a sup{6, c} = a(c -f (b - c)+), 

a inf{6, c} = a(c + (6 — c)~ ), 

and 
a~ = - ( - a ) + 

reduce our task to showing that ab+ e SIPD(^4), for a, 6 € SIPD(^l). 
This follows by successive use of the identities 

ab+ = sup{inf{a6, a2b + 6}, inf{0, — a2b — b}} 

and 
inf{a,sup{6, c}} = sup{inf{a,ò},inf{a, c}}. 

Actually, these identities hold in arbitrary "/-rings," and not just in 
SIPD(yl); see [7, 3.2-3.4]. G 

For A Ç Rn, call a function h : A —» R piecewise-rational (p.r.) 
(over K) if there exist rational functions g\,.. .gi € K(X), all defined 
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throughout A, such that the subsets Ai := {x G A\h(x) — gi{x)} 
are s.a. and cover A, i.e., A — U{Ai. Write P W R ( i ) for the set of 
continuous p.r. functions; like PWP(A) , PWR(A) is a ring. 

Let S I R D ( J 4 ) be the set of "sup-inf-rationally-definable" func
tions h : A —> R expressible in the form (1.1.1), with each fjk 
a rational function contained in K(X) defined throughout A. Like 
S IPD(^ ) , SIRD(A) is a ring. Unlike functions in SIPD(A), however, 
not every function SIRD(yl) can be extended to a function in S IRD(^ ) , 
where A Ç B Ç Rn, already for n = 1: take A = [1, oc), B — R1, and 
h = l/Xi. 

We now investigate conditions under which the obvious inclusion 
SIRD(A) Ç PWR(,4) can be reversed. For any subset / Ç K[X] write 
V(I) = {x G # n | V / G / , f(x) = 0}. For any subset D Ç Rn 

write 1(D) = {f G K[X]\Vx G D, f(x) = 0}. 1(D) is an ideal, 
and is, of course, finitely generated: 1(D) — ( / i , . . . , / Ä ) , for some 
/,- G 1(D). Write (D)zc = V(I(D)), the Zariski closure of D. Then 
(D)zc = V((fu...Js)) ^V((a)), where a = / 2 + . . . + / 2 . As 
usual, D Ç (D)zc, where D := {x G Rn\ every open n-ball about x 
meets D} is the closure of D in the usual topology of Rn. Finally, 
write D° = {x G Rn | 3 an open n-ball about x in D } , the interior of D 
in Ä n , and write 3D := {x G -Rn| every open n-ball about x meets both 
D and Rn\D} = ~D\D° for the boundary of D. If £> is s.a., then both 
3D and (dD)zc are nowhere dense in Rn (by, say, the triangulability 
of s.a. sets). 

CONJECTURE 2.2. Suppose A Ç Rn is s.a. and (dA)zc H A = 0 
(50 £/ia£ ,4 zs open m Ä n ) . Then SIRD(A) = PWR(A) ; ^/ia^ is, each 
continuous p.r. function h : A -^ R is expressible in the form (1.1.1), 
for finitely many fjk G K{X), all defined throughout A. (The inclusion 
Ç is easy.) 

It is easy to show, for each fixed n, tha t Conjecture 1.1 => 
Conjecture 2.2: Choose a G K[X] so that (dA)zc = V((o)), and let 
d G K[X] be a least common denominator of the gi G K(X) defining 
h. Then V((a)) fi A = 0 = V((d)) H A, and a2d2h G PWP(A) vanishes 
on (dA)zc 2 à A. It therefore extends continuously, by 0, to a function 
h G PWP(Rn) (i.e., define h(x) = 0 Vx G i T \ A ) . Apply Conjecture 
1.1 to /i and then divide both sides of the resulting (1.1.1) by a2cP, 
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which is positive definite on A, so that the order relations between the 
fjk are unaffected by this division. 

EXAMPLE 2.3. Our first illustration of Conjecture 2.2 is simple, 
and was suggested by the referee: let n = 1, A — JR\{0} , and 

, , v ( 1 if x\ > 0 and 

*(*!) = {_! if; ' xi < 0; 

note that dA = {0} = V((Xi)), so that (dA)zcC\A = 0, as hypothesized 
in Conjecture 2.2. We have h € PWP(A) c PWR(A). Since h is not 
continuously extendible to Rl,h £ SIPD(A); but, by Conjecture 2.2 
(which is true at least for n < 2), h G SIRD(A): specifically, the 
Henriksen-Isbell identities in the proof of (2.1) lead from h(Xi) — 
\Xl\/Xl to 

h{Xi) = sup{inf{l,Xi + 1/Xi},inf{-1, -X1 - 1/Xi}}. 

Thus we see that the obvious inclusion SIRD(^4) Ç PWR( i ) appears 
to be reversible, while SIPD(A) Ç SIRD(A) n PWP(A) is not. 

EXAMPLE 2.4. Our second illustration of Conjecture 2.2 is based 
on Mahé's Example 1.2. Recall that the h : A —> R given there 
belonged to PWP(A) but not SEPD(A). Write a = X2 - X2 . Note 
that (dA)zc = V((X2<i)), which meets A; thus Conjecture 2.2 does 
not necessarily apply to this A. However, if we restrict h to Af := 
A\V((X2a)), then it does apply. Specifically, we see that a2h agrees 
on A with h(XuX2) = xf(a+)2. By Lemma 2.1, h e SIPD(Ä2); 
explicitly, 

h(XuX2) = sup{inf{Xia2,Xi(a2 + l),a(a2 + 1)(X2 + 1)}, 

inf{0, - X i ( a 2 + 1), - a (« 2 + l)(X2 + 1)}}. 

Therefore 

€ SIRD(i4"), 



658 C.N. DELZELL 

where A" := A\V((a)) is a dense subset of A (containing A'). 

More generally, note that , given any s.a. set A Ç Rn satisfying 
A° = A, we can find a dense subset A1 Ç A satisfying (dA')zcnAf = 0; 
namely, let A' be A\(dA)zc. A' is dense in A because A° — A and 
(dA)zc is nowhere dense in Rn. To check (dA')zc (1 A' = 0, note that 
{dA')2C = {dA)zc. 

The referee wondered whether Conjecture 1.1 implies a stronger 
version of Conjecture 2.2, obtained by weakening the hypothesis 
(dA)zc nA = fb to dAr\A = ib (i.e., A is open). Despite Theorem 
1.3, this stronger form of Conjecture 2.2 is false already for n = 1 if K 
is not real closed, and for n = 2 if K is real closed: 

EXAMPLES 2.5. Let K = Q, A = R\{y/2}, and h(x\) = 1 for xx > 
y/2 and h{xx) = 0 otherwise. A is open and h € PWP(A) C P W R ( i ) , 
but h ^ SIRD(yl), for otherwise one of the fjk G K{X\) appearing in 
(1.1.1) would have to be undefined at y/2, and hence also at — \ /2 G ̂ 4. 
Even if if is real closed, the hypothesis cannot be weakened if n > 2: 
let n = 2, let A be the plane i?2 slit along the nonnegative Xi-axis, 
and let 

if \_[x\ if x\ > 0 and #2 > 0, and 
10 otherwise. 

Again A is open and h G PWP(A) C P W R ( i ) , but h £ S IRD(^) , for 
otherwise one of the fjk € K(X) appearing in (1.1.1) would have to be 
undefined along a Zariski dense subset of the nonnegative Xi-axis, and 
hence also along the negative Xi-axis, which lies in A. 

But Example 2.5 is not really satisfying, because the fe's given 
there were not continuously extendible to A. Recall that , in Example 
2.4, however, h was continuously extendible to A. 

EXAMPLE 2.4. (improved) Using the identity 

XlX2(X2 + 1) _ X1(X2-X
2
l) 

xf + xl l x*+ x* ' 
we see that 
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Thus h is sup-inf-rationally-definable over i?2\{(0,0)} D A, and not 
just over A" D A'. 

However, upon adding another dimension to Example 2.4, we shall 
see that Conjecture 2.2 becomes false if the hypothesis is weakened by 
replacing (dA)zc with dA, even if it is at the same time strengthened 
by requiring that h be continuously extendible to A. 

EXAMPLE 2.6. Let n = 3, let A = {x G R3 | xi < 0 or x2 < 0 or 
X3 < 0 or X2 > x\), and let 

{ X\ when x<± > x^xi > 0, and x$ > 1, 
X1X3 when £2 > #i ,# i > 0, and 0 < x% < 1, and 
0 elsewhere. 

Then h G PWP(yl) C PWR(A), and h extends continuously to 
A. But h £ SIRD(A), for otherwise the argument in Example 1.2 
would show that one of the fjk G K(X) appearing in (1.1.1) would 
have to be undefined along a Zariski dense subset of the half-line 
{(0,0,£3) I #3 > 1}, and hence also along even the negative X3-axis, 
which lies in A. 

Therefore, we leave Conjecture 2.2 as it is. In the positive di
rection, we proved [6] in 1987 that, for every n e N, for every—not 
necessarily open—s.a. set A Ç Rr\ and for every piecewise-rational 
function h : A —• R (not necessarily continuous), h can be repre
sented "almost everywhere" in A as in (1.1.1) with rational functions 
fjk G K(X) which are not necessarily defined throughout A (of course, 
the set where all the fjk are defined is dense in i?n, though not neces
sarily dense in A, unless A° = A). After learning of [6], Madden found 
a new proof and a generalization of this result, see [11]. This result is 
surely evidence in favor of Conjectures 1.1 and 2.2; on the other hand, 
this evidence is weakened by the fact that it has nothing to do with 
continuity, while Conjecture 1.1 does. Anyway, if Conjecture 1.1 is false 
for some n > 2, then we would have a situation similar to the situation 
for Hubert's 17 th problem: for n < 2, every positive semidefinite poly
nomial / G R[X] can be represented as a sum of squares of polynomials 
in R[X], while, for n > 2, such / can, in general, be represented only 
almost everywhere, as sums of squares of rational functions in R(X). 
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3 . M a h é ' s cyl indrical algebraic decompos i t ion . To prove 
Theorem 1.3 we shall need to review Mahé's cyclindrical algebraic 
decomposition (Lemma 3.2 and Proposition 3.3 below) of Rn, which 
applies even to n > 2, and not just n < 2. The reader will notice that 
we don't need to change significantly Mahé's proof of Lemma 3.2 and 
Proposition 3.3 in order to generalize it to the case where the subfield 
K Ç R is no longer real closed. Rather, it is later, in §4, where the rest 
of Mahé's proof of Theorem 1.3 for real closed K needs to be modified 
significantly to achieve the full generality of Theorem 1.3 for all K Ç R. 

For p G üJ := { 0 , 1 , . . . } let X [ X ] P be the set of sequences 
A:=(ai,..., ap) of length p of polynomials o» G K[X] (K[X\° = {0}, 
the set consisting of the empty sequence). Let i f [X]~ := UpeujK[X]p 

be the set of all such finite sequences. Let / > : = { ( , ) , = } consist of 
the three binary relations ( , ), and = on R. For p G uo let pP be the 
set of sequences e := (ei,... ,£ p ) , of length p, of relations S{ G p. For 
A G K[X]P and e G pP, we define A(e) = rfi=1{x G Rn \al(x)ei0}. 
Then Rn = U£A(e) and the A(e) are pairwise-disjoint. For those s for 
which A(e) has non-empty interior in Rn, and for those i such that 
ai ^ 0,£i is either < or >; therefore such A{e) are open. Let TT(A) be 
the set of non-empty open A(e) so obtained; thus 1 < |7r(.4)| < 2 m . 
Then UTT(A), the union of the A{e) G 7T(A), is dense in Rn. If 

A,B € K[X\" and A is a subsequence of i?, then every i? G 7r(ß) 
is a subset of some A G 7r(^4). 

For 1 < m < n, write X m = ( X i , . . . , X m _ i , X m + i , . . . , X n ) and 
am = ( x i , . . . , x m _ i , x m + i , . . . , x n ) G R71'1. Define p r o j m : Ä n -> 
i T " 1 by pro j m (x) := x m . 

LEMMA 3.1. Lei 1 < ra < n. There is a function I I m : K[X\" —» 
K[Xm]^ such that, for 0 # a G A G K [ X ] ~ , and for each cylinder A G 
7r(nm(w4)), £/ie zeros o /a which lie in A are the graphs of continuous s.a. 
functions xm = ^ f l i l (x m ) , i = 1,2, . . . s (where s := s(a, A, m) satisfies 
0 < s < d e g X m a ) , with £ a j < ••• < £a,s on p ro j m (A) . Moreover, 
Vai,a2 G *4\{0}, Vii < s ( a i , A , r a ) , Vz2 < s(a2,^4,ra), throughout 
projm(^4) only one of the three relations Çai,h < £a2,i2, f<*i,ti = £a2,z2, 
o^^ai,ii > £a2,i2 AoMs. (This is basically Corollary 2.4 of [3].) 

Now set £a,o(£m) = — oo and £a,s+i(£m) = + ° ° \/x e A, where 
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s = s(a,A,m) as in Lemma 2.1. 

Let A e K[X]^. Define the "m-skeleton" Tm(A) of A to be the 
smallest subset of K[X] (arranged in some sequential order) containing 
A and closed under the following two operations, for each nonconstant 
a e A : a —> a' and a —> r := rarn, where a' will denote ^ r -
and r(X) = a(X) - ^a'{X) (here, d = degXma > 0). Since, for 
nonconstant a, degXma' < d and àegx r < d, Trn(A) is finite, and so 

it is in K[X]". 

LEMMA 3.2. (MÄHE 1983). Suppose A G K[X]", 1 < m < n, and 
0 / a G Tm(A). Then, for each cylinder A € 7r(nm(rm(*4))), and Vi 
such thatO < i < l + s(aìAìm)ì 3c := c(a,i) := c^,m(a,i) G SIPD(,Rn) 
such that V x G i , 

c / x \ _ | O(x) î /ffm > f a , t ( * m ) j ^ 
10 otherwise. 

Concerning the proof, Mahé's synopsis [12] states only that it may 
be proved by induction on d := degx a. Since Mahé's full proof has 
been presented only in his thesis (1983, unpublished), we take this 
opportunity to present it here, with minor alterations. 

PROOF. Obviously, c(a, 0) = a and c(a, 1 + s) = 0 (handling the 
case d = 0). So, for 1 < i < s (a, A, ra), we may assume, using induction 
on z, that c(a,i — 1) has already been constructed. For d > 1 we 
may suppose, by induction on d, that c(a',j) and c(r,k) have been 
constructed, for all suitable j and k. 

Throughout this paragraph, it will be understood that x G A. 
Let j be the smallest index such that £a,î < Ça>j (then 1 < j < 
1 + s(a',A,m)). Let k be the smallest index such that £arj < £r,& 
(then 1 < k < 1 + s(r, A,m)). Then 

II 3? m S sa ' J i 

r(x) ifÇa'j <Xm< £r,k, 

and 
e(x) := -^-c(a',j)(x)+c(r,k)(x) = ^ 

0 
a(x) 

I a(x) 
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If a(x) = 0 for xm = £ a ' , j , then £afj = £ r ^ , and so we may 
take c(a,i) = e. Otherwise we may assume, by symmetry, that , for 
xm = fa',j» a(x) > 0. Then (1) for £a/,j < x m < £r,fc, r > 0 (hence 
e < a) and (2) for £a.i-i < xm < £a,i, a(x) < 0. By (1), 

f -, f a if x m > £a,;, and 
sup{a,e} = | a + i f : C m < C a t . 

Therefore, by (2), we may take c(a,i) = inf{c(a,i — l ) + , s u p { a , e } } . D 

Now let h G PWP(Rn) be as in §1, i.e., h = g{ on A^ where the 
Pi G K[X] and the A» are s.a. and cover Rn. For the rest of this paper 

let A = {gi -9j\l<i<j<l}e K[X]~. 

PROPOSITION 3.3. [12] Let h and A be as above. For 1 < m < n, 
and for each cylinder A G 7r(IITn(rrn(w4))), there is a function q := 
QA.m G SIPD(i ï n ) which coincides with h on A. 

PROOF. The graphs of the functions xm = £,a,m(xm)r for all 
a G r m («4) \{0} and for all i with 1 < i < s(a,^4,m), separate 
A into disjoint connected open s.a. subsets ("sausages") Di,...,Dt 

whose union is dense in A. We may suppose that the D's are listed 
in order of increasing xm-coordinates—precisely, V x m G proj m (A) , if 
(x\,... ,dfc,.. .xn) G Dk, (1 < k < t), then d\ < • • • < dt (this is 
similar to what Arnon, Collins, and McCallum [1] call a "stack"). For 
each k — 1 , . . . , t there exists a unique ß := [i(k, A) such tha t Dk Ç Aß 

(hence h = gß on Dk), since h is continuous. 

If t = 1 we may define q := # M ( I ,A) € SIPD(i2n); if t > 1, then we 
shall define q as follows. For k = 1 , . . . , t—1, let Vk := qp(k+i,A) — 9n(k,A)-
We have Vk = 0 on /}& n ^ + i since /i is continuous. For i = 1 ,2 , . . . , 
define the function c := c(0,i) := c^5 m(0, i) by c(x) = 0 Vx G i£n . 
If i/fe ^ 0, then there exists a unique i := i(fc) such that 1 < i < 
s(vk,A,m) and the graph of £ m = £Ufc,t(£m) over proj m (A) separates 
Dk from £>A:+I- By Lemma 3.2 we may take 

t-i 

q = SM(I.A) + 53c(«fe,*(*)) 6 SIPD(Ä"). 
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D 

(Mahé's proof of Proposition 3.3 [4] used the transversal zeros 
theorem; there appears to be no need for this theorem here.) 

4. Proof of the Pierce-Birkhoff Conjecture for n < 2. For 
n = 1, Theorem 1.3 reduces to Proposition 3.3, for since IIi(ri(.4)) c 
K1 there is only one cylinder A, which must be all of JÎ1. 

To establish Theorem 1.3 for n = 2 we shall need four lemmas. Let 
T be a single indeterminate and t G R. For any function b : R —> R and 
any ô G Ä, the notation limt_><$+ b(t) will mean the right-hand limit of 
b at <S, and not the 2-sided limit of b at sup{<5,0}, despite the notation 
introduced in the proof of Lemma 2.1. 

Let K Ç R denote the real closure of K. Note that if a function c : 
R —» R of one variable t is p.p. and c(6) = limj_^+ c(t) for some 6 G R, 
then c has a right-hand derivative cf+(t) := lim£_+0+(c(t + e) — c(t))/e 
at Ô (this holds even if c is not continuous at Ö). 

LEMMA 4.1. For all ô G K we can construct a function cs € 
SIPD(JR

1) such that c6(t) > 0 for all t > 6, c6(t) = 0 fort < Sr and 
4+(*)>0. 

PROOF. Let c G K[T] be the minimal polynomial of £ over K. 
Then c'(6) ^ 0 . If c has a real root > 6, then, by Rolle's theorem, c' 
has a real root > <5; let rj be the smallest such root. Using induction 
on degK6 := deg c > 1, we can construct cv G SIPD(i^1) such that 
cv(t) > 0 for t > T] and cv(t) = 0 for t < rf- (we can also arrange for 
cf (rj) > 0, but we do not need this here). In this case define e = c^; if 
c has no real root > 6 (in particular, if deg^£ = 1), define e = 0. Then 
we may define 

n (+\ ._ /sup{|c(£)|,e(£)} if t > 6, and 

and apply Theorem 1.3 to conclude that es G SIPD(Ä1). D 

LEMMA 4.2. Suppose S < Ç G K and b : R —> R is p.p. over K] 
in case 6 = £, suppose also that ò(£) = 0 = limt_^+ b(t). Then we 
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can construct a function u := u^^^ £ SIPD(Ä1) (over K) such that 
u(t) > b(t) fort>£ and u(t) = 0 for t < Ö. 

REMARK. In Lemma 4.2, if we had allowed u to be defined using 
coefficients in K, then (4.2) would reduce to the one-variable case of 
the Pierce-Birkhoff conjecture (over K), which was already established. 

PROOF. Use Lemma 4.1 to construct es G SIPD(Ä1) with the 
properties listed there. In case 6 = £, choose v G K larger than 
&'+(£)/c£+(0 £ Tt; then vc6{t) > b(t) for £ < t < £ + e, some e > 0. 
And if 6 < £, so that Q ( £ ) > 0, it is even easier to see that we may 
choose v G K such that vcs{t) > b(t) for £ < £ < £ + e, some e > 0. 
Either way, if vcs(t) > 6(£) for all £ > £, then we may set u = vc^. 
Otherwise, set C = inf{t G (£, oo) | vc6(t) < b(t)} G # (£ + £ < ( < °o)-

Let cf G K[T] (respectively 6°° G ~K[X]) be the polynomial which 
coincides with cs (respectively 6) for large t. Set d := max{0, degò°° — 
degcf j - . Then (1 + |^|) r f+1có(t) > b{t) for all t larger than some 
T] G K (we may assume r\ > £). Choose w £ K greater than 
sup t€rç ^(t) / c^(t) < (sup b(t))/min cs(t) G if. Then we may take 
u(t) = (1 + |£ | ) d + 1 c 6 (£)max{l ,ü ,w}. a 

For 1 < m < n and B G A^[X]~ let A m ( B ) G tf[X]~ be the 
smallest set, arranged in some sequential order, containing B and closed 
under partial differentiation with respect to Xm. Thorn's lemma (cf. 
[3, Proposition 3.1]) says that if n = 1 and B = AX(B) G K[X]", then 
each B G ft(B) is connected (and hence an open interval). From this 
one can see that if 1 < m < n and B — Am(B) G K [ X ] ~ , then each 
B G TT(B) is connected provided tha t each cylinder C G 7r(IIm(B)) is 
connected. 

PROOF OF THEOREM 1.3 For n = 2. As in Proposition 3.3, let 
A = {9i- gj\l < i < j < / } . Let B = T i ( ^ ) ; then Ai(B) = B. 
Let C = r 2 ( I I i (B) ) G K[X2]". Then £> := ß U C (arranged in 
some sequential order) satisfies V = A i ( P ) and I I i (P ) = C. Since 
A2(C) = C, each cylinder C G 7r(C) is connected. Then, by the 
preceding paragraph, each D G TT(V) is connected. 
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Since h is continuous, the Ai are closed, hence A° Ç A(. We may 
assume that the gi are distinct; thus A° D A°- = 0 for i ^ j . 

LEMMA 4.3. ul
isslA? = # n \ U i < i < 0 < , ( I f n l ° ) . 

PROOF. Ç. Let # G .A? and suppose j =̂  i. It is enough to show 
that x £ A?. There exists an open ball in Ai about x. In fact, this ball 
is in A\, and hence is disjoint from A°-. Therefore x £ A°-. 

D. Suppose x G jRn\ U; A°. Since the Ai are s.a., the dAi are 
nowhere dense; therefore UiA° is dense in Rn. Thus every ball about 
x meets at least 2 different A°. Since there are only finitely many Ai, 
there exist at least 2 indices i < j such that every ball about x meets 
Af and A°-. Therefore x G I f fi I f . D 

LEMMA 4.4. Suppose V G K[X]~ is as above and V is a sub
sequence of £ G if[X]w . ITien there is a function v — V£ : TT(£) —> 
{1, . . . , /} such that W E G 7T(£), h — gv(E) on E (i.e., E Ç A^E)). 

PROOF. It suffices to prove the lemma in the case £ = V. Fix 
D G 7T(P). Since A is a subsequence of X>, ^ — gj has constant 
sign, +, —, or 0, on D. For i ^ j , this sign is actually either 
+ or —, since the gi are distinct and D is open (and nonempty). 
Since h is continuous, each gi — gj — 0 on Ai n A^, and so, for 
i^j, D fi ( I f fi I J ) Ç D n (4* n A,) = 0. By Lemma 4.3, D Ç UiA°. 
But D is connected, as discussed before Lemma 4.3, so 3v(D) such that 
DÇAl{D).D 

Lemmas 4.3 and 4.4 hold even for n > 2. 

REMARK. The only purpose of Lemmas 4.3 and 4.4 was to con
struct v as in Lemma 4.4—we shall need v in the proof of Theorem 1,3. 
However, we could have constructed v rather trivially by adding to £ 
any finite set of polynomials in K[X] defining all the Ai as s.a. sets, 
for then each E G 7T(£) would be a subset of some Ai. Our purpose 
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in constructing v without using any set of polynomials defining the Ai 
(besides V) was to show that h (and hence the Aì) can be recovered 
from the set {g\,.-.gi} together with the function v>r>—it is not nec
essary to know the Ai in advance. We do not need this fact for the 
proof of the Pierce-Birkhoff conjecture - it is just an interesting fact. 
One consequence of this fact is that we did not need to assume that the 
sets Ai were s.a. when we defined uh is p.p.," at least not if h is also 
continuous: for the A{ are definable by polynomials in P , and hence 
are automatically s.a. (for n > 2 we must iterate the operations I \ and 
Il2; also for i > 2 to get a suitable V; this is no problem). 

Returning to the proof of Theorem 1.3, let Q := T2(^4) and 
£ := Z>U(?U Ai(Il2(ö)), arranged in some sequential order. Construct 
ve as in Lemma 4.4. As in [12], the idea now is to construct, VE',F G 
7T(£), functions CEF € SIPD(i22) such that CEF < gv{E) o n E and 
£EF > gu(F) o n F- Then we shall be done, since the function 
e F := inf^{e^F55i/(F)} € SIPD(i22) will satisfy €F — gv{F) ° n F and 
eF < gv{E) o n each E; then h = supFeir. 

So suppose E,F G 7T(£). If E and F are both subsets of the 
same "horizontal" cylinder C G 7r(C) or "vertical" cylinder G G 
7T(Ai(Il2(ö))), then we may use Proposition 3.3 and take CEF to be 
either çe,i or qc2, respectively. 

The difficult case is when E and F do not lie in a common cylinder 
(in either the X\ - or the ^-direction). We may assume, without loss 
of generality, that E is below and to the left of F (i.e, that points in E 
have X\- and ^-coordinates less than the X\- and ^-coordinates, 
respectively, of points in F); the other three possibilities could be 
handled similarly. 

E lies in a unique cylinder C G TT(C) in the X\-direction, and 
in another unique cylinder G G 7r(Ai(Il2 ((/))) in the ^-direction. 
Let £1 (respectively £2) € K be the right endpoint of the interval 
proj2(G) (respectively proJi(C)) C R. For t G R let Lt := {(#1,2:2) € 
R2\x\ + X2 = t and (x\ — £i)(#2 — £2) > 0} (see Figure). Define 
I(t) := {i\l < i < I and A{ D Lt ^ 0} (# 0 Vt). Let p(t) = 
max (xi ïa.2)€Lt(/i - gl/(E))(xi,x2). Then 

p(*) < max (gi - g„(E))(xi,x2)-
iei(t) 

We shift the point (£1, £2) to the origin and rotate the X\- and X2-axes 
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by 7T/4 radians, using the following K-linear change of coordinates: 
Yi = (Xl - 6 ) + (X2 - &) and Y2 = (Xx - &) - (X2 - &). For each i 
expand gi — gu(E) m powers of Y\ and Y2: 

(9i - 9„(E))(XUX2) = 7*00 + 7tio*i + 7*oi*2 + 7*20*? 

+ 7*11^1*2 + 7*02^22 + - - , 

for finitely many 7 ^ G K. Since, for (xi,x2) G Lu \{x\ - £i)± 
( x 2 - & ) | < | t - f i - & | , 

p(t) < max[|7ioo| + (|7*io| + |7*oi|) 

I* — €x — 61 + (|7*2o| + I M + |7*o2|) I* - 6 - 6|2 + '••]; 

denote the righthand side by &(£). Choose the smallest value of 6 G K 
such that 6 < t < £ i + £ 2 =» L t n £ = 0; then« < £i+£ 2 . If« = 6 + 6 , 
then 6(0) = 0 = limÄ_>$+ &(£), since this implies i G 1(6) => 7^0 = 0. 
By Lemma 4.2 we can construct a function u := n&,ó£i +£2 G SIPD(A1) 
such that u(t) > b(t) > p(t) for £ > £1 + £2 and u(£) = 0 for £ < 6. 
Then we may set eEF(Xi,X2) := ^ ^ ( X i , * ^ ) + tt(Ai 4- X2). Then 
(1) e^/r(«i,^2) > gv(F){xi,x2) for (ari,x2) G F since, in F, xi > £1, 
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x2 >£ 2 , and h = gu{F); and (2) e(xux2) = gv(E)(xi,x2) for {xux2) € 
E (where x\+ x2 <6).u 
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