ON THE PIERCE-BIRKHOFF CONJECTURE OVER ORDERED FIELDS

CHARLES N. DELZELL

1. Introduction. Let R be a real closed field and let K be a subfield of R with the inherited order. Endow R with the usual order topology (generated by the open intervals), and R^{n} with the usual product topology. Let $X:=\left(X_{1}, \ldots, X_{n}\right)$ be n indeterminates, and let $x=\left(x_{1}, \ldots x_{n}\right) \in R^{n}$. For $m \geq 1$ let $\varepsilon:=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in\{\langle,\rangle,=\}^{m}$ be a sequence of m relations chosen from \langle,$\rangle , and =$. For any set $A \subseteq R^{n}$, a basic semi-algebraic (s.a.) subset of A is a set of the form $\cap_{i=1}^{m}\left\{x \in A \mid a_{i}(x) \varepsilon_{i} 0\right\}$, for some ε, where $m \geq 1$ and $a_{i} \in K[X]$. An s.a. subset of A is a finite union of basic s.a. subsets of A. An s.a. set is an s.a. subset of R^{n}. We call a function $h: A \rightarrow R$ piecewisepolynomial (p.p.) over K if there exist $g_{1}, \ldots, g_{l} \in K[X]$ such that the subsets $A_{i}=\left\{x \in A \mid h(x)=g_{i}(x)\right\}$ are s.a. and cover A, i.e., $A=\cup_{i} A_{i}$. If we call a function h simply "p.p.," then h is understood to be "p.p. over K." Write $\operatorname{PWP}(A)$ for the set of continuous p.p. functions on A; $\operatorname{PWP}(A)$ is clearly closed under sums and products, and so is a ring; it is also closed under pointwise suprema and infima.

CONJECTURE 1.1. If $h: R^{n} \rightarrow R$ is continuous and piecewisepolynomial (i.e., if $h \in \operatorname{PWP}\left(R^{n}\right)$), then h is a sup of infs of finitely many polynomial functions (i.e.,

$$
\begin{equation*}
h=\sup _{j} \inf _{k} f_{j k} \tag{1.1.1}
\end{equation*}
$$

for some finite number of $f_{j k} \in K[X]$.) (The converse is easy.)
A simple example is $h\left(X_{1}\right)=\left|X_{1}\right|=\sup \left\{X_{1},-X_{1}\right\}$.
Writing $\operatorname{SIPD}(A)$ for the set of "sup-inf-polynomially-definable" functions $h: A \rightarrow R$ defined as in (1.1.1), we see that Conjecture 1.1 asserts that the obvious inclusion $\operatorname{SIPD}\left(R^{n}\right) \subseteq \operatorname{PWP}\left(R^{n}\right)$ can be reversed.

[^0]Note that, for $A \subseteq B \subseteq R^{n}$, any function defined sup-infpolynomially on A extends sup-inf-polynomially to B. This is not true of $\operatorname{PWP}(A)$ and $\operatorname{PWP}(B)$ if $n \geq 2$ and A and B are properly chosen:

Example 1.2. [12] Let

$$
A=\left\{\left(x_{1}, x_{2}\right) \in R^{2} \mid x_{1}<0 \text { or } x_{2}<0 \text { or } x_{2}>x_{1}^{2}\right\}
$$

$B=R^{2}$, and let $g: A \rightarrow R$ be defined by

$$
g\left(x_{1}, x_{2}\right)= \begin{cases}x_{1} & \text { if } x_{1}>0 \text { and } x_{2}>x_{1}^{2}, \text { and } \\ 0 & \text { elsewhere }\end{cases}
$$

Then $g \in \operatorname{PWP}(A)$, but g does not extend to a function $\bar{g} \in \operatorname{PWP}\left(R^{2}\right)$, since such a \bar{g} must have unbounded partial derivative $\partial \bar{g} / \partial X_{2}$ as $\left(x_{1}, x_{2}\right) \in R^{2} \backslash A$ approaches $(0,0)$. As a consequence, the obvious inclusion $\operatorname{SIPD}(A) \subseteq \operatorname{PWP}(A)$ cannot be reversed for all A. J. Madden has suggested extending Conjecture 1.1 by asking whether $\operatorname{PWP}(A)=\operatorname{SIPD}(A)$ under the hypothesis that A be a convex and/or compact regular algebraic subset of R^{n} (the above set A is neither).

Conjecture 1.1 was proposed by G. Birkhoff and R.S. Pierce in [2]; however, their formulation was slightly incorrect, or at least vague. Apparently it was Isbell who clarified and formulated it as stated above, at least in the case $K=R=\mathbf{R}$. Although the conjecture arose out of lattice theory, its proof or disproof would probably use little lattice theory, but mainly semi-algebraic geometry instead.

The Pierce-Birkhoff conjecture has received active interest in recent years. Henriksen and Isbell [7] showed that $\operatorname{SIPD}(A)$ is closed under addition and multiplication (see Lemma 2.1), and so is a ring. Mahé [12] and, independently, Efroymson (unpublished) proved Conjecture 1.1 for $n \leq 2$, but only in the case where K (and not just R) is real closed (specifically, $K=R=\mathbf{R}$). Madden [9] has announced a proof that the rings $\operatorname{SIPD}\left(R^{n}\right)$ and $\operatorname{PWP}\left(R^{n}\right)$ have homeomorphic "Brumfiel spectra" (= prime convex ideal spectra). He also gave two conjectures $[\mathbf{9}, \mathbf{1 0}]$ equivalent to the Pierce-Birkhoff conjecture, in terms of total orders on, and ideals in, $R[X]$. In [11], he used these to give a new proof of the Pierce-Birkhoff conjecture for $n \leq 2$, but again only for real closed K.

In this note we shall extend Mahé's 2-variable methods to arbitrary (not just real closed) subfields K of R :

Theorem 1.3. Conjecture 1.1 is true for $n \leq 2$.

One way to view the Pierce-Birkhoff conjecture is to say that it asserts that if a p.p. function h is continuous (a property which may be hard to check if h is presented by giving many A_{i} and g_{i}), then it can be represented in a form which makes this continuity obvious, since a sup of infs of finitely many continuous functions is obviously continuous. Viewed this way, the Pierce-Birkhoff conjecture is in the same spirit as some other results in real algebraic geometry, such as: (1) The various "Stellensätze," which say that if a polynomial $f \in K[X]$ is (a) zero, (b) positive semidefinite (psd), or (c) positive definite, respectively, on a basic closed s.a. subset $W \cap V$ of a real algebraic set V (properties which may be hard to check if f is presented in the usual way as a sum of monomials), then f can be represented in a way which makes (a), (b), or (c), respectively, obvious (see, for example, [8, §7]). (A simple case of (b) is $W=V=R^{n}$; then the "Nichtnegativstellensatz" is Artin's solution to Hilbert's $17^{\text {th }}$ problem, which represents f in the form $\sum_{j} c_{j} r_{j}^{2}$, where $0 \leq c_{j} \in K$ and $r_{j} \in K(X)$, making clear that f is psd.) (2) Another representation theorem in this spirit is the finiteness theorem for open s.a. sets, which says that if an s.a. set A is open (a property which may be hard to check if A is presented in the usual way as a finite union of basic-not-necessarily open-s.a. sets), then A can be represented in a way which makes this openness obvious, namely as a finite union of basic s.a. sets in each of which the only relations ε_{i} which occur are either $<$ or $>$, and not $=($ see, for example, $[4]$).

There are three reasons why, in Conjecture 1.1 and Theorem 1.3, we have added the condition that the coefficients of the $f_{j k}$ come from the same subfield K of R from which the coefficients of the polynomials defining h come: (1) The new method of proof may help prove Conjecture 1.1 for $n>2$. (2) This refinement has also been made to other results in real algebraic geometry, such as Artin's solution to Hilbert's $17^{\text {th }}$ problem, the Tarski-Seidenberg theorem, and the finiteness theorem for open semi-algebraic sets. (3) The third reason is that it might help improve our continuous solution [5] to Hilbert's $17^{\text {th }}$ problem, which we now review. Here we can let $K=\mathbf{Q}$. A function
from one s.a. set to another is called s.a. if its graph, in the product space, is s.a. Let $f \in \mathbf{Z}[C ; X]$ be the general polynomial of even degree d in X with coefficients $C:=\left(C_{k}\right), 1 \leq k \leq\binom{ n+d}{n}$, and let

$$
P_{n d}:=\left\{\left.c \in R^{\binom{n+d}{n}} \right\rvert\, f(c ; X) \text { is psd over } R \text { in } X\right\}
$$

This is a closed, convex, s.a. set. Then we constructed ((5.1) of [5]) $s \in \mathbf{N}$ and finitely many continuous s.a. functions $q_{j}: P_{n d} \rightarrow R\left(q_{j} \geq 0\right)$ and $a_{i j}: P_{n d} \rightarrow R^{m_{i}}$ such that $\forall c \in P_{n d}$,

$$
f(c ; X)=\frac{\sum_{j} q_{j}(c) f_{1}\left(a_{1, j}(c) ; X\right)^{2}}{f(c ; X)^{2 s}+\sum_{j} q_{j}(c) f_{2}\left(a_{2, j}(c) ; X\right)^{2}}
$$

Here $m_{i}=\binom{n+e_{i}}{n}$ (where $i=1,2, e_{1}=d s+d / 2$, and $e_{2}=d s$) and f_{i} is the general polynomial of degree e_{i} in X. The main shortcoming of this result was that if the components of some fixed c lie in a subfield $K \subset R$ which is not real closed, then the $q_{j}(c)$ and $a_{i j}(c)$ may lie in some proper (real algebraic) extension of K, since the q_{j} and $a_{i j}$ are only s.a. While we showed that the q_{j} and $a_{i j}$ may not be chosen to be (even discontinuous) rational functions $\in K(C)$ (unless $d \leq 2$, where they may be chosen to be polynomial functions $\in K[C]$), we have conjectured [5] that they may be chosen to be continuous piecewiserational, or perhaps even p.p., functions defined on $P_{n d}$. If this is true, and if Conjecture 1.1 (or Conjecture 2.2 below) could be proven also for functions defined on convex domains as Madden suggested in Example 1.2 , then we could represent the q_{j} and $a_{i j}$ as sups of infs of finitely many polynomial (or rational) functions of C with coefficients in \mathbf{Q}. Then both the positive semidefiniteness of $f(c ; X)$ in X and the continuity in C of the q_{j} and $a_{i j}$ would be obvious; this would be the best possible outcome. Of course, most of this is speculative; but we hope it helps motivate our refinement of the Pierce-Birkhoff conjecture to arbitrary ordered, not necessarily real closed, subfields $K \subseteq R$.

In $\S 2$ we shall present those lattice-ordered ring identities of Henriksen and Isbell which show that $\operatorname{SIPD}(A)$ is a ring; we shall also consider what can happen when we replace the word "(piecewise)polynomial" with "(piecewise-)rational". In $\S 3$ we shall review Mahé's cylindrical algebraic decomposition of R^{n}, which represents each continuous p.p. function as a sup-inf-polynomially-definable function, but
only within 1 cylinder at a time. Finally, in $\S 4$, we shall complete the proof of Theorem 1.3.

I am grateful to James Madden for calling my attention to this problem, and to the referee for several suggestions and corrections.

2. Piecewise-rational functions.

Lemma 2.1. For A an arbitrary subset of $R^{n}, \operatorname{SIPD}(A)$ is a ring.

Proof. We must show that $\operatorname{SIPD}(A)$ is closed under differences and products. Closure under - is easy, using identities such as

$$
\begin{aligned}
-\sup \{a, b\} & =\inf \{-a,-b\} \\
a+\sup \{b, c\} & =\sup \{a+b, a+c\}
\end{aligned}
$$

and

$$
a+\inf \{b, c\}=\inf \{a+b, a+c\}
$$

To show closure under \cdot, write $a^{+}=\sup \{a, 0\}$ and $a^{-}=\inf \{a, 0\}$ for every $a \in \operatorname{SIPD}(A)$, and note that the identities

$$
\begin{aligned}
a \sup \{b, c\} & =a\left(c+(b-c)^{+}\right) \\
a \inf \{b, c\} & =a\left(c+(b-c)^{-}\right)
\end{aligned}
$$

and

$$
a^{-}=-(-a)^{+}
$$

reduce our task to showing that $a b^{+} \in \operatorname{SIPD}(A)$, for $a, b \in \operatorname{SIPD}(A)$. This follows by successive use of the identities

$$
a b^{+}=\sup \left\{\inf \left\{a b, a^{2} b+b\right\}, \inf \left\{0,-a^{2} b-b\right\}\right\}
$$

and

$$
\inf \{a, \sup \{b, c\}\}=\sup \{\inf \{a, b\}, \inf \{a, c\}\}
$$

Actually, these identities hold in arbitrary " f-rings," and not just in $\operatorname{SIPD}(A)$; see $[7,3.2-3.4]$.

For $A \subseteq R^{n}$, call a function $h: A \rightarrow R$ piecewise-rational (p.r.) (over K) if there exist rational functions $g_{1}, \ldots g_{l} \in K(X)$, all defined
throughout A, such that the subsets $A_{i}:=\left\{x \in A \mid h(x)=g_{i}(x)\right\}$ are s.a. and cover A, i.e., $A=\cup_{i} A_{i}$. Write $\operatorname{PWR}(A)$ for the set of continuous p.r. functions; like $\operatorname{PWP}(A), \operatorname{PWR}(A)$ is a ring.

Let $\operatorname{SIRD}(A)$ be the set of "sup-inf-rationally-definable" functions $h: A \rightarrow R$ expressible in the form (1.1.1), with each $f_{j k}$ a rational function contained in $K(X)$ defined throughout A. Like $\operatorname{SIPD}(A), \operatorname{SIRD}(A)$ is a ring. Unlike functions in $\operatorname{SIPD}(A)$, however, not every function $\operatorname{SIRD}(A)$ can be extended to a function in $\operatorname{SIRD}(B)$, where $A \subseteq B \subseteq R^{n}$, already for $n=1$: take $A=[1, \infty), B=R^{1}$, and $h=1 / X_{1}$.

We now investigate conditions under which the obvious inclusion $\operatorname{SIRD}(A) \subseteq \operatorname{PWR}(A)$ can be reversed. For any subset $I \subseteq K[X]$ write $V(I)=\left\{x \in R^{n} \mid \forall f \in I, f(x)=0\right\}$. For any subset $D \subseteq R^{n}$ write $I(D)=\{f \in K[X] \mid \forall x \in D, f(x)=0\} . \quad I(D)$ is an ideal, and is, of course, finitely generated: $I(D)=\left(f_{1}, \ldots, f_{s}\right)$, for some $f_{i} \in I(D)$. Write $(D)_{z c}=V(I(D))$, the Zariski closure of D. Then $(D)_{z c}=V\left(\left(f_{1}, \ldots, f_{s}\right)\right)=V((a))$, where $a=f_{1}^{2}+\cdots+f_{s}^{2}$. As usual, $\bar{D} \subseteq(D)_{z c}$, where $\bar{D}:=\left\{x \in R^{n} \mid\right.$ every open n-ball about x meets $D\}$ is the closure of D in the usual topology of R^{n}. Finally, write $D^{\circ}=\left\{x \in R^{n} \mid \exists\right.$ an open n-ball about x in $\left.D\right\}$, the interior of D in R^{n}, and write $\partial D:=\left\{x \in R^{n} \mid\right.$ every open n-ball about x meets both D and $\left.R^{n} \backslash D\right\}=\bar{D} \backslash D^{\circ}$ for the boundary of D. If D is s.a., then both ∂D and $(\partial D)_{z c}$ are nowhere dense in R^{n} (by, say, the triangulability of s.a. sets).

CONJECTURE 2.2. Suppose $A \subseteq R^{n}$ is s.a. and $(\partial A)_{z c} \cap A=\emptyset$ (so that A is open in R^{n}). Then $\operatorname{SIRD}(A)=\operatorname{PWR}(A)$; that is, each continuous p.r. function $h: A \rightarrow R$ is expressible in the form (1.1.1), for finitely many $f_{j k} \in K(X)$, all defined throughout A. (The inclusion \subseteq is easy.)

It is easy to show, for each fixed n, that Conjecture $1.1 \Rightarrow$ Conjecture 2.2: Choose $a \in K[X]$ so that $(\partial A)_{z c}=V((a))$, and let $d \in K[X]$ be a least common denominator of the $g_{i} \in K(X)$ defining h. Then $V((a)) \cap A=\emptyset=V((d)) \cap A$, and $a^{2} d^{2} h \in \operatorname{PWP}(A)$ vanishes on $(\partial A)_{z c} \supseteq \partial A$. It therefore extends continuously, by 0 , to a function $\bar{h} \in \operatorname{PWP}\left(R^{n}\right)$ (i.e., define $\left.\bar{h}(x)=0 \forall x \in R^{n} \backslash A\right)$. Apply Conjecture 1.1 to \bar{h} and then divide both sides of the resulting (1.1.1) by $a^{2} d^{2}$,
which is positive definite on A, so that the order relations between the $f_{j k}$ are unaffected by this division.

EXAMPLE 2.3. Our first illustration of Conjecture 2.2 is simple, and was suggested by the referee: let $n=1, A=R \backslash\{0\}$, and

$$
h\left(x_{1}\right)= \begin{cases}1 & \text { if } x_{1}>0 \text { and } \\ -1 & \text { if } x_{1}<0\end{cases}
$$

note that $\partial A=\{0\}=V\left(\left(X_{1}\right)\right)$, so that $(\partial A)_{z c} \cap A=\emptyset$, as hypothesized in Conjecture 2.2. We have $h \in \operatorname{PWP}(A) \subset \operatorname{PWR}(A)$. Since h is not continuously extendible to $R^{1}, h \notin \operatorname{SIPD}(A)$; but, by Conjecture 2.2 (which is true at least for $n \leq 2$), $h \in \operatorname{SIRD}(A)$: specifically, the Henriksen-Isbell identities in the proof of (2.1) lead from $h\left(X_{1}\right)=$ $\left|X_{1}\right| / X_{1}$ to

$$
h\left(X_{1}\right)=\sup \left\{\inf \left\{1, X_{1}+1 / X_{1}\right\}, \inf \left\{-1,-X_{1}-1 / X_{1}\right\}\right\} .
$$

Thus we see that the obvious inclusion $\operatorname{SIRD}(A) \subseteq \operatorname{PWR}(A)$ appears to be reversible, while $\operatorname{SIPD}(A) \subseteq \operatorname{SIRD}(A) \cap \operatorname{PWP}(A)$ is not.

Example 2.4. Our second illustration of Conjecture 2.2 is based on Mahés Example 1.2. Recall that the $h: A \rightarrow R$ given there belonged to $\operatorname{PWP}(A)$ but not $\operatorname{SIPD}(A)$. Write $a=X_{2}-X_{1}^{2}$. Note that $(\partial A)_{z c}=V\left(\left(X_{2} a\right)\right)$, which meets A; thus Conjecture 2.2 does not necessarily apply to this A. However, if we restrict h to $A^{\prime}:=$ $A \backslash V\left(\left(X_{2} a\right)\right)$, then it does apply. Specifically, we see that $a^{2} h$ agrees on A with $\bar{h}\left(X_{1}, X_{2}\right)=X_{1}^{+}\left(a^{+}\right)^{2}$. By Lemma $2.1, \bar{h} \in \operatorname{SIPD}\left(R^{2}\right)$; explicitly,

$$
\begin{aligned}
& \bar{h}\left(X_{1}, X_{2}\right)= \sup \left\{\inf \left\{X_{1} a^{2}, X_{1}\left(a^{2}+1\right), a\left(a^{2}+1\right)\left(X_{1}^{2}+1\right)\right\}\right. \\
&\left.\inf \left\{0,-X_{1}\left(a^{2}+1\right),-a\left(a^{2}+1\right)\left(X_{1}^{2}+1\right)\right\}\right\}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
h\left(X_{1}, X_{2}\right)=\sup \{ & \inf \left\{X_{1}, \frac{X_{1}\left(a^{2}+1\right)}{a^{2}}, \frac{\left(a^{2}+1\right)\left(X_{1}^{2}+1\right)}{a}\right\} \\
& \left.\inf \left\{0,-\frac{X_{1}\left(a^{2}+1\right)}{a^{2}},-\frac{\left(a^{2}+1\right)\left(X_{1}^{2}+1\right)}{a}\right\}\right\} \\
& \in \operatorname{SIRD}\left(A^{\prime \prime}\right)
\end{aligned}
$$

where $A^{\prime \prime}:=A \backslash V((a))$ is a dense subset of A (containing $\left.A^{\prime}\right)$.
More generally, note that, given any s.a. set $A \subseteq R^{n}$ satisfying $\overline{A^{\circ}}=\bar{A}$, we can find a dense subset $A^{\prime} \subseteq A$ satisfying $\left(\bar{\partial} A^{\prime}\right)_{z c} \cap A^{\prime}=\emptyset ;$ namely, let A^{\prime} be $A \backslash(\partial A)_{z c} . \quad A^{\prime}$ is dense in A because $\overline{A^{\circ}}=\bar{A}$ and $(\partial A)_{z c}$ is nowhere dense in R^{n}. To check $\left(\partial A^{\prime}\right)_{z c} \cap A^{\prime}=\emptyset$, note that $\left(\partial A^{\prime}\right)_{z c}=(\partial A)_{z c}$.

The referee wondered whether Conjecture 1.1 implies a stronger version of Conjecture 2.2, obtained by weakening the hypothesis $(\partial A)_{z c} \cap A=\emptyset$ to $\partial A \cap A=\emptyset$ (i.e., A is open). Despite Theorem 1.3 , this stronger form of Conjecture 2.2 is false already for $n=1$ if K is not real closed, and for $n=2$ if K is real closed:

Examples 2.5. Let $K=\mathbf{Q}, A=R \backslash\{\sqrt{2}\}$, and $h\left(x_{1}\right)=1$ for $x_{1}>$ $\sqrt{2}$ and $h\left(x_{1}\right)=0$ otherwise. A is open and $h \in \operatorname{PWP}(A) \subset \operatorname{PWR}(A)$, but $h \frac{1}{\tau} \operatorname{SIRD}(A)$, for otherwise one of the $f_{j k} \in K\left(X_{1}\right)$ appearing in (1.1.1) would have to be undefined at $\sqrt{2}$, and hence also at $-\sqrt{2} \in A$. Even if K is real closed, the hypothesis cannot be weakened if $n \geq 2$: let $n=2$, let A be the plane R^{2} slit along the nonnegative X_{1}-axis, and let

$$
h\left(x_{1}, x_{2}\right)= \begin{cases}x_{1} & \text { if } x_{1}>0 \text { and } x_{2}>0, \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

Again A is open and $h \in \operatorname{PWP}(A) \subset \operatorname{PWR}(A)$, but $h \notin \operatorname{SIRD}(A)$, for otherwise one of the $f_{j k} \in K(X)$ appearing in (1.1.1) would have to be undefined along a Zariski dense subset of the nonnegative X_{1}-axis, and hence also along the negative X_{1}-axis, which lies in A.

But Example 2.5 is not really satisfying, because the h 's given there were not continuously extendible to \bar{A}. Recall that, in Example 2.4, however, h was continuously extendible to \bar{A}.

EXAMPLE 2.4. (improved) Using the identity

$$
\frac{X_{1} X_{2}\left(X_{2}+1\right)}{X_{1}^{2}+X_{2}^{2}}-X_{1}=\frac{X_{1}\left(X_{2}-X_{1}^{2}\right)}{X_{1}^{2}+X_{2}^{2}}
$$

we see that

$$
h\left(X_{1}, X_{2}\right)=\inf \left\{\frac{X_{1}^{+} X_{2}^{+}\left(X_{2}^{+}+1\right)}{X_{1}^{2}+X_{2}^{2}}, \quad X_{1}^{+}\right\}
$$

Thus h is sup-inf-rationally-definable over $R^{2} \backslash\{(0,0)\} \supset A$, and not just over $A^{\prime \prime} \supset A^{\prime}$.

However, upon adding another dimension to Example 2.4, we shall see that Conjecture 2.2 becomes false if the hypothesis is weakened by replacing $(\partial A)_{z c}$ with ∂A, even if it is at the same time strengthened by requiring that h be continuously extendible to \bar{A}.

EXAMPLE 2.6. Let $n=3$, let $A=\left\{x \in R^{3} \mid x_{1}<0\right.$ or $x_{2}<0$ or $x_{3}<0$ or $\left.x_{2}>x_{1}^{2}\right\}$, and let

$$
h(x)= \begin{cases}x_{1} & \text { when } x_{2}>x_{1}^{2}, x_{1}>0, \text { and } x_{3}>1, \\ x_{1} x_{3} & \text { when } x_{2}>x_{1}^{2}, x_{1}>0, \text { and } 0<x_{3} \leq 1, \text { and } \\ 0 & \text { elsewhere }\end{cases}
$$

Then $h \in \operatorname{PWP}(A) \subset \operatorname{PWR}(A)$, and h extends continuously to \bar{A}. But $h \notin \operatorname{SIRD}(A)$, for otherwise the argument in Example 1.2 would show that one of the $f_{j k} \in K(X)$ appearing in (1.1.1) would have to be undefined along a Zariski dense subset of the half-line $\left\{\left(0,0, x_{3}\right) \mid x_{3} \geq 1\right\}$, and hence also along even the negative X_{3}-axis, which lies in A.

Therefore, we leave Conjecture 2.2 as it is. In the positive direction, we proved [6] in 1987 that, for every $n \in \mathbf{N}$, for every-not necessarily open-s.a. set $A \subseteq R^{n}$, and for every piecewise-rational function $h: A \rightarrow R$ (not necessarily continuous), h can be represented "almost everywhere" in A as in (1.1.1) with rational functions $f_{j k} \in K(X)$ which are not necessarily defined throughout A (of course, the set where all the $f_{j k}$ are defined is dense in R^{n}, though not necessarily dense in A, unless $\overline{A^{\circ}}=\bar{A}$). After learning of [6], Madden found a new proof and a generalization of this result, see [11]. This result is surely evidence in favor of Conjectures 1.1 and 2.2 ; on the other hand, this evidence is weakened by the fact that it has nothing to do with continuity, while Conjecture 1.1 does. Anyway, if Conjecture 1.1 is false for some $n>2$, then we would have a situation similar to the situation for Hilbert's $17^{\text {th }}$ problem: for $n<2$, every positive semidefinite polynomial $f \in R[X]$ can be represented as a sum of squares of polynomials in $R[X]$, while, for $n \geq 2$, such f can, in general, be represented only almost everywhere, as sums of squares of rational functions in $R(X)$.
3. Mahé's cylindrical algebraic decomposition. To prove Theorem 1.3 we shall need to review Mahé's cyclindrical algebraic decomposition (Lemma 3.2 and Proposition 3.3 below) of R^{n}, which applies even to $n>2$, and not just $n \leq 2$. The reader will notice that we don't need to change significantly Mahé's proof of Lemma 3.2 and Proposition 3.3 in order to generalize it to the case where the subfield $K \subseteq R$ is no longer real closed. Rather, it is later, in $\S 4$, where the rest of Mahé's proof of Theorem 1.3 for real closed K needs to be modified significantly to achieve the full generality of Theorem 1.3 for all $K \subseteq R$.

For $p \in \omega:=\{0,1, \ldots\}$ let $K[X]^{p}$ be the set of sequences $\mathcal{A}:=\left(a_{1}, \ldots, a_{p}\right)$ of length p of polynomials $a_{i} \in K[X]\left(K[X]^{0}=\{\emptyset\}\right.$, the set consisting of the empty sequence). Let $K[X]^{\omega}:=\cup_{p \in \omega} K[X]^{p}$ be the set of all such finite sequences. Let $\rho:=\{\langle\rangle,,=\}$ consist of the three binary relations \langle,$\rangle , and =$ on R. For $p \in \omega$ let ρ^{p} be the set of sequences $\varepsilon:=\left(\varepsilon_{1}, \ldots, \varepsilon_{p}\right)$, of length p, of relations $\varepsilon_{i} \in \rho$. For $\mathcal{A} \in K[X]^{p}$ and $\varepsilon \in \rho^{p}$, we define $\mathcal{A}(\varepsilon)=\cap_{i=1}^{p}\left\{x \in R^{n} \mid a_{i}(x) \varepsilon_{i} 0\right\}$. Then $R^{n}=\cup_{\varepsilon} \mathcal{A}(\varepsilon)$ and the $\mathcal{A}(\varepsilon)$ are pairwise-disjoint. For those ε for which $\mathcal{A}(\varepsilon)$ has non-empty interior in R^{n}, and for those i such that $a_{i} \neq 0, \varepsilon_{i}$ is either <or $>$; therefore such $\mathcal{A}(\varepsilon)$ are open. Let $\pi(\mathcal{A})$ be the set of non-empty open $\mathcal{A}(\varepsilon)$ so obtained; thus $1 \leq|\pi(\mathcal{A})| \leq 2^{m}$. Then $\cup \pi(\mathcal{A})$, the union of the $\mathcal{A}(\varepsilon) \in \pi(\mathcal{A})$, is dense in R^{n}. If $\mathcal{A}, \mathcal{B} \in K[X]^{\omega}$ and \mathcal{A} is a subsequence of \mathcal{B}, then every $B \in \pi(\mathcal{B})$ is a subset of some $A \in \pi(\mathcal{A})$.

For $1 \leq m \leq n$, write $\hat{X}_{m}=\left(X_{1}, \ldots, X_{m-1}, X_{m+1}, \ldots, X_{n}\right)$ and $\hat{x}_{m}=\left(x_{1}, \ldots, x_{m-1}, x_{m+1}, \ldots, x_{n}\right) \in R^{n-1}$. Define $\operatorname{proj}_{m}: R^{n} \rightarrow$ R^{n-1} by $\operatorname{proj}_{m}(x):=\hat{x}_{m}$.

LEMMA 3.1. Let $1 \leq m \leq n$. There is a function $\Pi_{m}: K[X]^{\omega} \rightarrow$ $K\left[\hat{X}_{m}\right]^{\omega}$ such that, for $0 \neq a \in \mathcal{A} \in K[X]^{\omega}$, and for each cylinder $A \in$ $\pi\left(\Pi_{m}(\mathcal{A})\right)$, the zeros of a which lie in A are the graphs of continuous s.a. functions $x_{m}=\xi_{a, i}\left(\hat{x}_{m}\right), i=1,2, \ldots s$ (where $s:=s(a, A, m)$ satisfies $\left.0 \leq s \leq \operatorname{deg}_{X_{m}} a\right)$, with $\xi_{a, 1}<\cdots<\xi_{a, s}$ on $\operatorname{proj}_{m}(A)$. Moreover, $\forall a_{1}, a_{2} \in \mathcal{A} \backslash\{0\}, \forall i_{1} \leq s\left(a_{1}, A, m\right), \forall i_{2} \leq s\left(a_{2}, A, m\right)$, throughout $\operatorname{proj}_{m}(A)$ only one of the three relations $\xi_{a_{1}, i_{1}}<\xi_{a_{2}, i_{2}}, \xi_{a_{1}, i_{1}}=\xi_{a_{2}, i_{2}}$, or $\xi_{a_{1}, i_{1}}>\xi_{a_{2}, i_{2}}$ holds. (This is basically Corollary 2.4 of [3].)

Now set $\xi_{a, 0}\left(\hat{x}_{m}\right)=-\infty$ and $\xi_{a, s+1}\left(\hat{x}_{m}\right)=+\infty \forall x \in A$, where
$s=s(a, A, m)$ as in Lemma 2.1.
Let $\mathcal{A} \in K[X] \stackrel{\omega}{\stackrel{\omega}{*}}$. Define the " m-skeleton" $\Gamma_{m}(\mathcal{A})$ of \mathcal{A} to be the smallest subset of $K[X]$ (arranged in some sequential order) containing \mathcal{A} and closed under the following two operations, for each nonconstant $a \in \mathcal{A}: a \rightarrow a^{\prime}$ and $a \rightarrow r:=r_{a, m}$, where a^{\prime} will denote $\frac{\partial a}{\partial X_{m}}$ and $r(X)=a(X)-\frac{X m}{d} a^{\prime}(X)$ (here, $d=\operatorname{deg}_{X_{m}} a>0$). Since, for nonconstant $a, \operatorname{deg}_{X_{m}} a^{\prime}<d$ and $\operatorname{deg}_{X_{m}} r<d, \Gamma_{m}(\mathcal{A})$ is finite, and so it is in $K[X]^{\omega}$.

Lemma 3.2. (Mahé 1983). Suppose $\mathcal{A} \in K[X]^{\omega}, 1 \leq m \leq n$, and $0 \neq a \in \Gamma_{m}(\mathcal{A})$. Then, for each cylinder $A \in \pi\left(\Pi_{m}\left(\Gamma_{m}(\mathcal{A})\right)\right)$, and $\forall i$ such that $0 \leq i \leq 1+s(a, A, m), \exists c:=c(a, i):=c_{A, m}(a, i) \in \operatorname{SIPD}\left(R^{n}\right)$ such that $\forall x \in A$,

$$
c(x)= \begin{cases}a(x) & \text { if } x_{m}>\xi_{a, i}\left(\hat{x}_{m}\right), \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

Concerning the proof, Mahé's synopsis [12] states only that it may be proved by induction on $d:=\operatorname{deg}_{X_{m}} a$. Since Mahé's full proof has been presented only in his thesis (1983, unpublished), we take this opportunity to present it here, with minor alterations.

Proof. Obviously, $c(a, 0)=a$ and $c(a, 1+s)=0$ (handling the case $d=0$). So, for $1 \leq i \leq s(a, A, m)$, we may assume, using induction on i, that $c(a, i-1)$ has already been constructed. For $d \geq 1$ we may suppose, by induction on d, that $c\left(a^{\prime}, j\right)$ and $c(r, k)$ have been constructed, for all suitable j and k.

Throughout this paragraph, it will be understood that $x \in A$. Let j be the smallest index such that $\xi_{a, i} \leq \xi_{a^{\prime}, j}$ (then $1 \leq j \leq$ $\left.1+s\left(a^{\prime}, A, m\right)\right)$. Let k be the smallest index such that $\xi_{a^{\prime}, j} \leq \xi_{r, k}$ (then $1 \leq k \leq 1+s(r, A, m)$). Then
$e(x):=\frac{x_{m}}{d} c\left(a^{\prime}, j\right)(x)+c(r, k)(x)= \begin{cases}0 & \text { if } x_{m} \leq \xi_{a^{\prime}, j}, \\ a(x)-r(x) & \text { if } \xi_{a^{\prime}, j} \leq x_{m} \leq \xi_{r, k}, \\ & \text { and } \\ a(x) & \text { if } \xi_{r, k} \leq x_{m} .\end{cases}$

If $a(x)=0$ for $x_{m}=\xi_{a^{\prime}, j}$, then $\xi_{a^{\prime}, j}=\xi_{r, k}$, and so we may take $c(a, i)=e$. Otherwise we may assume, by symmetry, that, for $x_{m}=\xi_{a^{\prime}, j}, a(x)>0$. Then (1) for $\xi_{a^{\prime}, j} \leq x_{m}<\xi_{r, k}, r>0$ (hence $e<a$) and (2) for $\xi_{a, i-1}<x_{m}<\xi_{a, i}, a(x)<0$. By (1),

$$
\sup \{a, e\}= \begin{cases}a & \text { if } x_{m} \geq \xi_{a, i}, \text { and } \\ a^{+} & \text {if } x_{m} \leq \zeta_{a, i}\end{cases}
$$

Therefore, by (2), we may take $c(a, i)=\inf \left\{c(a, i-1)^{+}, \sup \{a, e\}\right\}$.
Now let $h \in \operatorname{PWP}\left(R^{n}\right)$ be as in $\S 1$, i.e., $h=g_{i}$ on A_{i}, where the $g_{i} \in K[X]$ and the A_{i} are s.a. and cover R^{n}. For the rest of this paper let $\mathcal{A}=\left\{g_{i}-g_{j} \mid 1 \leq i \leq j \leq l\right\} \in K[X]^{\stackrel{\omega}{*}}$.

Proposition 3.3. [12] Let h and \mathcal{A} be as above. For $1 \leq m \leq n$, and for each cylinder $A \in \pi\left(\Pi_{m}\left(\Gamma_{m}(\mathcal{A})\right)\right)$, there is a function $q:=$ $q_{A, m} \in \operatorname{SIPD}\left(R^{n}\right)$ which coincides with h on A.

Proof. The graphs of the functions $x_{m}=\xi_{a, m}\left(\hat{x}_{m}\right)$, for all $a \in \Gamma_{m}(\mathcal{A}) \backslash\{0\}$ and for all i with $1 \leq i \leq s(a, A, m)$, separate A into disjoint connected open s.a. subsets ("sausages") D_{1}, \ldots, D_{t} whose union is dense in A. We may suppose that the D 's are listed in order of increasing x_{m}-coordinates-precisely, $\forall \hat{x}_{m} \in \operatorname{proj}_{m}(A)$, if $\left(x_{1}, \ldots, d_{k}, \ldots x_{n}\right) \in D_{k},(1 \leq k \leq t)$, then $d_{1}<\cdots<d_{t}$ (this is similar to what Arnon, Collins, and McCallum [1] call a "stack"). For each $k=1, \ldots, t$ there exists a unique $\mu:=\mu(k, A)$ such that $D_{k} \subseteq A_{\mu}$ (hence $h=g_{\mu}$ on D_{k}), since h is continuous.

If $t=1$ we may define $q:=g_{\mu(1, A)} \in \operatorname{SIPD}\left(R^{n}\right)$; if $t>1$, then we shall define q as follows. For $k=1, \ldots, t-1$, let $v_{k}:=q_{\mu(k+1, A)}-g_{\mu(k, A)}$. We have $v_{k}=0$ on $\overline{D_{k}} \cap \overline{D_{k+1}}$ since h is continuous. For $i=1,2, \ldots$, define the function $c:=c(0, i):=c_{A, m}(0, i)$ by $c(x)=0 \quad \forall x \in R^{n}$. If $v_{k} \neq 0$, then there exists a unique $i:=i(k)$ such that $1 \leq i \leq$ $s\left(v_{k}, A, m\right)$ and the graph of $x_{m}=\xi_{v_{k}, i}\left(\hat{x}_{m}\right)$ over $\operatorname{proj}_{m}(A)$ separates D_{k} from D_{k+1}. By Lemma 3.2 we may take

$$
q=g_{\mu(1, A)}+\sum_{k=1}^{t-1} c\left(v_{k}, i(k)\right) \in \operatorname{SIPD}\left(R^{n}\right)
$$

(Mahé's proof of Proposition 3.3 [4] used the transversal zeros theorem; there appears to be no need for this theorem here.)
4. Proof of the Pierce-Birkhoff Conjecture for $n \leq 2$. For $n=1$, Theorem 1.3 reduces to Proposition 3.3, for since $\Pi_{1}\left(\Gamma_{1}(\mathcal{A})\right) \subset$ K, there is only one cylinder A, which must be all of R^{1}.

To establish Theorem 1.3 for $n=2$ we shall need four lemmas. Let T be a single indeterminate and $t \in R$. For any function $b: R \rightarrow R$ and any $\delta \in R$, the notation $\lim _{t \rightarrow \delta^{+}} b(t)$ will mean the right-hand limit of b at δ, and not the 2 -sided limit of b at $\sup \{\delta, 0\}$, despite the notation introduced in the proof of Lemma 2.1.

Let $\bar{K} \subseteq R$ denote the real closure of K. Note that if a function c : $R \rightarrow R$ of one variable t is p.p. and $c(\delta)=\lim _{t \rightarrow \delta^{+}} c(t)$ for some $\delta \in R$, then c has a right-hand derivative $c_{+}^{\prime}(t):=\lim _{\varepsilon \rightarrow 0^{+}}(c(t+\varepsilon)-c(t)) / \epsilon$ at δ (this holds even if c is not continuous at δ).

Lemma 4.1. For all $\delta \in \bar{K}$ we can construct a function $c_{\delta} \in$ $\operatorname{SIPD}\left(R^{1}\right)$ such that $c_{\delta}(t)>0$ for all $t>\delta, c_{\delta}(t)=0$ for $t \leq \delta$, and $c_{\delta_{+}}^{\prime}(\delta)>0$.

Proof. Let $c \in K[T]$ be the minimal polynomial of δ over K. Then $c^{\prime}(\delta) \frac{1}{T} 0$. If c has a real root $>\delta$, then, by Rolle's theorem, c^{\prime} has a real root $>\delta$; let η be the smallest such root. Using induction on $\operatorname{deg}_{K} \delta:=\operatorname{deg} c \geq 1$, we can construct $c_{\eta} \in \operatorname{SIPD}\left(R^{1}\right)$ such that $c_{\eta}(t)>0$ for $t>\eta$ and $c_{\eta}(t)=0$ for $t \leq \eta$ (we can also arrange for $c_{\eta_{+}}^{\prime}(\eta)>0$, but we do not need this here). In this case define $e=c_{\eta}$; if c has no real root $>\delta$ (in particular, if $\operatorname{deg}_{K} \delta=1$), define $e=0$. Then we may define

$$
c_{\delta}(t):= \begin{cases}\sup \{|c(t)|, e(t)\} & \text { if } t \geq \delta, \text { and } \\ 0 & \text { if } t \leq \delta,\end{cases}
$$

and apply Theorem 1.3 to conclude that $c_{\delta} \in \operatorname{SIPD}\left(R^{1}\right)$.

Lemma 4.2. Suppose $\delta \leq \xi \in \bar{K}$ and $b: R \rightarrow R$ is p.p. over \bar{K}; in case $\delta=\xi$, suppose also that $b(\xi)=0=\lim _{t \rightarrow \xi^{+}} b(t)$. Then we
can construct a function $u:=u_{b, \delta, \xi} \in \operatorname{SIPD}\left(R^{1}\right)$ (over K) such that $u(t) \geq b(t)$ for $t \geq \xi$ and $u(t)=0$ for $t \leq \delta$.

REmARK. In Lemma 4.2, if we had allowed u to be defined using coefficients in \bar{K}, then (4.2) would reduce to the one-variable case of the Pierce-Birkhoff conjecture (over \bar{K}), which was already established.

Proof. Use Lemma 4.1 to construct $c_{\delta} \in \operatorname{SIPD}\left(R^{1}\right)$ with the properties listed there. In case $\delta=\xi$, choose $v \in K$ larger than $b_{+}^{\prime}(\xi) / c_{\delta+}^{\prime}(\xi) \in \bar{K}$; then $v c_{\delta}(t)>b(t)$ for $\xi<t<\xi+\epsilon$, some $\epsilon>0$. And if $\delta<\xi$, so that $c_{\delta}(\xi)>0$, it is even easier to see that we may choose $v \in K$ such that $v c_{\delta}(t) \geq b(t)$ for $\xi<t<\xi+\varepsilon$, some $\varepsilon>0$. Either way, if $v c_{\delta}(t) \geq b(t)$ for all $t \geq \xi$, then we may set $u=v c_{\delta}$. Otherwise, set $\zeta=\inf \left\{t \in(\xi, \infty) \mid v c_{\delta}(t)<b(t)\right\} \in \bar{K}(\xi+\varepsilon \leq \zeta<\infty)$.

Let $c_{\delta}^{\infty} \in K[T]$ (respectively $\left.b^{\infty} \in \bar{K}[X]\right)$ be the polynomial which coincides with c_{δ} (respectively b) for large t. Set $d:=\max \left\{0, \operatorname{deg} b^{\infty}-\right.$ $\left.\operatorname{deg} c_{\delta}^{\infty}\right\}$. Then $(1+|t|)^{d+1} c_{\delta}(t) \geq b(t)$ for all t larger than some $\eta \in \bar{K}$ (we may assume $\eta>\zeta$). Choose $w \in K$ greater than $\sup _{t \in[\zeta, \eta]} b(t) / c_{\delta}(t) \leq(\sup b(t)) / \min c_{\delta}(t) \in \bar{K}$. Then we may take $u(t)=(1+|t|)^{d+1} c_{\delta}(t) \max \{1, v, w\}$.

For $1 \leq m \leq n$ and $\mathcal{B} \in K[X]^{\omega}$ let $\Delta_{m}(\mathcal{B}) \in K[X]^{\omega}$ be the smallest set, arranged in some sequential order, containing \mathcal{B} and closed under partial differentiation with respect to X_{m}. Thom's lemma (cf. [3, Proposition 3.1]) says that if $n=1$ and $\mathcal{B}=\Delta_{1}(\mathcal{B}) \in K[X]^{\omega}$, then each $B \in \pi(\mathcal{B})$ is connected (and hence an open interval). From this one can see that if $1 \leq m \leq n$ and $\mathcal{B}=\Delta_{m}(\mathcal{B}) \in K[X]^{\omega}$, then each $B \in \pi(\mathcal{B})$ is connected provided that each cylinder $C \in \pi\left(\Pi_{m}(\mathcal{B})\right)$ is connected.

Proof of Theorem 1.3 For $n=2$. As in Proposition 3.3, let $\mathcal{A}=\left\{g_{i}-g_{j} \mid 1 \leq i \leq j \leq l\right\}$. Let $\mathcal{B}=\Gamma_{1}(\mathcal{A}) ;$ then $\Delta_{1}(\mathcal{B})=\mathcal{B}$. Let $\mathcal{C}=\Gamma_{2}\left(\Pi_{1}(\mathcal{B})\right) \in K\left[X_{2}\right]^{\omega}$. Then $\mathcal{D}:=\mathcal{B} \cup \mathcal{C}$ (arranged in some sequential order) satisfies $\mathcal{D}=\Delta_{1}(\mathcal{D})$ and $\Pi_{1}(\mathcal{D})=\mathcal{C}$. Since $\Delta_{2}(\mathcal{C})=\mathcal{C}$, each cylinder $C \in \pi(\mathcal{C})$ is connected. Then, by the preceding paragraph, each $D \in \pi(\mathcal{D})$ is connected.

Since h is continuous, the A_{i} are closed, hence $\overline{A_{i}^{\circ}} \subseteq A_{i}$. We may assume that the g_{i} are distinct; thus $A_{i}^{\circ} \cap A_{j}^{\circ}=\emptyset$ for $i \neq j$.

LEMMA 4.3. $\cup_{i=1}^{l} A_{i}^{\circ}=R^{n} \backslash \cup_{1 \leq i<j \leq l}\left(\overline{A_{i}^{\circ}} \cap \overline{A_{j}^{\circ}}\right)$.

Proof. \subseteq. Let $x \in A_{i}^{\circ}$ and suppose $j \frac{1}{\tau} i$. It is enough to show that $x \notin \overline{A_{j}^{\circ}}$. There exists an open ball in A_{i} about x. In fact, this ball is in A_{i}°, and hence is disjoint from A_{j}°. Therefore $x \in \overline{A_{j}^{\circ}}$.
2. Suppose $x \in R^{n} \backslash \cup_{i} A_{i}^{\circ}$. Since the A_{i} are s.a., the ∂A_{i} are nowhere dense; therefore $\cup_{i} A_{i}^{\circ}$ is dense in R^{n}. Thus every ball about x meets at least 2 different A_{i}°. Since there are only finitely many A_{i}, there exist at least 2 indices $i<\underline{j}$ such that every ball about x meets A_{i}° and A_{j}°. Therefore $x \in \overline{A_{i}^{\circ}} \cap \overline{A_{j}^{\circ}}$. \square

LEmmA 4.4. Suppose $\mathcal{D} \in K[X]^{\omega}$ is as above and \mathcal{D} is a subsequence of $\mathcal{E} \in K[X]^{\omega}$. Then there is a function $\nu=\nu_{\mathcal{E}}: \pi(\mathcal{E}) \rightarrow$ $\{1, \ldots, l\}$ such that $\forall E \in \pi(\mathcal{E}), h=g_{\nu(E)}$ on $E\left(i . e ., E \subseteq A_{\nu(E)}\right)$.

Proof. It suffices to prove the lemma in the case $\mathcal{E}=\mathcal{D}$. Fix $D \in \pi(\mathcal{D})$. Since \mathcal{A} is a subsequence of $\mathcal{D}, g_{i}-g_{j}$ has constant $\operatorname{sign},+,-$, or 0 , on D. For $i \frac{1}{\tau} j$, this sign is actually either + or - , since the g_{i} are distinct and D is open (and nonempty). Since h is continuous, each $g_{i}-g_{j}=0$ on $A_{i} \cap A_{j}$, and so, for $i \neq j, D \cap\left(\overline{A_{i}^{\circ}} \cap \overline{A_{j}^{\circ}}\right) \subseteq D \cap\left(A_{i} \cap A_{j}\right)=\emptyset$. By Lemma $4.3, D \subseteq \cup_{i} A_{i}^{\circ}$. But D is connected, as discussed before Lemma 4.3, so $\exists \nu(D)$ such that $D \subseteq A_{\nu(D)}^{\circ}$.

Lemmas 4.3 and 4.4 hold even for $n>2$.

Remark. The only purpose of Lemmas 4.3 and 4.4 was to construct ν as in Lemma 4.4-we shall need ν in the proof of Theorem 1.3. However, we could have constructed ν rather trivially by adding to \mathcal{E} any finite set of polynomials in $K[X]$ defining all the A_{i} as s.a. sets, for then each $E \in \pi(\mathcal{E})$ would be a subset of some A_{i}. Our purpose
in constructing ν without using any set of polynomials defining the A_{i} (besides \mathcal{D}) was to show that h (and hence the A_{i}) can be recovered from the set $\left\{g_{1}, \ldots g_{l}\right\}$ together with the function $\nu_{\mathcal{D}}$-it is not necessary to know the A_{i} in advance. We do not need this fact for the proof of the Pierce-Birkhoff conjecture - it is just an interesting fact. One consequence of this fact is that we did not need to assume that the sets A_{i} were s.a. when we defined " h is p.p.," at least not if h is also continuous: for the A_{i} are definable by polynomials in \mathcal{D}, and hence are automatically s.a. (for $n>2$ we must iterate the operations Γ_{i} and Π_{i} also for $i>2$ to get a suitable \mathcal{D}; this is no problem).

Returning to the proof of Theorem 1.3 , let $\mathcal{G}:=\Gamma_{2}(\mathcal{A})$ and $\mathcal{E}:=\mathcal{D} \cup \mathcal{G} \cup \Delta_{1}\left(\Pi_{2}(\mathcal{G})\right)$, arranged in some sequential order. Construct ν_{ε} as in Lemma 4.4. As in [12], the idea now is to construct, $\forall E, F \in$ $\pi(\mathcal{E})$, functions $e_{E F} \in \operatorname{SIPD}\left(R^{2}\right)$ such that $e_{E F} \leq g_{\nu(E)}$ on E and $e_{E F} \geq g_{\nu(F)}$ on F. Then we shall be done, since the function $e_{F}:=\inf _{E}\left\{e_{E F}, g_{\nu(F)}\right\} \in \operatorname{SIPD}\left(R^{2}\right)$ will satisfy $e_{F}=g_{\nu(F)}$ on F and $e_{F} \leq g_{\nu(E)}$ on each E; then $h=\sup _{F} e_{F}$.

So suppose $E, F \in \pi(\mathcal{E})$. If E and F are both subsets of the same "horizontal" cylinder $C \in \pi(\mathcal{C})$ or "vertical" cylinder $G \in$ $\pi\left(\Delta_{1}\left(\Pi_{2}(\mathcal{G})\right)\right)$, then we may use Proposition 3.3 and take $e_{E F}$ to be either $q_{C, 1}$ or $q_{G, 2}$, respectively.

The difficult case is when E and F do not lie in a common cylinder (in either the X_{1} - or the X_{2}-direction). We may assume, without loss of generality, that E is below and to the left of F (i.e, that points in E have X_{1} - and X_{2}-coordinates less than the X_{1} - and X_{2}-coordinates, respectively, of points in F); the other three possibilities could be handled similarly.
E lies in a unique cylinder $C \in \pi(\mathcal{C})$ in the X_{1}-direction, and in another unique cylinder $G \in \pi\left(\Delta_{1}\left(\Pi_{2}(\mathcal{G})\right)\right.$) in the X_{2}-direction. Let ξ_{1} (respectively $\left.\xi_{2}\right) \in \bar{K}$ be the right endpoint of the interval $\operatorname{proj}_{2}(G)\left(\right.$ respectively $\left.\operatorname{proj}_{1}(C)\right) \subset R$. For $t \in R$ let $L_{t}:=\left\{\left(x_{1}, x_{2}\right) \in\right.$ $R^{2} \mid x_{1}+x_{2}=t$ and $\left.\left(x_{1}-\xi_{1}\right)\left(x_{2}-\xi_{2}\right) \geq 0\right\}$ (see Figure). Define $I(t):=\left\{i \mid 1 \leq i \leq l\right.$ and $\left.A_{i} \cap L_{t} \frac{1}{\tau} \emptyset\right\}\left(\frac{1}{\tau} \emptyset \quad \forall t\right)$. Let $p(t)=$ $\max _{\left(x_{1}, x_{2}\right) \in L_{t}}\left(h-g_{\nu(E)}\right)\left(x_{1}, x_{2}\right)$. Then

$$
p(t) \leq \max _{\substack{i \in I(t) \\\left(x_{1}, x_{2}\right) \in L_{t}}}\left(g_{i}-g_{\nu(E)}\right)\left(x_{1}, x_{2}\right)
$$

We shift the point $\left(\xi_{1}, \xi_{2}\right)$ to the origin and rotate the X_{1} - and X_{2}-axes

Figure 1
by $\pi / 4$ radians, using the following \bar{K}-linear change of coordinates: $Y_{1}=\left(X_{1}-\xi_{1}\right)+\left(X_{2}-\xi_{2}\right)$ and $Y_{2}=\left(X_{1}-\xi_{1}\right)-\left(X_{2}-\xi_{2}\right)$. For each i expand $g_{i}-g_{\nu(E)}$ in powers of Y_{1} and Y_{2} :

$$
\begin{aligned}
\left(g_{i}-g_{\nu(E)}\right)\left(X_{1}, X_{2}\right)= & \gamma_{i 00}+\gamma_{i 10} Y_{1}+\gamma_{i 01} Y_{2}+\gamma_{i 20} Y_{1}^{2} \\
& +\gamma_{i 11} Y_{1} Y_{2}+\gamma_{i 02} Y_{2}^{2}+\cdots
\end{aligned}
$$

for finitely many $\gamma_{i j k} \in \bar{K}$. Since, for $\left(x_{1}, x_{2}\right) \in L_{t}, \mid\left(x_{1}-\xi_{1}\right) \pm$ $\left(x_{2}-\xi_{2}\right)\left|\leq\left|t-\xi_{1}-\xi_{2}\right|\right.$,

$$
\begin{aligned}
p(t) \leq & \max _{i \in I(t)}\left[\left|\gamma_{i 00}\right|+\left(\left|\gamma_{i 10}\right|+\left|\gamma_{i 01}\right|\right)\right. \\
& \left.\left|t-\xi_{1}-\xi_{2}\right|+\left(\left|\gamma_{i 20}\right|+\left|\delta_{i 11}\right|+\left|\gamma_{i 02}\right|\right)\left|t-\xi_{1}-\xi_{2}\right|^{2}+\cdots\right]
\end{aligned}
$$

denote the righthand side by $b(t)$. Choose the smallest value of $\delta \in \bar{K}$ such that $\delta<t<\xi_{1}+\xi_{2} \Rightarrow L_{t} \cap E=\emptyset$; then $\delta \leq \xi_{1}+\xi_{2}$. If $\delta=\xi_{1}+\xi_{2}$, then $b(\delta)=0=\lim _{t \rightarrow \delta^{+}} b(t)$, since this implies $i \in I(\delta) \Rightarrow \gamma_{i 00}=0$. By Lemma 4.2 we can construct a function $u:=u_{b, \delta \xi_{1}+\xi_{2}} \in \operatorname{SIPD}\left(R^{1}\right)$ such that $u(t) \geq b(t) \geq p(t)$ for $t \geq \xi_{1}+\xi_{2}$ and $u(t)=0$ for $t \leq \delta$. Then we may set $e_{E F}\left(X_{1}, X_{2}\right):=g_{\nu(E)}\left(X_{1}, X_{2}\right)+u\left(X_{1}+X_{2}\right)$. Then (1) $e_{E F}\left(x_{1}, x_{2}\right) \geq g_{\nu(F)}\left(x_{1}, x_{2}\right)$ for $\left(x_{1}, x_{2}\right) \in F$ since, in $F, x_{1} \geq \xi_{1}$,
$x_{2} \geq \xi_{2}$, and $h=g_{\nu(F)} ;$ and (2) $e\left(x_{1}, x_{2}\right)=g_{\nu(E)}\left(x_{1}, x_{2}\right)$ for $\left(x_{1}, x_{2}\right) \in$ E (where $x_{1}+x_{2} \leq \delta$).

REFERENCES

1. D.S. Arnon, G.E. Collins and S. McCallum, Cylindrical algebraic decomposition I: the basic algorithm, CSD TR-427, Dept. of Computer Sciences, Purdue Univ., 1982.
2. G. Birkhoff and R.S. Pierce, Lattice ordered rings, Anais Acad. Bras. Ci. 28 (1956), 41-69; MR 18, 191.
3. M. Coste, Ensembles semi-algébriques, in Géométrie Algébrique Réelle et Formes Quadratiques, Lecture Notes in Math. 959 (1982), 109-38; Zbl. 498.14102; MR 84e:14023.
4. C.N. Delzell, A finiteness theorem for open semi-algebraic sets, with applications to Hilbert's $17^{\text {th }}$ problem, in Ordered Fields and Real Algebraic Geometry, Contemp. Math. 8 (1982), 79-97; Zbl. 495.14013; MR 83h:12033.
5. - \quad A continuous, constructive solution to Hilbert's $17^{\text {th }}$ problem, Invent. Math. 76 (1984), 365-84; MR 86e:12003. (Also reviewed by Ian Stewart, The power of positive thinking, Nature 315 (1985), 539.)
6. -, Suprema of infima of rational functions, in preparation.
7. M. Henriksen and J.-R. Isbell, Lattice ordered rings and function rings, Pacific J. Math. 12 (1962), 533-66; Zbl. 111, 43; MR 27, 3670.
8. T.-Y. Lam, An introduction to real algebra, Rocky Mountain J. Math. 14 (1984), 767-814; Zbl. 577.14016.
9. J. Madden, The Pierce-Birkhoff conjecture, AMS Abstracts 6(1) (1985), 816-06-452, 12.
10. -, Lattice ordered rings and semialgebraic geometry, AMS Abstracts 7(1) (1986), \# 825-06-103, 16.
11. J. Madden, Pierce-Birkhoff rings, Archiv. der Math., to appear.
12. L. Mahé, On the Pierce-Birkhoff conjecture, Rocky Mountain J. Math. 14 (1984), 983-5; Zbl. 578.41008; MR 86d:14020.

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803

[^0]: Supported in part by NSF and by the Louisiana Board of Regents (LEQSF).
 Copyright © 1989 Rocky Mountain Mathematics Consortium

