THE BEHAVIOR OF THE ν-INVARIANT OF A FIELD OF CHARACTERISTIC 2 UNDER FINITE EXTENSIONS

R. ARAVIRE AND R. BAEZA

Abstract

Let F be a field of characteristic 2. We define $\nu(F)$ as the smallest integer n such that any n-fold quadratic Pfister form over F is isotropic. If L / F is any finite extension, we prove $\nu(F) \leq \nu(L) \leq \nu(F)+1$. The corresponding question for fields of characteristic $\frac{1}{T} 2$ is still open.

1. Introduction. The ν-invariant of a field F of characteristic $\frac{1}{T} 2$ was introduced in [2] as the number $\nu(F)=\operatorname{Min}\left\{n \mid I^{n}(F)\right.$ is torsion free\}, where $I(F)$ denotes the maximal ideal of even dimensional quadratic forms over F in the Witt ring $W(F)$. If F is non real, then $\nu(F)$ is the smallest integer n such that any n-fold Pfister form over F is isotropic. Similarly, if F is a field of characteristic 2, let $W_{q}(F)$ be the Witt group of non singular quadratic forms over F and $W(F)$ the Witt ring of non singular symmetric bilinear forms over F. It is well known that $W_{q}(F)$ is a $W(F)$-module under the operation $b \cdot q(x \otimes y)=b(x, x) q(y)$ for any $x \in V=$ space of the bilinear form $b, y \in W=$ space of the quadratic form q. If $I(F) \subset W(F)$ is the maximal ideal of even-dimensional bilinear forms, then the chain of submodules $W_{q}(F) \supset I W_{q}(F) \supset I^{2} W_{q}(F) \supset \cdots$ plays an important role in the knowledge of the module structure of $W_{q}(F)$. If $a_{1}, \ldots, a_{n} \in F^{*}, b \in F$, then the quadratic n-fold Pfister form $\left\langle 1, a_{1}\right\rangle \ldots\left\langle 1, a_{n}\right\rangle[1, b]$ is a typical generator of $I^{n} W_{q}(F)$, where $\langle 1, a\rangle$ denotes the symmetric bilinear form $U^{2}+a V^{2}$ and $[1, b]$ denotes the quadratic form $X^{2}+X Y+b Y^{2}$. We shall usually write $\left\langle\left\langle a_{1}, \cdots, a_{n}, b\right]\right]$ instead of $\left\langle 1, a_{1}\right\rangle \cdots\left\langle 1, a_{n}\right\rangle[1, b]$. (We refer to $[\mathbf{1}, \mathbf{3}]$ for general facts on quadratic forms in characteristic 2). We define now, as in [2], the ν-invariant of a field F of characteristic 2 as

$$
\begin{equation*}
\nu(F)=\operatorname{Min}\left\{n \mid I^{n} W_{q}(F)=0\right\} \tag{1.1}
\end{equation*}
$$

i.e., $\nu(F)$ is the smallest integer n such that any n-fold Pfister form over F is isotropic.

[^0]In [2] it was conjectured that $\nu(L) \leq \nu(F)+1$ for any non real field F of characteristic $\frac{1}{\tau} 2$ and any finite extension L / F. The authors proved $\nu(L) \leq \nu(F)+[L: F]-1$, and recently Leep (unpublished) has shown the much better estimate $\nu(L) \leq \nu(F)+\left(\log _{2}([L: F] / 3)\right)+1$, which still depends on the degree $[L: F]$. In this paper we consider the same question for fields of characteristic 2 and prove that the above conjecture is true. Our main result is

ThEOREM 1.2. Let F be a field of characteristic 2. Then, for any finite extension L / F,

$$
\nu(F) \leq \nu(L) \leq \nu(F)+1
$$

For the rest of this paper, F will denote a field of characteristic 2 .
2. The separable case. Let L / F be a finite separable extension. In this section we will prove Theorem 1.2 under this assumption. For $a, b \in F$, let $[a, b]$ be the quadratic form $a X^{2}+X Y+b Y^{2}$, so that if $a \neq 0$, we have $[a, b] \cong\langle a\rangle[1, a b]$. Obviously, for $a_{1}, a_{2}, b \in F$, we have in $W_{q}(F)$ the relation $\left[a_{1}+a_{2}, b\right]=\left[a_{1}, b\right]+\left[a_{2}, b\right]$.

LEmma 2.1. For any $a, b, c \in F$ with $a, b, a+b \neq 0$, we have in $W_{q}(F)$

$$
\langle 1, a+b\rangle[1, c]=\langle 1, a\rangle\left[1, \frac{a c}{a+b}\right]+\langle 1, b\rangle\left[1, \frac{b c}{a+b}\right]
$$

Proof. We have $\langle 1, a+b\rangle[1, c]=[1, c] \perp\langle a+b\rangle[1, c]=[1, c] \perp$ $\left[a+b, \frac{c}{a+b}\right]$. But in $W_{q}(F)$,

$$
\begin{aligned}
& {\left[a+b, \frac{c}{a+b}\right]} \\
& =\left[a, \frac{c}{a+b}\right]+\left[b, \frac{c}{a+b}\right] \\
& =\langle a\rangle\left[1, \frac{a c}{a+b}\right]+\langle b\rangle\left[1, \frac{b c}{a+b}\right] \\
& =\left[1, \frac{a c}{a+b}+\frac{b c}{a+b}\right]+\langle 1, a\rangle\left[1, \frac{a c}{a+b}\right]+\langle 1, b\rangle\left[1, \frac{b c}{a+b}\right] \\
& =[1, c]+\langle 1, a\rangle\left[1, \frac{a c}{a+b}\right]+\langle 1, b\rangle\left[1, \frac{b c}{a+b}\right]
\end{aligned}
$$

Inserting this in the first relation, the lemma follows.

COROLLARY 2.2. Let E / F be any extension, $\alpha \in E$ and $\beta=$ $b_{0}+b_{1} \alpha^{2}+\cdots+b_{m} \alpha^{2 m} \neq 0$ with $b_{0}, \cdots, b_{m} \in F$. Then, for any $\gamma \in E$, we have in $W_{q}(E)$

$$
\langle 1, \beta\rangle[1, \gamma]=\sum_{i=1}^{m}{ }^{\prime}\left\langle 1, b_{i}\right\rangle\left[1, \gamma_{i}\right]
$$

with certain $\gamma_{i} \in E$ (। means that the sum is taken over all i with $\left.b_{i} \neq 0\right)$.

Now for the finite separable extension L / F we have $L=F\left(\alpha^{2}\right)$ with some $\alpha \in L$, so that $1, \alpha^{2}, \cdots, \alpha^{2(n-1)} \quad(n=[L: F])$ is a basis of L over F. Thus any element $\beta \in L$ has the form $\beta=$ $b_{0}+b_{1} \alpha^{2}+\cdots+b_{n-1} \alpha^{2(n-1)}$ with $b_{0}, \cdots, b_{n-1} \in F$. We conclude, from Corollary 2.2,

Proposition 2.3. Let L / F be a finite separable extension. For any $\beta \in L^{*}, \gamma \in L$ there exist $b_{1}, \cdots, b_{m} \in F^{*}, \gamma_{1}, \cdots, \gamma_{m} \in L(m \geq 1)$ such that

$$
\langle 1, \beta\rangle[1, \gamma]=\sum_{i=1}^{m}\left\langle 1, b_{i}\right\rangle\left[1, \gamma_{i}\right]
$$

in $W_{q}(L)$.
Iterating this result we obtain

Corollary 2.4. Let L / F be a finite separable extension. Then, for any $n \geq 0, I^{n} W_{q}(L)$ is generated by the Pfister forms $\left\langle\left\langle a_{1}, \cdots, a_{n}, \gamma\right]\right]$ with $a_{1}, \cdots, a_{n} \in F^{*}, \gamma \in L$.

Let $s: L \rightarrow F$ be any trace map, i.e., s is an F-linear map $\neq 0$. For any quadratic form q over L, let $s_{*}(q)=s \circ q$ be the transfer of q. s_{*} defines a homomorphism $s_{*}: W_{q}(L) \rightarrow W_{q}(F)$, which satisfies the usual Frobenius reciprocity law. We obtain, directly from Corollary 2.4,

Corollary 2.5. Let L / F be a finite separable extension and $s: L \rightarrow F$ a trace map. Then, for any $n \geq 0$,

$$
s_{*}\left[I^{n} W_{q}(L)\right] \subseteq I^{n} W_{q}(F)
$$

REMARK 2.6. If $\operatorname{ch}(F) \neq 2$, Corollary 2.5 is a well known result of Arason, but the proof in this case uses the Milnor-Scharlau exact sequence. Thus, for fields of characteristic 2, we have a completely elementary proof of this fact.

The above result can be improved. In fact we have

THEOREM 2.7. Let L / F be a finite separable extension and $s: L \rightarrow F$ a trace map. Then, for any $n \geq 0$, we have

$$
s_{*}\left[I^{n} W_{q}(L)\right]=I^{n} W_{q}(F)
$$

Proof. From Corollaries 2.4, 2.5 and the Frobenius reciprocity law, it follows that we only need to consider the case $n=0$, i.e., we must show that $s_{*}: W_{q}(L) \rightarrow W_{q}(F)$ is onto. Notice that this fact does not depend on the particular choice of the trace map s. We now consider several cases
(i) $[L: F]=2$, i.e., $L=F(\alpha)$ with $\alpha^{2}+\alpha=a \in F$. Using Frobenius reciprocity it suffices to show that $[1, b] \in \operatorname{Im}\left(s_{*}\right)$ for all $b \in F$. This
follows from the direct computation $s_{*}\left(\left[1,(1+\alpha)^{2} b\right]\right)=[1, b]$, where $s=\operatorname{Tr}_{L / F}$.
(ii) $[L: F]$ odd. Let $L=F(\alpha)$ and define $s: L \rightarrow F$ by $s(1)$ $=1, s(\alpha)=\cdots=s\left(\alpha^{n-1}\right)=0, n=[L: F]$. From Frobenius reciprocity law we get $s_{*}(q \otimes L)=s_{*}(\langle 1\rangle) \cdot q$ for any $q \in W_{q}(F)$. But an easy computation shows that $s_{*}(\langle 1\rangle)=\langle 1\rangle$ in $W(F)$, so that $s_{*}(q \otimes L)=q$, i.e., s_{*} is onto.
(iii) L / F is Galois. According to (ii) we may assume that $[L: F]$ is even. Let $H<G=\operatorname{Gal}(L / F)$ be a 2-Sylow subgroup and denote by K the fixed field of H. Let $s_{1}: L \rightarrow K, s_{2}: K \rightarrow F$ be trace maps, so that $s=s_{2} \circ s_{1} \frac{1}{\tau} 0$, i.e., $s: L \rightarrow F$ is a trace map. Since $s_{*}=s_{2 *} \circ s_{1 *}$, and $s_{2 *}$ is onto by (ii), it suffices to show that $s_{1 *}$ is onto. But $H=\operatorname{Gal}(L / K)$ is a 2 -group, so that we can find a chain of fields $K=K_{0} \subset K_{1} \subset \cdots \subset K_{r}=L$ with $\left[K_{i}: K_{i-1}\right]=2$. We choose trace maps $t_{i}: K_{i} \rightarrow K_{i-1}$ such that $t=t_{1} \circ \cdots \circ t_{r} \neq 0$, i.e., $t: L \rightarrow K$ is a trace map. Since $t_{*}=t_{1 *} \circ \cdots \circ t_{r *}$ and any $t_{i *}$ is onto by (i), we conclude that t_{*} is onto, and hence $s_{1 *}$, too. This shows that s_{*} is onto.
(iv) Let L / F be any finite separable extension. Choose a finite extension N / L such that N / F is Galois, and trace maps $s_{1}: N \rightarrow L$, $s: L \rightarrow F$ with $s \circ s_{1} \neq 0$. By part (iii) $\left(s \circ s_{1}\right)_{*}=s_{*} \circ s_{1 *}$ is onto, and therefore s_{*} is also onto. This concludes the proof of Theorem 2.7. ם

Corollary 2.8. Let L / F be a finite separable extension. Then $\nu(F) \leq \nu(L)$.

Proof of Theorem (1.2) for separable extensions. Let L / F be a finite separable extension. We will show $\nu(L) \leq \nu(F)+1$. Let $L=F\left(\alpha^{2}\right)$, so that $1, \alpha^{2}, \cdots, \alpha^{2(n-1)}$ is a basis of L over F. For any $a \in F^{*}, \gamma \in L$ let us consider the quadratic form $\langle 1, a\rangle[1, \gamma] \frac{1}{\tau}$ 0 . We can write $\langle 1, a\rangle[1, \gamma]=\langle 1, a\rangle\left[1,\left(\gamma\left(\alpha^{2}+a\right) \cdots\left(\alpha^{2}+a^{2 n-3}\right)\right) /\right.$ $\left.\left(\left(\alpha^{2}+a\right) \cdots\left(\alpha^{2}+a^{2 n-3}\right)\right)\right]$, where we consider only factors of the form $\alpha^{2}+a^{2 i-1}, 1 \leq i \leq n-1$. We may assume $a^{2 i-1} \frac{1}{\tau} a^{2 j-1}$ for all $i \frac{1}{\tau} j$, since otherwise we get $a^{2 k-1}=1$ for some integer k, because $\operatorname{Ch} F=2$, and hence $\langle a\rangle=\langle 1\rangle$, i.e., $\langle 1, a\rangle[1, \gamma]=0$. Let $\gamma\left(\alpha^{2}+a\right) \cdots\left(\alpha^{2}+a^{2 n-3}\right)=b_{0}+b_{1} \alpha^{2}+\cdots+b_{n-1} \alpha^{2(n-1)}$ with
$b_{0}, b_{1}, \cdots, b_{n-1} \in F$. Because of the above assumption we have the following decomposition in partial fractions

$$
\frac{b_{0}+b_{1} \alpha^{2}+\cdots+b_{n-1} \alpha^{2(n-1)}}{\left(\alpha^{2}+a\right) \cdots\left(\alpha^{2}+a^{2 n-3}\right)}=c_{0}+\frac{c_{1}}{\alpha^{2}+a}+\cdots+\frac{c_{n-1}}{\alpha^{2}+a^{2 n-3}}
$$

with $c_{0}, c_{1}, \cdots, c_{n-1} \in F$. (We have $c_{0}=b_{n-1}$ and the determinant of the linear system of equations defining c_{1}, \cdots, c_{n-1} has the form $a^{r}(1+a)^{s}$ for some $r, s \geq 0$, which is $\frac{1}{\tau} 0$ since we assume $\langle a\rangle \neq\langle 1\rangle$). Inserting the above expression in the form $\langle 1, a\rangle[1, \gamma]$ we obtain in $W_{q}(L)$

$$
\langle 1, a\rangle[1, \gamma]=\langle 1, a\rangle\left[1, c_{0}\right]+\sum_{i=1}^{n-1}\langle 1, a\rangle\left[1, \frac{c_{i}}{\alpha^{2}+a^{2 i-1}}\right] .
$$

But using lemma (2.1) we have

$$
\begin{aligned}
\left\langle 1, \alpha^{2}+a^{2 i-1}\right\rangle\left[1, \frac{c_{i}}{a^{2 i-1}}\right]= & \left\langle 1, a^{2 i-1}\right\rangle\left[1, \frac{c_{i} a^{2 i-1}}{a^{2 i-1}\left(\alpha^{2}+a^{2 i-1}\right)}\right] \\
& +\left\langle 1, \alpha^{2}\right\rangle\left[1, \frac{c_{i} \alpha^{2}}{a^{2 i-1}\left(\alpha^{2}+a^{2 i-1}\right)}\right] \\
= & \langle 1, a\rangle\left[1, \frac{c_{i}}{\alpha^{2}+a^{2 i-1}}\right]
\end{aligned}
$$

in $W_{q}(L)$, so it follows that

$$
\begin{equation*}
\langle 1, a\rangle[1, \gamma]=\langle 1, a\rangle\left[1, c_{0}\right]+\sum_{i=1}^{n-1}\left\langle 1, \alpha^{2}+a^{2 i-1}\right\rangle\left[1, \frac{c_{i}}{a^{2 i-1}}\right] \tag{2.9}
\end{equation*}
$$

Therefore, for any $m \geq 0, a_{1}, \cdots, a_{m+1} \in F^{*}, \gamma \in L$, we obtain in $W_{q}(L)$ applying (2.9) to $\left\langle 1, a_{m+1}\right\rangle[1, \gamma]$,

$$
\begin{aligned}
& \left\langle\left\langle a_{1}, \cdots, a_{m+1}, \gamma\right]\right] \\
& =\left\langle\left\langle a_{1}, \cdots, a_{m+1}, c_{0}\right]\right]+\sum_{i=1}^{n-1}\left\langle 1, \alpha^{2}+a_{m+1}^{2 i-1}\right\rangle\left\langle\left\langle a_{1}, \cdots, a_{m}, \frac{c_{i}}{a_{m+1}^{2 i-1}}\right]\right]
\end{aligned}
$$

The proof of Theorem 1.2 is now obvious. If $I^{m} W_{q}(F)=0$, then, from the above formula and from the fact that $I^{m+1} W_{q}(L)$ is generated
by the forms $\left\langle\left\langle a_{1}, \cdots, a_{m+1}, \gamma\right]\right]$ with $a_{1}, \cdots, a_{m+1} \in F^{*}, \gamma \in L$ (see Corollary 2.4), it follows that $I^{m+1} W_{q}(L)=0$, i.e., $\nu(L) \leq \nu(F)+1$.

In fact we have shown the following general fact.

Theorem 2.10. Let L / F be a finite separable extension. Then

$$
I^{m+1} W_{q}(L)=I(L) i_{*}\left[I^{m} W_{q}(F)\right]
$$

for all $m \geq 0$, where $i_{*}\left[I^{m} W_{q}(F)\right]$ is the image of $I^{m} W_{q}(F)$ under the natural homomorphism $i_{*}: W_{q}(F) \rightarrow W_{q}(L)$.

REMARK 2.11. It is easy to show that, for any quadratic separable extension L / F the equality $\nu(L)=\nu(F)$ holds. We just need to prove $\nu(L) \leq \nu(F)$. Assume $I^{m} W_{q}(F)=0$. Let $L=F(\alpha), \alpha^{2}+\alpha=a \in F$ and define $s: L \rightarrow F$ the trace map given by $s(1)=0, s(\alpha)=1$, i.e., $s=\operatorname{Tr} L / F$. For any m-fold Pfister form over L, we have $s_{*}(q) \in I^{m} W_{q}(F)=0$, i.e., $q \in \operatorname{Ker}\left(i_{*}\right)$. Hence $q \cong q_{0} \otimes L$ with some form q_{0} defined over F (see $[\mathbf{1}, \mathrm{V}(4.10)]$), and hence, using $[\mathbf{1}$, (V, 4.14)], we conclude $q \cong q_{1} \otimes L$ with an m-fold Pfister form defined over F, which by assumption is 0 in $W_{q}(F)$. This shows $I^{m} W_{q}(L)=0$, i.e., $\nu(L) \leq \nu(F)$.
3. The purely inseparable case. The main result of this section is

THEOREM 3.1. Let L / F be a finite purely inseparable extension. Then $\nu(F)=\nu(L)$.

Since any finite purely inseparable extension L / F admits a chain of subfields $F=F_{0} \subset F_{1} \subset \cdots \subset F_{m}=L$ with $F_{i}=F_{i-1}\left(\sqrt{a_{i}}\right), a_{i}$ $\in F_{i-1}^{*}$, to prove Theorem 3.1 it suffices to consider the case $L=$ $F(\sqrt{l}), l \in F^{*}$. Let us write $L=F(\alpha), \alpha^{2}=l$. Then we have

Lemma 3.2. Any n-fold Pfister form $q=\left\langle\left\langle\alpha_{1}, \cdots, \alpha_{n}, \beta\right]\right]$ over L is a linear combination in $W_{q}(L)$ of n-fold Pfister forms of the type
(i) $\left\langle\left\langle a_{1}, \cdots, a_{n}, b\right]\right]$ with $a_{1}, \cdots, a_{n} b \in F^{*}$
(ii) $\left\langle\left\langle\alpha, a_{1}, \cdots, a_{n-1}, b\right]\right]$ with $a_{1}, \cdots, a_{n-1}, b \in F^{*}$.

Proof. Let us consider first a 1 -fold Pfister form $q=\langle 1, \beta\rangle[1, \gamma]$ over L. Since $\gamma \equiv \gamma^{2}(\bmod \rho L)$, where $\rho L=\left\{x^{2}+x \mid x \in L\right\}$ and $\gamma^{2} \in F$ for all $\gamma \in L$, we may assume $\gamma=c \in F$. Let $\beta=a+b \alpha, a, b \in F$. From Lemma 2.1 we get $q=\langle 1, a+b \alpha\rangle[1, c]=$ $\langle 1, a\rangle[1, a c / \beta]+\langle 1, b \alpha\rangle[1, c b / \beta]=\langle 1, a\rangle\left[1, c_{1}\right]+\langle 1, b \alpha\rangle\left[1, c_{2}\right]$ with some $c_{1}, c_{2} \in F$. Hence $q=\langle 1, a\rangle\left[1, c_{1}\right]+\langle b\rangle\langle 1, b\rangle\left[1, c_{2}\right]+\langle b\rangle\langle 1, \alpha\rangle\left[1, c_{2}\right]$ in $W_{q}(L)$. Since $\langle 1, \alpha\rangle^{2}=0$ in $W(F)$, the lemma follows easily by induction.

We proceed now to prove the theorem. As noticed above, we may assume $L=F(\alpha), \alpha^{2}=l \in F^{*}$. Suppose first $I^{n} W_{q}(F)=0$. We will show $I^{n} W_{q}(L)=0$. According to Lemma 3.2 we just need to consider forms of type (i), (ii), but since $I^{n} W_{q}(F)=0$, then all forms of type (i) are 0 .

Take a form $q=\left\langle\left\langle\alpha, a_{1}, \cdots, a_{n-1} b\right]\right\}$ of type (ii). Since $q=$ $\left\langle\left\langle a_{1}, \cdots, a_{n-1}, b\right]\right] \perp\langle\alpha\rangle\left\langle\left\langle a_{1}, \cdots, a_{n-1} b\right]\right]$, it suffices to show that any form $\left\langle\left\langle a_{1}, \cdots, a_{n-1}, b\right]\right]$ does represent α over L, because then q is isotropic and hence also hyperbolic over L. Notice that $I^{n} W_{q}(F)=0$ implies that $p=\left\langle\left\langle a_{1}, \cdots, a_{n-1}, b\right]\right]$ represents any element of F^{*}. We set $\varphi=\left\langle\left\langle a_{1}, \cdots, a_{n-1}\right\rangle\right\rangle=\left\langle 1, a_{1}\right\rangle \cdots\left\langle 1, a_{n-1}\right\rangle$, and $[1, b]=F e+F f$ with $p(e)=1, p(f)=b, b_{p}(e, f)=1$, so that $p=\varphi \cdot[1, b]=\varphi \otimes e \oplus \varphi \otimes f$. Any vector of p has the form $z=x \otimes e+y \otimes f$ with $x, y \in \varphi$ and $p(z)=\varphi(x)+\varphi(x, y)+\varphi(y) b$. Over L, for $x, y \in \varphi \otimes L$ we write $x=x_{0}+x_{1} \alpha, y=y_{0}+y_{1} \alpha$ with $x_{0}, x_{1}, y_{0}, y_{1} \in \varphi$ defined over F. Since φ is written in diagonal form we have $\varphi(x)=\varphi\left(x_{0}\right)+l \varphi\left(x_{1}\right), \varphi(y)$ $=\varphi\left(y_{0}\right)+l \varphi\left(y_{1}\right)$ so that, for $z=x \otimes e+y \otimes f \in p \otimes L$, we get

$$
\begin{aligned}
p(z)= & \varphi\left(x_{0}\right)+\varphi\left(x_{0}, y_{0}\right)+\varphi\left(y_{0}\right) b+l\left[\varphi\left(x_{1}\right)+\varphi\left(x_{1}, y_{1}\right)+\varphi\left(y_{1}\right) b\right] \\
& +\alpha\left[\varphi\left(x_{0}, y_{1}\right)+\varphi\left(x_{1}, y_{0}\right)\right] \\
p(z)= & p\left(x_{0} \otimes e+y_{0} \otimes f\right)+p\left(x_{1} \otimes e+y_{1} \otimes f\right) l \\
& +\alpha\left[\varphi\left(x_{0}, y_{1}\right)+\varphi\left(x_{1}, y_{0}\right)\right] .
\end{aligned}
$$

Choose $x_{1}=(1,0, \cdots, 0), y_{1}=0$, i.e., $p\left(x_{1} \otimes e+y_{1} \otimes f\right)=1$. Since p represents all elements of F^{*}, we can find $x_{0}, y_{0} \in \varphi$ such that $p\left(x_{0} \otimes e+y_{0} \otimes f\right)=l$. Setting $x=x_{0}+x_{1} \alpha, y=y_{0}+y_{1} \alpha=y_{0}$, we obtain, for $z=x \otimes e+y \otimes f \in p \otimes L, z \frac{1}{\tau} 0$,

$$
\begin{equation*}
p(z)=\alpha y_{0,1} \tag{3.3}
\end{equation*}
$$

where $y_{0,1}$ is the first coordinate of y_{0}. If $y_{0,1}=0$, it follows that p is isotropic over L, and hence it represents α over L. If $y_{0,1} \frac{1}{\tau} 0$, then $y_{0,1}$ is represented by p over F, and since p is a Pfister form, it follows from (3.3), that p represents α over L. This proves $I^{n} W_{q}(L)=0$. Thus we have $\nu(L) \leq \nu(F)$.
We now prove the converse, i.e., $\nu(F) \leq \nu(L)$. To this end we use

Lemma 3.4. Let $L=F(\alpha), \alpha^{2}=l \in F^{*}$. Assume $I^{n} W_{q}(L)=0$. Then
(i) Any n-fold Pfister form over F is of the type $\left\langle\left\langle l, a_{1}, \cdots, a_{n-1}, b\right]\right]$ with $a_{1}, \cdots, a_{n-1}, b \in F^{*}$
(ii) Any ($n-1$)-fold Pfister form over F is of the type $\left\langle\left\langle b_{1}, \cdots, b_{n-1}\right.\right.$, $\left.\left.l c^{2}\right]\right]$ with $b_{1}, \cdots, b_{n-1}, c \in F^{*}$.
Let us proceed with the proof of $\nu(F) \leq \nu(L)$. Assume $I^{n} W_{q}(L)$ $=0$. Then any n-fold Pfister form over F has the form $q=$ $\left\langle\left\langle l, a_{1}, \cdots, a_{n-1}, b\right]\right\}$ (see Lemma 3.4(i)). Now using Lemma 3.4(ii) we can write $\left\langle\left\langle a_{1}, \cdots, a_{n-1}, b\right]\right\} \cong\left\langle\left\langle b_{1}, \cdots, b_{n-1}, l c^{2}\right]\right]$ with some $c \in F^{*}$, i.e., $q=\left\langle\left\langle b_{1}, \cdots, b_{n-1}\right\rangle\right\rangle \cdot\langle 1, l\rangle\left[1, l c^{2}\right]$. But obviously $\langle 1, l\rangle\left[1, l c^{2}\right]$ is isotropic, so that $q=0$ in $W_{q}(F)$. This proves $I^{n} W_{q}(F)=0$, i.e., $\nu(F) \leq \nu(L)$, and Theorem 3.1 follows.

For the proof of Lemma 3.4 we need the following general fact about Pfister forms over fields of characteristic 2.

Proposition 3.5. Let q be an n-fold Pfister form over F.
(i) lf q contains a subform $[1, a], a \in F$, then $q \cong\left\langle\left\langle a_{1}, \cdots, a_{n}, a\right]\right]$ for some $a_{1}, \cdots, a_{n} \in F^{*}$.
(ii) Write $q=\varphi \otimes[1, b]$ with $\varphi=\left\langle\left\langle b_{1}, \cdots, b_{n}\right\rangle\right\rangle=\langle 1\rangle \perp \varphi^{\prime}$, i.e., $q=[1, b] \perp \varphi^{\prime} \cdot[1, b]$. If $l \in F^{*}$ is represented by $\varphi^{\prime} \cdot[1, b]$, then $q \cong\left\langle\left\langle l, a_{1}, \cdots, a_{n-1}, c\right]\right]$ with some $a_{1}, \cdots, a_{n-1} \in F^{*}$.

Proof. Part (i) has been proved in [1, Chapter V] in a much more general setting, so that we omit the proof here. Let us prove (ii). Assume $n=1, q=\left\langle 1, b_{1}\right\rangle[1, b]=[1, b] \perp\left\langle b_{1}\right\rangle[1, b]$. If l is represented by $\left\langle b_{1}\right\rangle[1, b], l=b_{1}\left(x^{2}+x y+b y^{2}\right)$, and since $\left\langle x^{2}+x y+b y^{2}\right\rangle[1, b] \cong[1, b]$, we
get $q \cong[1, b] \perp\left\langle b_{1}\left(x^{2}+x y+b y^{2}\right)\right\rangle[1, b]=[1, b] \perp\langle l\rangle[1, b]=\langle 1, l\rangle[1, b]$. Assume now $n>1$. We use induction with respect to n. Write $\varphi=\left\langle 1, b_{1}\right\rangle \cdot \psi, \psi=\left\langle\left\langle b_{2}, \cdots, b_{n}\right\rangle\right\rangle$. Hence $\varphi^{\prime}=\psi^{\prime} \perp\left\langle b_{1}\right\rangle \psi, q=[1, b] \perp$ $\psi^{\prime} \cdot[1, b] \perp\left\langle b_{1}\right\rangle \psi[1, b]$, i.e., $\varphi^{\prime}[1, b]=\psi^{\prime}[1, b] \perp\left\langle b_{1}\right\rangle \psi[1, b]$. If $l \in F^{*}$ is represented by $\varphi^{\prime}[1, b]$, we can write $l=c+b_{1} d$ with c represented by $\psi^{\prime}[1, b]$ and d represented by $\psi[1, b]$ (if $\frac{1}{T} 0$). (We may assume $c, d \frac{1}{T} 0$). By induction we have $\psi[1, b] \cong\langle 1, c\rangle \tau\left[1, b^{\prime}\right]$ with some $(n-2)$-fold bilinear Pfister form $\tau, b^{\prime} \in F$. Moreover $\langle d\rangle \cdot \psi[1, b] \cong \psi[1, b]$. Therefore

$$
\begin{aligned}
& q=\left\langle 1, b_{1}\right\rangle \psi[1, b]=\psi[1, b] \perp\left\langle b_{1}\right\rangle \psi[1, b] \\
& q \cong\langle 1, c\rangle \tau\left[1, b^{\prime}\right] \perp\left\langle b_{1} d\right\rangle\langle 1, c\rangle \tau\left[1, b^{\prime}\right] \\
& q \cong\langle 1, c\rangle\left\langle 1, b_{1} d\right\rangle \tau\left[1, b^{\prime}\right]
\end{aligned}
$$

But $\left.\langle 1, c\rangle\left\langle 1, b_{1} d\right\rangle=\left\langle 1, c, b_{1} d, c b_{1} d\right\rangle \cong\left\langle 1, c+b_{1} d, x, x(c+b, d)\right\rangle\right\rangle \cong$ $\langle 1, l\rangle\langle 1, x\rangle$, i.e., $q=\langle 1, l\rangle\langle 1, x\rangle \tau\left[1, b^{\prime}\right]$. This proves (ii).

Now we prove Lemma 3.4. Let us assume $I^{n} W_{q}(L)=0$. Let $q=\left\langle\left\langle a_{1}, \cdots, a_{n}, b\right]\right]=\varphi \cdot[1, b]$ be any n-fold Pfister form over F. Since $q \otimes L=0$, we can find nonzero vectors $x=x_{0}+x_{1} \alpha, y=y_{0}+y_{1} \alpha \in \varphi \otimes L$ (see notation above) such that

$$
q(x \otimes e+y \otimes f)=0
$$

i.e.,

$$
\begin{array}{r}
q\left(x_{0} \otimes e+y_{0} \otimes f\right)+l q\left(x_{1} \otimes e+y_{1} \otimes f\right)=0 \\
b_{q}\left(x_{0} \otimes e+y_{0} \otimes f, x_{1} \otimes e+y_{1} \otimes f\right)=0
\end{array}
$$

Let $u=x_{0} \otimes e+y_{1} \otimes f, v=x_{1} \otimes e+y_{1} \otimes f \in q$. Then $q(u)+l q(v)=0$, $b_{q}(u, v)=0$. Of course we may assume $q(u), q(v) \frac{1}{\tau} 0$, because otherwise q would be isotropic over F, and hence $q=0$. Since $2=0$, we can find vectors $u_{1}, v_{1} \in q$ with $b_{q}\left(u, u_{1}\right)=1, b_{q}\left(v, v_{1}\right)=1$, and $\left\langle u, u_{1}\right\rangle \perp\left\langle v, v_{1}\right\rangle$. Thus we have $\left\langle u, u_{1}\right\rangle \perp\left\langle v, v_{1}\right\rangle \subseteq q$. Let $a=q(v), a^{\prime}=q\left(v_{1}\right), a^{\prime \prime}=q\left(u_{1}\right)$. Then $\left[a, a^{\prime}\right] \perp\left[a l, a^{\prime \prime}\right] \subseteq q$, i.e., $\langle a\rangle\left[1, a_{1}\right] \perp\langle a l\rangle\left[1, a_{2}\right] \subseteq q$ for some $a_{1}, a_{2} \in F$. But $a=q(v)$ is represented by q, so that $\langle a\rangle q \cong q$, and therefore $\left[1, a_{1}\right] \perp\langle l\rangle\left[1, a_{2}\right] \subseteq q$. In particular $\left[1, a_{1}\right] \subset q$, so that, by Proposition $3.5(\mathrm{i})$, we have $q=\psi \cdot\left[1, a_{1}\right]$ with some n-fold bilinear Pfister form ψ. Since $q=$ $\left[1, a_{1}\right] \perp \psi^{\prime}\left[1, a_{1}\right]$, it follows by cancellation that $\langle l\rangle\left[1, a_{2}\right] \subseteq \psi^{\prime}\left[1, a_{1}\right]$, and hence l is represented by $\psi^{\prime}\left[1, a_{1}\right]$. Using Proposition 3.5 (ii) we
conclude $q \cong\left\langle\left\langle l, b_{1}, \cdots, b_{n-1}, b^{\prime}\right]\right\}$ for some $b_{1}, \cdots, b_{n-1}, b^{\prime} \in F^{*}$. This proves Lemma 3.4 (i).

Consider an $(n-1)$-fold Pfister form over $F, q=\left\langle\left\langle a_{1}, \cdots, a_{n-1}, b\right]\right]$ $=\varphi \cdot[1, b], \varphi=\left\langle\left\langle a_{1}, \cdots, a_{n-1}\right\rangle\right\rangle$. Since $I^{n} W_{q}(L)=0$, it follows that $\langle 1, \alpha\rangle q=0$ over L, i.e., q represents α over L. Therefore there exist $x=x_{0}+x_{1} \alpha, y=y_{0}+y_{1} \alpha \in \varphi \otimes L$ such that $q(x \otimes e+y \otimes f)=\alpha$.
This means $q\left(x_{0} \otimes e+y_{0} \otimes f\right)+l q\left(x_{1} \otimes e+y_{1} \otimes f\right)=0, b_{q}\left(x_{0} \otimes e\right.$ $\left.+y_{0} \otimes f, x_{1} \otimes e+y_{1} \otimes f\right)=1$. Thus we have $u, v \in q$ with $q(u)+$ $l q(v)=0, b_{q}(u, v)=1$. Hence $\langle u, v\rangle \subseteq q$ and $\langle u, v\rangle=[q(v), l q(v)]=$ $\langle q(v)\rangle\left[1, l q(v)^{2}\right]$. But $\langle q(v)\rangle \cdot q \cong q$, so that $\left[1, l c^{2}\right] \subseteq q$, where $c=q(v)$. Now we apply Proposition $3.5(\mathrm{i})$ to conclude $q \cong\left\langle\left\langle b_{1}, \cdots, b_{n-1}, l c^{2}\right]\right]$, i.e., Lemma 3.4(ii).
4. Proof of Theorem 1.2. Let L / F be a finite extension. Let F_{s} be the separable closure of F in $L, F \subset F_{s} \subset L$. Hence L / F_{s} is purely inseparable, and therefore (see Theorem 3.1) $\nu(L)=\nu\left(F_{s}\right)$. According to the results of $\S 2$ we have $\nu(F) \leq \nu\left(F_{s}\right) \leq \nu(F)+1$, i.e., we have $\nu(F) \leq \nu(L) \leq \nu(F)+1$.
5. An example. We will now construct a field F and a separable extension L / F with $[L: F]=3$ and $\nu(L)=\nu(F)+1$. In fact, for any n, it is possible to find a field F and a separable finite extension L / F with $\nu(F)=n, \nu(L)=n+1$, but we will just consider the simplest case $n=0$. Let F be the quadratic separable closure of $\mathbf{F}_{2}(X)$. Obviously $\nu(F)=0$. Since $W^{3}+W+1 \in F[W]$ is irreducible, let $L=F(\beta)$ with $\beta^{3}=\beta+1$. We want to show $\nu(L)=1$, which is equivalent with $L \neq \rho L$. We assert $X \beta^{2} \in \rho L$. Otherwise there exist $y_{0}, y_{1}, y_{2} \in F$ with $\rho\left(y_{0}+y_{1} \beta+y_{2} \beta^{2}\right)=x \beta^{2}$, i.e., $y_{0}+y_{0}^{2}=0, y_{1}+y_{2}^{2}=0, y_{1}^{2}+y_{2}+y_{2}^{2}=X$. Hence $Y^{4}+Y^{2}+Y=X$ has a solution in F. Let us show that this is impossible. Obviously there is no solution in $\mathbf{F}_{2}(X)$. Assume that $\mathbf{F}_{2}(X) \subset E \subset F$ is a subfield such that $Y^{4}+Y^{2}+Y=X$ has no solution in E. We will show that there is no solution in any quadratic separable extension $E(\alpha), \alpha^{2}+\alpha=t \in E$ of E. Otherwise let $u+v \alpha(u, v \in E)$ be a solution. It follows that $u^{4}+u^{2}+u+v^{4} t^{2}+v^{4} t+v^{2} t=X, v^{4}+v^{2}+v=0$. But $v^{3}+v+1=0$ has no solution in F, and hence $v=0$. Then $u^{4}+u^{2}+u=X$ in E, which is a contradiction. We conclude by induction, that there is no solution of $Y^{4}+Y^{2}+Y=X$ in F, and
therefore we have $\nu(L)=1$.

Acknowledgement. The authors thank the referee for several helpful comments.

REFERENCES

1. R. Baeza, Quadratic Forms Over Semilocal Rings, Springer Lecture Notes Vol. 655, Springer Verlag, Berlin-Heidelberg-New York, 1978.
2. R. Elman and T.Y. Lam, Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), 21-42.
3. C.H. Sah, Symmetric bilinear forms and quadratic forms. J. of Algebra 20 (1972), 144-160.

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile. Casilla 653, Santiago, Chile.

[^0]: Supported partially by CHI-84-004, PNUD and FONDECYT.
 Received by the editors on October 29, 1986 and in revised form on April 15, 1987.

