THE BEHAVIOR OF THE ν -INVARIANT OF A FIELD **OF CHARACTERISTIC 2 UNDER FINITE EXTENSIONS**

R. ARAVIRE AND R. BAEZA

ABSTRACT. Let F be a field of characteristic 2. We define $\nu(F)$ as the smallest integer n such that any n-fold quadratic Pfister form over F is isotropic. If L/F is any finite extension, we prove $\nu(F) \leq \nu(L) \leq \nu(F) + 1$. The corresponding question for fields of characteristic $\neq 2$ is still open.

1. Introduction. The ν -invariant of a field F of characteristic $\neq 2$ was introduced in [2] as the number $\nu(F) = \text{Min} \{n \mid I^n(F) \}$ is torsion free}, where I(F) denotes the maximal ideal of even dimensional quadratic forms over F in the Witt ring W(F). If F is non real, then $\nu(F)$ is the smallest integer n such that any n-fold Pfister form over F is isotropic. Similarly, if F is a field of characteristic 2, let $W_q(F)$ be the Witt group of non singular quadratic forms over F and W(F) the Witt ring of non singular symmetric bilinear forms over F. It is well known that $W_q(F)$ is a W(F)-module under the operation $b \cdot q(x \otimes y) = b(x, x)q(y)$ for any $x \in V$ = space of the bilinear form b, $y \in W$ = space of the quadratic form q. If $I(F) \subset W(F)$ is the maximal ideal of even-dimensional bilinear forms, then the chain of submodules $W_q(F) \supset IW_q(F) \supset I^2W_q(F) \supset \cdots$ plays an important role in the knowledge of the module structure of $W_q(F)$. If $a_1, \ldots, a_n \in F^*$, $b \in F$, then the quadratic *n*-fold Pfister form $\langle 1, a_1 \rangle \dots \langle 1, a_n \rangle [1, b]$ is a typical generator of $I^n W_q(F)$, where $\langle 1, a \rangle$ denotes the symmetric bilinear form $U^2 + aV^2$ and [1,b] denotes the quadratic form $X^2 + XY + bY^2$. We shall usually write $\langle \langle a_1, \cdots, a_n, b \rangle$ instead of $\langle 1, a_1 \rangle \cdots \langle 1, a_n \rangle [1, b]$. (We refer to [1, 3] for general facts on quadratic forms in characteristic 2). We define now, as in [2], the ν -invariant of a field F of characteristic 2 as

(1.1)
$$\nu(F) = \operatorname{Min} \{ n \, | \, I^n W_q(F) = 0 \},$$

i.e., $\nu(F)$ is the smallest integer n such that any n-fold Pfister form over F is isotropic.

Supported partially by CHI-84-004, PNUD and FONDECYT. Received by the editors on October 29, 1986 and in revised form on April 15, 1987.

In [2] it was conjectured that $\nu(L) \leq \nu(F) + 1$ for any non-real field F of characteristic $\neq 2$ and any finite extension L/F. The authors proved $\nu(L) \leq \nu(F) + [L:F] - 1$, and recently Leep (unpublished) has shown the much better estimate $\nu(L) \leq \nu(F) + (\log_2([L:F]/3)) + 1$, which still depends on the degree [L:F]. In this paper we consider the same question for fields of characteristic 2 and prove that the above conjecture is true. Our main result is

THEOREM 1.2. Let F be a field of characteristic 2. Then, for any finite extension L/F,

$$\nu(F) \le \nu(L) \le \nu(F) + 1.$$

For the rest of this paper, F will denote a field of characteristic 2.

2. The separable case. Let L/F be a finite separable extension. In this section we will prove Theorem 1.2 under this assumption. For $a, b \in F$, let [a, b] be the quadratic form $aX^2 + XY + bY^2$, so that if $a \neq 0$, we have $[a, b] \cong \langle a \rangle [1, ab]$. Obviously, for $a_1, a_2, b \in F$, we have in $W_q(F)$ the relation $[a_1 + a_2, b] = [a_1, b] + [a_2, b]$.

LEMMA 2.1. For any $a, b, c \in F$ with $a, b, a+b \neq 0$, we have in $W_a(F)$

$$\langle 1, a+b\rangle [1,c] = \langle 1,a\rangle \left[1, \frac{ac}{a+b}\right] + \langle 1,b\rangle \left[1, \frac{bc}{a+b}\right].$$

PROOF. We have $\langle 1, a + b \rangle [1, c] = [1, c] \perp \langle a + b \rangle [1, c] = [1, c] \perp \left[a + b, \frac{c}{a+b} \right]$. But in $W_q(F)$,

$$\begin{split} & \left[a+b,\frac{c}{a+b}\right] \\ & = \left[a,\frac{c}{a+b}\right] + \left[b,\frac{c}{a+b}\right] \\ & = \langle a \rangle \left[1,\frac{ac}{a+b}\right] + \langle b \rangle \left[1,\frac{bc}{a+b}\right] \\ & = \left[1,\frac{ac}{a+b} + \frac{bc}{a+b}\right] + \langle 1,a \rangle \left[1,\frac{ac}{a+b}\right] + \langle 1,b \rangle \left[1,\frac{bc}{a+b}\right] \\ & = \left[1,c\right] + \langle 1,a \rangle \left[1,\frac{ac}{a+b}\right] + \langle 1,b \rangle \left[1,\frac{bc}{a+b}\right] \end{split}$$

Inserting this in the first relation, the lemma follows. \Box

COROLLARY 2.2. Let E/F be any extension, $\alpha \in E$ and $\beta = b_0 + b_1 \alpha^2 + \cdots + b_m \alpha^{2m} \neq 0$ with $b_0, \cdots, b_m \in F$. Then, for any $\gamma \in E$, we have in $W_q(E)$

$$\langle 1,\beta\rangle[1,\gamma]=\sum_{i=1}^m{}'\langle 1,b_i\rangle[1,\gamma_i]$$

with certain $\gamma_i \in E$ (\prime means that the sum is taken over all i with $b_i \neq 0$).

Now for the finite separable extension L/F we have $L = F(\alpha^2)$ with some $\alpha \in L$, so that $1, \alpha^2, \dots, \alpha^{2(n-1)}$ (n = [L : F]) is a basis of L over F. Thus any element $\beta \in L$ has the form $\beta =$ $b_0 + b_1\alpha^2 + \dots + b_{n-1}\alpha^{2(n-1)}$ with $b_0, \dots, b_{n-1} \in F$. We conclude, from Corollary 2.2,

PROPOSITION 2.3. Let L/F be a finite separable extension. For any $\beta \in L^*$, $\gamma \in L$ there exist $b_1, \dots, b_m \in F^*$, $\gamma_1, \dots, \gamma_m \in L$ $(m \ge 1)$ such that

$$\langle 1, \beta \rangle [1, \gamma] = \sum_{i=1}^{m} \langle 1, b_i \rangle [1, \gamma_i]$$

in $W_q(L)$.

Iterating this result we obtain

COROLLARY 2.4. Let L/F be a finite separable extension. Then, for any $n \ge 0$, $I^n W_q(L)$ is generated by the Pfister forms $\langle \langle a_1, \cdots, a_n, \gamma \rangle$ with $a_1, \cdots, a_n \in F^*$, $\gamma \in L$.

Let $s: L \to F$ be any trace map, i.e., s is an F-linear map $\neq 0$. For any quadratic form q over L, let $s_*(q) = s \circ q$ be the transfer of q. s_* defines a homomorphism $s_*: W_q(L) \to W_q(F)$, which satisfies the usual Frobenius reciprocity law. We obtain, directly from Corollary 2.4,

COROLLARY 2.5. Let L/F be a finite separable extension and $s: L \to F$ a trace map. Then, for any $n \ge 0$,

$$s_*[I^n W_q(L)] \subseteq I^n W_q(F).$$

REMARK 2.6. If $ch(F) \neq 2$, Corollary 2.5 is a well known result of Arason, but the proof in this case uses the Milnor-Scharlau exact sequence. Thus, for fields of characteristic 2, we have a completely elementary proof of this fact.

The above result can be improved. In fact we have

THEOREM 2.7. Let L/F be a finite separable extension and $s: L \to F$ a trace map. Then, for any $n \ge 0$, we have

$$s_*[I^n W_q(L)] = I^n W_q(F).$$

PROOF. From Corollaries 2.4, 2.5 and the Frobenius reciprocity law, it follows that we only need to consider the case n = 0, i.e., we must show that $s_* : W_q(L) \to W_q(F)$ is onto. Notice that this fact does not depend on the particular choice of the trace map s. We now consider several cases

(i) [L:F] = 2, i.e., $L = F(\alpha)$ with $\alpha^2 + \alpha = a \in F$. Using Frobenius reciprocity it suffices to show that $[1,b] \in \text{Im}(s_*)$ for all $b \in F$. This

follows from the direct computation $s_*([1, (1 + \alpha)^2 b]) = [1, b]$, where $s = \text{Tr}_{L/F}$.

(ii) [L:F] odd. Let $L = F(\alpha)$ and define $s: L \to F$ by s(1) = 1, $s(\alpha) = \cdots = s(\alpha^{n-1}) = 0$, n = [L:F]. From Frobenius reciprocity law we get $s_*(q \otimes L) = s_*(\langle 1 \rangle) \cdot q$ for any $q \in W_q(F)$. But an easy computation shows that $s_*(\langle 1 \rangle) = \langle 1 \rangle$ in W(F), so that $s_*(q \otimes L) = q$, i.e., s_* is onto.

(iii) L/F is Galois. According to (ii) we may assume that [L:F] is even. Let H < G = Gal(L/F) be a 2-Sylow subgroup and denote by K the fixed field of H. Let $s_1: L \to K$, $s_2: K \to F$ be trace maps, so that $s = s_2 \circ s_1 \neq 0$, i.e., $s: L \to F$ is a trace map. Since $s_* = s_{2*} \circ s_{1*}$, and s_{2*} is onto by (ii), it suffices to show that s_{1*} is onto. But H = Gal(L/K) is a 2-group, so that we can find a chain of fields $K = K_0 \subset K_1 \subset \cdots \subset K_r = L$ with $[K_i: K_{i-1}] = 2$. We choose trace maps $t_i: K_i \to K_{i-1}$ such that $t = t_1 \circ \cdots \circ t_r \neq 0$, i.e., $t: L \to K$ is a trace map. Since $t_* = t_{1*} \circ \cdots \circ t_{r*}$ and any t_{i*} is onto by (i), we conclude that t_* is onto, and hence s_{1*} , too. This shows that s_* is onto.

(iv) Let L/F be any finite separable extension. Choose a finite extension N/L such that N/F is Galois, and trace maps $s_1 : N \to L$, $s: L \to F$ with $s \circ s_1 \neq 0$. By part (iii) $(s \circ s_1)_* = s_* \circ s_{1*}$ is onto, and therefore s_* is also onto. This concludes the proof of Theorem 2.7. \Box

COROLLARY 2.8. Let L/F be a finite separable extension. Then $\nu(F) \leq \nu(L)$.

PROOF OF THEOREM (1.2) FOR SEPARABLE EXTENSIONS. Let L/F be a finite separable extension. We will show $\nu(L) \leq \nu(F) + 1$. Let $L = F(\alpha^2)$, so that $1, \alpha^2, \dots, \alpha^{2(n-1)}$ is a basis of L over F. For any $a \in F^*$, $\gamma \in L$ let us consider the quadratic form $\langle 1, a \rangle [1, \gamma] \neq 0$. We can write $\langle 1, a \rangle [1, \gamma] = \langle 1, a \rangle [1, (\gamma(\alpha^2 + a) \cdots (\alpha^2 + a^{2n-3}))/((\alpha^2 + a) \cdots (\alpha^2 + a^{2n-3}))]$, where we consider only factors of the form $\alpha^2 + a^{2i-1}$, $1 \leq i \leq n-1$. We may assume $a^{2i-1} \neq a^{2j-1}$ for all $i \neq j$, since otherwise we get $a^{2k-1} = 1$ for some integer k, because ChF = 2, and hence $\langle a \rangle = \langle 1 \rangle$, i.e., $\langle 1, a \rangle [1, \gamma] = 0$. Let $\gamma(\alpha^2 + a) \cdots (\alpha^2 + a^{2n-3}) = b_0 + b_1 \alpha^2 + \cdots + b_{n-1} \alpha^{2(n-1)}$ with

 $b_0, b_1, \dots, b_{n-1} \in F$. Because of the above assumption we have the following decomposition in partial fractions

$$\frac{b_0 + b_1 \alpha^2 + \dots + b_{n-1} \alpha^{2(n-1)}}{(\alpha^2 + a) \cdots (\alpha^2 + a^{2n-3})} = c_0 + \frac{c_1}{\alpha^2 + a} + \dots + \frac{c_{n-1}}{\alpha^2 + a^{2n-3}}$$

with $c_0, c_1, \dots, c_{n-1} \in F$. (We have $c_0 = b_{n-1}$ and the determinant of the linear system of equations defining c_1, \dots, c_{n-1} has the form $a^r(1+a)^s$ for some $r, s \ge 0$, which is $\ne 0$ since we assume $\langle a \rangle \ne \langle 1 \rangle$). Inserting the above expression in the form $\langle 1, a \rangle [1, \gamma]$ we obtain in $W_q(L)$

$$\langle 1,a\rangle[1,\gamma] = \langle 1,a\rangle[1,c_0] + \sum_{i=1}^{n-1} \langle 1,a\rangle \left[1,\frac{c_i}{\alpha^2 + a^{2i-1}}\right].$$

But using lemma (2.1) we have

$$\begin{split} \langle 1, \alpha^2 + a^{2i-1} \rangle \bigg[1, \frac{c_i}{a^{2i-1}} \bigg] &= \langle 1, a^{2i-1} \rangle \bigg[1, \frac{c_i a^{2i-1}}{a^{2i-1} (\alpha^2 + a^{2i-1})} \bigg] \\ &+ \langle 1, \alpha^2 \rangle \bigg[1, \frac{c_i \alpha^2}{a^{2i-1} (\alpha^2 + a^{2i-1})} \bigg] \\ &= \langle 1, a \rangle \bigg[1, \frac{c_i}{\alpha^2 + a^{2i-1}} \bigg] \end{split}$$

in $W_q(L)$, so it follows that

(2.9)
$$\langle 1, a \rangle [1, \gamma] = \langle 1, a \rangle [1, c_0] + \sum_{i=1}^{n-1} \langle 1, \alpha^2 + a^{2i-1} \rangle \left[1, \frac{c_i}{a^{2i-1}} \right].$$

Therefore, for any $m \geq 0$, $a_1, \dots, a_{m+1} \in F^*$, $\gamma \in L$, we obtain in $W_q(L)$ applying (2.9) to $\langle 1, a_{m+1} \rangle [1, \gamma]$,

$$\begin{aligned} &\langle \langle a_1, \cdots, a_{m+1}, \gamma]] \\ &= \langle \langle a_1, \cdots, a_{m+1}, c_0]] + \sum_{i=1}^{n-1} \langle 1, \alpha^2 + a_{m+1}^{2i-1} \rangle \left\langle \left\langle a_1, \cdots, a_m, \frac{c_i}{a_{m+1}^{2i-1}} \right\rangle \right] . \end{aligned}$$

The proof of Theorem 1.2 is now obvious. If $I^m W_q(F) = 0$, then, from the above formula and from the fact that $I^{m+1}W_q(L)$ is generated by the forms $\langle \langle a_1, \cdots, a_{m+1}, \gamma \rangle$ with $a_1, \cdots, a_{m+1} \in F^*$, $\gamma \in L$ (see Corollary 2.4), it follows that $I^{m+1}W_q(L) = 0$, i.e., $\nu(L) \leq \nu(F) + 1$. \Box

In fact we have shown the following general fact.

THEOREM 2.10. Let
$$L/F$$
 be a finite separable extension. Then
 $I^{m+1}W_q(L) = I(L)i_*[I^mW_q(F)]$

for all $m \geq 0$, where $i_*[I^m W_q(F)]$ is the image of $I^m W_q(F)$ under the natural homomorphism $i_*: W_q(F) \to W_q(L)$.

REMARK 2.11. It is easy to show that, for any quadratic separable extension L/F the equality $\nu(L) = \nu(F)$ holds. We just need to prove $\nu(L) \leq \nu(F)$. Assume $I^m W_q(F) = 0$. Let $L = F(\alpha)$, $\alpha^2 + \alpha = a \in F$ and define $s : L \to F$ the trace map given by s(1) = 0, $s(\alpha) = 1$, i.e., s = Tr L/F. For any *m*-fold Pfister form over *L*, we have $s_*(q) \in I^m W_q(F) = 0$, i.e., $q \in \text{Ker}(i_*)$. Hence $q \cong q_0 \otimes L$ with some form q_0 defined over *F* (see [1, V (4.10)]), and hence, using [1, (V, 4.14)], we conclude $q \cong q_1 \otimes L$ with an *m*-fold Pfister form defined over *F*, which by assumption is 0 in $W_q(F)$. This shows $I^m W_q(L) = 0$, i.e., $\nu(L) \leq \nu(F)$.

3. The purely inseparable case. The main result of this section is

THEOREM 3.1. Let L/F be a finite purely inseparable extension. Then $\nu(F) = \nu(L)$.

Since any finite purely inseparable extension L/F admits a chain of subfields $F = F_0 \subset F_1 \subset \cdots \subset F_m = L$ with $F_i = F_{i-1}(\sqrt{a_i})$, $a_i \in F_{i-1}^*$, to prove Theorem 3.1 it suffices to consider the case $L = F(\sqrt{l}), l \in F^*$. Let us write $L = F(\alpha), \alpha^2 = l$. Then we have

LEMMA 3.2. Any n-fold Pfister form $q = \langle \langle \alpha_1, \cdots, \alpha_n, \beta \rangle$ over L is a linear combination in $W_q(L)$ of n-fold Pfister forms of the type

(i) $\langle \langle a_1, \cdots, a_n, b \rangle$ with $a_1, \cdots, a_n b \in F^*$

(ii)
$$\langle \langle \alpha, a_1, \cdots, a_{n-1}, b \rangle$$
 with $a_1, \cdots, a_{n-1}, b \in F^*$.

PROOF. Let us consider first a 1-fold Pfister form $q = \langle 1, \beta \rangle [1, \gamma]$ over L. Since $\gamma \equiv \gamma^2 \pmod{\rho L}$, where $\rho L = \{x^2 + x \mid x \in L\}$ and $\gamma^2 \in F$ for all $\gamma \in L$, we may assume $\gamma = c \in F$. Let $\beta = a + b\alpha$, $a, b \in F$. From Lemma 2.1 we get $q = \langle 1, a + b\alpha \rangle [1, c] =$ $\langle 1, a \rangle [1, ac/\beta] + \langle 1, b\alpha \rangle [1, cb/\beta] = \langle 1, a \rangle [1, c_1] + \langle 1, b\alpha \rangle [1, c_2]$ with some $c_1, c_2 \in F$. Hence $q = \langle 1, a \rangle [1, c_1] + \langle b \rangle \langle 1, b \rangle [1, c_2] + \langle b \rangle \langle 1, \alpha \rangle [1, c_2]$ in $W_q(L)$. Since $\langle 1, \alpha \rangle^2 = 0$ in W(F), the lemma follows easily by induction. \Box

We proceed now to prove the theorem. As noticed above, we may assume $L = F(\alpha)$, $\alpha^2 = l \in F^*$. Suppose first $I^n W_q(F) = 0$. We will show $I^n W_q(L) = 0$. According to Lemma 3.2 we just need to consider forms of type (i), (ii), but since $I^n W_q(F) = 0$, then all forms of type (i) are 0.

Take a form $q = \langle \langle \alpha, a_1, \cdots, a_{n-1}b \rangle]$ of type (ii). Since $q = \langle \langle a_1, \cdots, a_{n-1}, b \rangle] \perp \langle \alpha \rangle \langle \langle a_1, \cdots, a_{n-1}b \rangle]$, it suffices to show that any form $\langle \langle a_1, \cdots, a_{n-1}, b \rangle]$ does represent α over L, because then q is isotropic and hence also hyperbolic over L. Notice that $I^n W_q(F) = 0$ implies that $p = \langle \langle a_1, \cdots, a_{n-1}, b \rangle]$ represents any element of F^* . We set $\varphi = \langle \langle a_1, \cdots, a_{n-1} \rangle \rangle = \langle 1, a_1 \rangle \cdots \langle 1, a_{n-1} \rangle$, and [1, b] = Fe + Ff with p(e) = 1, p(f) = b, $b_p(e, f) = 1$, so that $p = \varphi \cdot [1, b] = \varphi \otimes e \oplus \varphi \otimes f$. Any vector of p has the form $z = x \otimes e + y \otimes f$ with $x, y \in \varphi$ and $p(z) = \varphi(x) + \varphi(x, y) + \varphi(y)b$. Over L, for $x, y \in \varphi \otimes L$ we write $x = x_0 + x_1 \alpha$, $y = y_0 + y_1 \alpha$ with $x_0, x_1, y_0, y_1 \in \varphi$ defined over F. Since φ is written in diagonal form we have $\varphi(x) = \varphi(x_0) + l\varphi(x_1)$, $\varphi(y) = \varphi(y_0) + l\varphi(y_1)$ so that, for $z = x \otimes e + y \otimes f \in p \otimes L$, we get

$$p(z) = \varphi(x_0) + \varphi(x_0, y_0) + \varphi(y_0)b + l[\varphi(x_1) + \varphi(x_1, y_1) + \varphi(y_1)b] + \alpha[\varphi(x_0, y_1) + \varphi(x_1, y_0)] p(z) = p(x_0 \otimes e + y_0 \otimes f) + p(x_1 \otimes e + y_1 \otimes f)l + \alpha[\varphi(x_0, y_1) + \varphi(x_1, y_0)].$$

Choose $x_1 = (1, 0, \dots, 0), y_1 = 0$, i.e., $p(x_1 \otimes e + y_1 \otimes f) = 1$. Since p represents all elements of F^* , we can find $x_0, y_0 \in \varphi$ such that $p(x_0 \otimes e + y_0 \otimes f) = l$. Setting $x = x_0 + x_1\alpha, y = y_0 + y_1\alpha = y_0$, we obtain, for $z = x \otimes e + y \otimes f \in p \otimes L, z \neq 0$,

$$(3.3) p(z) = \alpha y_{0,1},$$

where $y_{0,1}$ is the first coordinate of y_0 . If $y_{0,1} = 0$, it follows that p is isotropic over L, and hence it represents α over L. If $y_{0,1} \neq 0$, then $y_{0,1}$ is represented by p over F, and since p is a Pfister form, it follows from (3.3), that p represents α over L. This proves $I^n W_q(L) = 0$. Thus we have $\nu(L) \leq \nu(F)$.

We now prove the converse, i.e., $\nu(F) \leq \nu(L)$. To this end we use

LEMMA 3.4. Let $L = F(\alpha), \alpha^2 = l \in F^*$. Assume $I^n W_q(L) = 0$. Then

(i) Any n-fold Pfister form over F is of the type $\langle \langle l, a_1, \cdots, a_{n-1}, b \rangle$ with $a_1, \cdots, a_{n-1}, b \in F^*$

(ii) Any (n-1)-fold Pfister form over F is of the type $\langle \langle b_1, \cdots, b_{n-1}, lc^2 \rangle$ with $b_1, \cdots, b_{n-1}, c \in F^*$.

Let us proceed with the proof of $\nu(F) \leq \nu(L)$. Assume $I^n W_q(L) = 0$. Then any *n*-fold Pfister form over F has the form $q = \langle \langle l, a_1, \cdots, a_{n-1}, b \rangle$ (see Lemma 3.4(i)). Now using Lemma 3.4(ii) we can write $\langle \langle a_1, \cdots, a_{n-1}, b \rangle \rangle \cong \langle \langle b_1, \cdots, b_{n-1}, lc^2 \rangle$ with some $c \in F^*$, i.e., $q = \langle \langle b_1, \cdots, b_{n-1} \rangle \rangle \cdot \langle 1, l \rangle [1, lc^2]$. But obviously $\langle 1, l \rangle [1, lc^2]$ is isotropic, so that q = 0 in $W_q(F)$. This proves $I^n W_q(F) = 0$, i.e., $\nu(F) \leq \nu(L)$, and Theorem 3.1 follows. \Box

For the proof of Lemma 3.4 we need the following general fact about Pfister forms over fields of characteristic 2.

PROPOSITION 3.5. Let q be an n-fold Pfister form over F.

(i) If q contains a subform $[1, a], a \in F$, then $q \cong \langle \langle a_1, \cdots, a_n, a \rangle$ for some $a_1, \cdots, a_n \in F^*$.

(ii) Write $q = \varphi \otimes [1, b]$ with $\varphi = \langle \langle b_1, \dots, b_n \rangle \rangle = \langle 1 \rangle \perp \varphi'$, i.e., $q = [1, b] \perp \varphi' \cdot [1, b]$. If $l \in F^*$ is represented by $\varphi' \cdot [1, b]$, then $q \cong \langle \langle l, a_1, \dots, a_{n-1}, c]$ with some $a_1, \dots, a_{n-1} \in F^*$.

PROOF. Part (i) has been proved in [1, Chapter V] in a much more general setting, so that we omit the proof here. Let us prove (ii). Assume n = 1, $q = \langle 1, b_1 \rangle [1, b] = [1, b] \perp \langle b_1 \rangle [1, b]$. If l is represented by $\langle b_1 \rangle [1, b], l = b_1 (x^2 + xy + by^2)$, and since $\langle x^2 + xy + by^2 \rangle [1, b] \cong [1, b]$, we

get $q \cong [1, b] \perp \langle b_1(x^2 + xy + by^2) \rangle [1, b] = [1, b] \perp \langle l \rangle [1, b] = \langle 1, l \rangle [1, b].$ Assume now n > 1. We use induction with respect to n. Write $\varphi = \langle 1, b_1 \rangle \cdot \psi, \psi = \langle \langle b_2, \cdots, b_n \rangle \rangle$. Hence $\varphi' = \psi' \perp \langle b_1 \rangle \psi, q = [1, b] \perp \psi' \cdot [1, b] \perp \langle b_1 \rangle \psi [1, b]$, i.e., $\varphi' [1, b] = \psi' [1, b] \perp \langle b_1 \rangle \psi [1, b]$. If $l \in F^*$ is represented by $\varphi' [1, b]$, we can write $l = c + b_1 d$ with c represented by $\psi' [1, b]$ and d represented by $\psi [1, b]$ (if $\neq 0$). (We may assume $c, d \neq 0$). By induction we have $\psi [1, b] \cong \langle 1, c \rangle \tau [1, b']$ with some (n - 2)-fold bilinear Pfister form $\tau, b' \in F$. Moreover $\langle d \rangle \cdot \psi [1, b] \cong \psi [1, b]$. Therefore

$$\begin{split} q &= \langle 1, b_1 \rangle \psi[1, b] = \psi[1, b] \perp \langle b_1 \rangle \psi[1, b], \\ q &\cong \langle 1, c \rangle \tau[1, b'] \perp \langle b_1 d \rangle \langle 1, c \rangle \tau[1, b'], \\ q &\cong \langle 1, c \rangle \langle 1, b_1 d \rangle \tau[1, b'], \end{split}$$

But $\langle 1, c \rangle \langle 1, b_1 d \rangle = \langle 1, c, b_1 d, c b_1 d \rangle \cong \langle 1, c + b_1 d, x, x(c + b, d) \rangle \rangle \cong \langle 1, l \rangle \langle 1, x \rangle$, i.e., $q = \langle 1, l \rangle \langle 1, x \rangle \tau [1, b']$. This proves (ii). \Box

Now we prove Lemma 3.4. Let us assume $I^nW_q(L) = 0$. Let $q = \langle \langle a_1, \cdots, a_n, b \rangle = \varphi \cdot [1, b]$ be any *n*-fold Pfister form over *F*. Since $q \otimes L = 0$, we can find nonzero vectors $x = x_0 + x_1 \alpha, y = y_0 + y_1 \alpha \in \varphi \otimes L$ (see notation above) such that

$$q(x \otimes e + y \otimes f) = 0,$$

i.e.,

$$q(x_0 \otimes e + y_0 \otimes f) + lq(x_1 \otimes e + y_1 \otimes f) = 0,$$

$$b_q(x_0 \otimes e + y_0 \otimes f, x_1 \otimes e + y_1 \otimes f) = 0.$$

Let $u = x_0 \otimes e + y_1 \otimes f$, $v = x_1 \otimes e + y_1 \otimes f \in q$. Then q(u) + lq(v) = 0, $b_q(u, v) = 0$. Of course we may assume $q(u), q(v) \neq 0$, because otherwise q would be isotropic over F, and hence q = 0. Since 2 = 0, we can find vectors $u_1, v_1 \in q$ with $b_q(u, u_1) = 1, b_q(v, v_1) = 1$, and $\langle u, u_1 \rangle \perp \langle v, v_1 \rangle$. Thus we have $\langle u, u_1 \rangle \perp \langle v, v_1 \rangle \subseteq q$. Let $a = q(v), a' = q(v_1), a'' = q(u_1)$. Then $[a, a'] \perp [al, a''] \subseteq q$, i.e., $\langle a \rangle [1, a_1] \perp \langle al \rangle [1, a_2] \subseteq q$ for some $a_1, a_2 \in F$. But a = q(v) is represented by q, so that $\langle a \rangle q \cong q$, and therefore $[1, a_1] \perp \langle l \rangle [1, a_2] \subseteq q$. In particular $[1, a_1] \subset q$, so that, by Proposition 3.5(i), we have $q = \psi \cdot [1, a_1]$ with some *n*-fold bilinear Pfister form ψ . Since $q = [1, a_1] \perp \psi'[1, a_1]$, it follows by cancellation that $\langle l \rangle [1, a_2] \subseteq \psi'[1, a_1]$, and hence l is represented by $\psi'[1, a_1]$. Using Proposition 3.5(ii) we conclude $q \cong \langle \langle l, b_1, \cdots, b_{n-1}, b' \rangle$ for some $b_1, \cdots, b_{n-1}, b' \in F^*$. This proves Lemma 3.4 (i).

Consider an (n-1)-fold Pfister form over $F, q = \langle \langle a_1, \cdots, a_{n-1}, b \rangle \rangle$ = $\varphi \cdot [1, b], \varphi = \langle \langle a_1, \cdots, a_{n-1} \rangle \rangle$. Since $I^n W_q(L) = 0$, it follows that $\langle 1, \alpha \rangle q = 0$ over L, i.e., q represents α over L. Therefore there exist $x = x_0 + x_1 \alpha, y = y_0 + y_1 \alpha \in \varphi \otimes L$ such that $q(x \otimes e + y \otimes f) = \alpha$.

This means $q(x_0 \otimes e + y_0 \otimes f) + lq(x_1 \otimes e + y_1 \otimes f) = 0, b_q(x_0 \otimes e + y_0 \otimes f, x_1 \otimes e + y_1 \otimes f) = 1$. Thus we have $u, v \in q$ with $q(u) + lq(v) = 0, b_q(u, v) = 1$. Hence $\langle u, v \rangle \subseteq q$ and $\langle u, v \rangle = [q(v), lq(v)] = \langle q(v) \rangle [1, lq(v)^2]$. But $\langle q(v) \rangle \cdot q \cong q$, so that $[1, lc^2] \subseteq q$, where c = q(v). Now we apply Proposition 3.5(i) to conclude $q \cong \langle \langle b_1, \cdots, b_{n-1}, lc^2]]$, i.e., Lemma 3.4(ii). \Box

4. Proof of Theorem 1.2. Let L/F be a finite extension. Let F_s be the separable closure of F in L, $F \subset F_s \subset L$. Hence L/F_s is purely inseparable, and therefore (see Theorem 3.1) $\nu(L) = \nu(F_s)$. According to the results of §2 we have $\nu(F) \leq \nu(F_s) \leq \nu(F) + 1$, i.e., we have $\nu(F) \leq \nu(L) \leq \nu(F) + 1$.

5. An example. We will now construct a field F and a separable extension L/F with [L:F] = 3 and $\nu(L) = \nu(F) + 1$. In fact, for any n, it is possible to find a field F and a separable finite extension L/Fwith $\nu(F) = n, \nu(L) = n+1$, but we will just consider the simplest case n=0. Let F be the quadratic separable closure of $\mathbf{F}_2(X)$. Obviously $\nu(F) = 0$. Since $W^3 + W + 1 \in F[W]$ is irreducible, let $L = F(\beta)$ with $\beta^3 = \beta + 1$. We want to show $\nu(L) = 1$, which is equivalent with $L \neq \rho L$. We assert $X\beta^2 \notin \rho L$. Otherwise there exist $y_0, y_1, y_2 \in F$ with $\rho(y_0+y_1\beta+y_2\beta^2)=x\beta^2$, i.e., $y_0+y_0^2=0, y_1+y_2^2=0, y_1^2+y_2+y_2^2=X$. Hence $Y^4 + Y^2 + Y = X$ has a solution in F. Let us show that this is impossible. Obviously there is no solution in $\mathbf{F}_2(X)$. Assume that $\mathbf{F}_2(X) \subset E \subset F$ is a subfield such that $Y^4 + Y^2 + Y = X$ has no solution in E. We will show that there is no solution in any quadratic separable extension $E(\alpha), \alpha^2 + \alpha = t \in E$ of E. Otherwise let $u + v\alpha(u, v \in E)$ be a solution. It follows that $u^4 + u^2 + u + v^4 t^2 + v^4 t + v^2 t = X$, $v^4 + v^2 + v = 0$. But $v^3 + v + 1 = 0$ has no solution in F, and hence v = 0. Then $u^4 + u^2 + u = X$ in E, which is a contradiction. We conclude by induction, that there is no solution of $Y^4 + Y^2 + Y = X$ in F, and therefore we have $\nu(L) = 1$.

Acknowledgement. The authors thank the referee for several helpful comments.

REFERENCES

1. R. Baeza, *Quadratic Forms Over Semilocal Rings*, Springer Lecture Notes Vol. 655, Springer Verlag, Berlin-Heidelberg-New York, 1978.

2. R. Elman and T.Y. Lam, Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), 21-42.

3. C.H. Sah, Symmetric bilinear forms and quadratic forms. J. of Algebra **20** (1972), 144-160.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DE CHILE, CASILLA 653, SANTIAGO, CHILE.