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THE BEHAVIOR OF THE ^/-INVARIANT OF A FIELD 
OF CHARACTERISTIC 2 UNDER FINITE EXTENSIONS 

R. ARAVIRE AND R. BAEZA 

ABSTRACT. Let F be a field of characteristic 2. We define 
v(F) as the smallest integer n such that any n-fold quadratic 
Pfister form over F is isotropic. If L/F is any finite extension, 
we prove v{F) < v{L) < v(F)-\-l. The corresponding question 
for fields of characteristic ^ 2 is still open. 

1. Introduction. The ^-invariant of a field F of characteristic 
^ 2 was introduced in [2] as the number v(F) = Min{n | / n (F ) is 
torsion free}, where 1(F) denotes the maximal ideal of even dimensional 
quadratic forms over F in the Witt ring W(F). If F is non real, 
then v(F) is the smallest integer n such that any n-fold Pfister form 
over F is isotropic. Similarly, if F is a field of characteristic 2, let 
Wq(F) be the Witt group of non singular quadratic forms over F and 
W(F) the Witt ring of non singular symmetric bilinear forms over F. 
It is well known that Wq(F) is a VF(F)-module under the operation 
b • q(x <g) y) = b(x,x)q(y) for any x e V = space of the bilinear 
form 6, y € W = space of the quadratic form q. If 1(F) C W(F) 
is the maximal ideal of even-dimensional bilinear forms, then the 
chain of submodules Wq(F) D IWq(F) D I2Wq(F) D ••• plays an 
important role in the knowledge of the module structure of Wq(F). 
If a i , . . . , a n € F*j b £ F , then the quadratic n-fold Pfister form 
( l , a i ) . . . (l,on)[l,6] is a typical generator of InWq(F), where (l,a) 
denotes the symmetric bilinear form U2 -f aV2 and [1,6] denotes the 
quadratic form X2 -f XY + bY2. We shall usually write ({a\, • • • , an, 6]] 
instead of ( l ,ai) • • • (l ,an)[l ,6]. (We refer to [1, 3] for general facts 
on quadratic forms in characteristic 2). We define now, as in [2], the 
z/-invariant of a field F of characteristic 2 as 

(1.1) u(F) = Min {n | InWq(F) = 0}, 

i.e., v(F) is the smallest integer n such that any n-fold Pfister form 
over F is isotropic. 
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In [2] it was conjectured that v(L) < v(F) + 1 for any non real field 
F of characteristic ^ 2 and any finite extension L/F. The authors 
proved v(L) < v(F) + [L : F] - 1, and recently Leep (unpublished) has 
shown the much better estimate v(L) < v{F) -f (log2([X : F] /3)) + 1, 
which still depends on the degree [L : F]. In this paper we consider the 
same question for fields of characteristic 2 and prove that the above 
conjecture is true. Our main result is 

THEOREM 1.2. Let F be a field of characteristic 2. Then, for any 
finite extension L/F, 

v{F) < u{L) < v{F) + 1. 

For the rest of this paper, F will denote a field of characteristic 2. 

2. T h e separable case. Let L/F be a finite separable extension. 
In this section we will prove Theorem 1.2 under this assumption. For 
a, b e F , let [a, b] be the quadratic form aX2 4- XY + 6 F 2 , so that if 
a ^ 0, we have [a,6] = (a)[l,oò]. Obviously, for a i , a2 ,6 G F , we have 
in Wq(F) the relation [a\ + a2,6] = [ai,6] + [a2,6]. 

LEMMA 2.1. For any a,6, c G F witha,b,a + b ^ 0, we /m^e m Wç(F) 

oc 
<l,a + 6)[l,c] = <l,a> 1, 

a + ò M 1, 
a + ò 

PROOF. We have ( l , o + 6)[l,c] = [l,c] ± (a + 6)[l,c] = [l,c] J_ 

. But in W g (F ) , a + b^b 
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a + ò, 
a + ò 

c 

(a) 

a + b 

ac 

+ b, 
a + b 

1, a + b 
ac 

1 , — T + 

+ (b) 

be 

1,-
be 

a+b a+b 

a + b 

'a + b 
+ (hb) 

be 
'a + b 

[l,c} + (l,a) 1, ac 
a + ò + <M> 

_òc_ 
' a + ò 

Inserting this in the first relation, the lemma follows. D 

COROLLARY 2.2. Let E/F be any extension, a e E and ß = 
òo + òia2 + • • • + brna

2m ^ 0 u>i£/i òo, • • • , òm G F. T/ierz, /or any 
7 £ E, we have in Wq{E) 

in 

(1,/3)[1,7] = £'<1A;>[1,7,;] 

with certain 7* e E (f means that the sum is taken over all i with 
bi ± 0). 

Now for the finite separable extension L/F we have L = F (a2) 
with some a G L, so that l ,a2 , - -- ,a2^n _ 1 ) (n = [L : F]) is a 
basis of L over F . Thus any element ß G L has the form /? = 
ò0 + òia2 + • • • + ò n_ia 2 ( n _ 1 ) with ò0, • • • ,ò n - i £ ^- We conclude, 
from Corollary 2.2, 

PROPOSITION 2.3. Let L/F be a finite separable extension. For any 
ß G L*, 7 G L £/iere e:n's£ òi, • • • ,òm G F*, 71, • • • , 7 m G L (m > 1) 
suc/i that 

<l,/?>[l,7] = X > M [ l , 7 i ] 
?:=i 
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in Wq{L). 

Iterating this result we obtain 

COROLLARY 2.4. Let L/F be a finite separable extension. Then, for 
any n > 0, InWq(L) is generated by the Pfister forms ((ai, • • • ,an,7]] 
with a\, • • • , an G F*, 7 G L. 

Let s : L —> F be any trace map, i.e., s is an F-linear map ^ 0. 
For any quadratic form q over L, let s*(q) = s o q be the transfer of g. 
s* defines a homomorphism s* : Wq(L) —• W9(F), which satisfies the 
usual Frobenius reciprocity law. We obtain, directly from Corollary 
2.4, 

COROLLARY 2.5. Let L/F be a finite separable extension ands:L-*F 
a trace map. Then, for any n > 0, 

s4lnWq(L)}CInWq(F). 

REMARK 2.6. If ch (F) # 2, Corollary 2.5 is a well known result 
of Arason, but the proof in this case uses the Milnor-Scharlau exact 
sequence. Thus, for fields of characteristic 2, we have a completely 
elementary proof of this fact. 

The above result can be improved. In fact we have 

THEOREM 2.7. Let L/F be a finite separable extension and s : L —> F 
a trace map. Then, for any n > 0, we have 

s4rwq(L)} = inwq(F). 

PROOF. From Corollaries 2.4, 2.5 and the Frobenius reciprocity law, 
it follows that we only need to consider the case n = 0, i.e., we must 
show that 5* : Wq(L) —> Wq{F) is onto. Notice that this fact does not 
depend on the particular choice of the trace map s. We now consider 
several cases 

(i) [L : F] = 2, i.e., L = F (a) with a2+a = a£ F. Using Frobenius 
reciprocity it suffices to show that [1,6] G Im (s*) for all b G F . This 
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follows from the direct computation s*([l,(l 4- oc)2b]) — [1,6], where 
S = T>L/F-

(ii) [L : F] odd. Let L = F (a) and define 5 : L -> F by s(l) 
= 1, s(a) = ••• = s(an-1) = 0, n = [L : F]. From Frobenius 
reciprocity law we get s*(q 0 L) = s*((l)) • g for any q € Wq(F). 
But an easy computation shows that s*((l)) = (1) in W(F), so that 
s*(q <g> L) = q, i.e., s* is onto. 

(iii) L / F is Galois. According to (ii) we may assume that [L : F] 
is even. Let H < G — Gal (L/F) be a 2-Sylow subgroup and denote 
by K the fixed field of H. Let s\ : L —> K, s2 : ÜT —> F be trace 
maps, so that 5 = S2 o 5i ^ 0, i.e., s : L —» F is a trace map. Since 
s* = S2* ° si*, and S2* is onto by (ii), it suffices to show that si* is 
onto. But H = Gal (L/K) is a 2-group, so that we can find a chain 
of fields K = Ko C Ki C '- C Kr = L with [K{ : K^} = 2. We 
choose trace maps U : JFQ —» ^ _ i such that t = ti o • • • o t r ^ 0, i.e., 
£ : L —• X is a trace map. Since £* = £1* o • • • o £r* and any ^* is onto 
by (i), we conclude that t* is onto, and hence si*, too. This shows that 
5* is onto. 

(iv) Let L/F be any finite separable extension. Choose a finite 
extension N/L such that N/F is Galois, and trace maps s\ : N —> L, 
s : L —> F with s o sx ^ 0. By part (iii) (sosi)* = s* 0 si* is onto, and 
therefore 5* is also onto. This concludes the proof of Theorem 2.7. D 

COROLLARY 2.8. Let L/F be a finite separable extension. Then 
i/(F) < i/(L). 

PROOF OF THEOREM (1.2) FOR SEPARABLE EXTENSIONS. Let L/F 

be a finite separable extension. We will show v(L) < v(F) 4- 1. Let 
L = F(a 2 ) , so that l ,a2 , - -- ,a2^1-1^ is a basis of L over F . For 
any a £ F*, 7 € L let us consider the quadratic form (l,a)[l,7J ^ 
0. We can write <l,o)[l,7] = (l ,o)[l ,(7(a2 4- a) • • • (a2 + a 2 n " 3 ) ) / 
((a2 4- a) - - (a2 4- a2n~3))], where we consider only factors of the 
form a2 4- a2*-1, 1 < i < n — 1. We may assume a2*-1 ^ a2-7-1 

for all i 7̂  jf, since otherwise we get a2A;_1 = 1 for some integer 
k, because ChF = 2, and hence (a) = (1), i.e., (l,a)[l,7J — 0. 
Let 7(a2 4- a) • • • (a2 4- a2w"3) = 60 4- 61a2 4- • • • 4- ôn-ia2^"1* with 
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bo,b\, — - , 6 n _ i G F. Because of the above assumption we have the 
following decomposition in partial fractions 

b0 + bla
2 + -- + bn-1a

2(n-V t a 
= co + (a 2 + a) • • • (a 2 + a 2 "" 3 ) a2 + a + ••• + 

Cn-l 

a2 + a 2n -3 

with c 0 , c i , - - ,cn_x € F. (We have Co = 6 n - i and the determinant 
of the linear system of equations defining c i , - - - , c n _ i has the form 
a r ( l + a ) s for some r, s > 0, which is ^ 0 since we assume (a) ^ (1)). 
Inserting the above expression in the form ( l , a ) [ l , 7 ] we obtain in 
Wq{L) 

( l , a ) [ l , 7 ] = {l ,a) [ l ,c 0 ] + ^ ( l , a ) 
i = l 

But using lemma (2.1) we have 

1, 
a2 + a 2i-l 

(!,<*'+ a»-1) 
n2i-l 

+ ( l ,a 2 > 

1, 

C;a 
2 « - l 

.2 
1 

CiOf 

or + a 2 i - l 

in H^(L), so it follows that 

n - l 

(2.9) ( l , a ) [ l , 7 ] = <l,a>[l,cö] + ^ ( l > a 2 + a2 i-1> 

a^-^+a 2 *- 1 ) ] 
c7; 

z = l 

1, .22 — 1 

Therefore, for any ra > 0, a i , - - - , a m + i G F*, 7 € L, we obtain in 
W9(L) applying (2.9) to ( l , a m + i ) [ l , 7 ] , 

( ( a i , - - - , a m + i , 7 J ] 

= ( ( ö l , - - ,am+i,Co]] + ^ ( l , a 2 + a ^ ~ } ) / / a i , - - - , a ^ m ' 22—1 
^ r n + 1 

The proof of Theorem 1.2 is now obvious. If FnWq(F) — 0, then, from 
the above formula and from the fact that 7 m + 1 W 9 ( L ) is generated 
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by the forms ( (a i , - - - , a m +i ,7 ] ] with a i , - - - , a m + i G F* , 7 G L (see 
Corollary 2.4), it follows that Im+1Wq{L) = 0, i.e., i/(L) < v{F) + 1.0 

In fact we have shown the following general fact. 

THEOREM 2.10. Let L/F be a finite separable extension. Then 

Pn+lWq(L) = I(L%[ImWq(F)} 

for all m > 0, where i*[IrnWq(F)] is the image of ImWq(F) under the 
natural homomorphism i* : Wq{F) —> Wq(L). 

REMARK 2.11. It is easy to show that , for any quadratic separable 
extension L/F the equality v(L) = v(F) holds. We just need to prove 
u{L) < v(F). Assume ImWq(F) = 0. Let L = F ( a ) , a2 + a = a G F 
and define s : L —> F the trace map given by s ( l ) = 0, s (a) — 1, 
i.e., s = Tr L/F. For any m-fold Pfister form over L, we have 
s*(q) e rnWq(F) = 0, i.e., q G Ker(i*) . Hence q ^ q0 ® L with 
some form go defined over F (see [1, V (4.10)]), and hence, using [1, 
(V, 4.14)], we conclude q = qi®L with an m-fold Pfister form defined 
over F , which by assumption is 0 in Wq(F). This shows ImWq(L) = 0, 
i.e., u(L) < i/(F). 

3. T h e purely inseparable case . The main result of this section 
is 

THEOREM 3.1. Let L/F be a finite purely inseparable extension. 
Thenis(F) = v(L). 

Since any finite purely inseparable extension L/F admits a chain of 
subfields F = F 0 C Fi C ••• C F m = L with F7; = Fi-1(y/a~,), a?: 

G F*_ l 5 to prove Theorem 3.1 it suffices to consider the case L = 
F ( \ / / ) , / G F* . Let us write L = F(a),a2 = I. Then we have 

LEMMA 3.2. Any n-fold Pfister form q = ( ( a i , • • • , a n , /?]] over L is 

a linear combination in Wq(L) of n-fold Pfister forms of the type 

(i) ((ai , • • • ,an ,ò]] with a i , • • • , a n 6 G F* 
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(ii) ( ( a , a i , • • • ,a n _i ,6]] with a i , • • • , a n _ i , 6 G F*. 

PROOF. Let us consider first a 1-fold Pfister form q = (1,/5)[1,7] 
over L. Since 7 = 7 2 ( m o d p L ) , where pL = {x2 4- x\x G I/} 
and 7 2 G F for all 7 G L, we may assume 7 = c G F . Let 
ß = a + ha, a, 6 G F . From Lemma 2.1 we get g = (1, a + 6a) [1, c] = 
( l ,a)[ l ,ac/ /?] + (l ,òa)[l ,cò//?] = ( l , a ) [ l , c i ] + ( l ,6a ) [ l , c 2 ] with some 
c i , c 2 G F . Hence g = ( l , a ) [ l , d ] + <ò)(l,ò)[l,e2] + (6><l,a>[l,c2] 
in W9(L). Since ( l , a ) 2 = 0 in W(F), the lemma follows easily by 
induction. • 

We proceed now to prove the theorem. As noticed above, we may 
assume L = F (a), a2 = l G F*. Suppose first InWq(F) = 0. We will 
show InWq(L) = 0. According to Lemma 3.2 we just need to consider 
forms of type (i), (ii), but since InWq(F) = 0, then all forms of type 
(i) are 0. 

Take a form q = ((a, a i , - - - , an_iò]] of type (ii). Since q — 
((ai ,-*- ,a n _i ,6]] -L ( a ) ( ( a i , - - - , a n _i6]] , it suffices to show that any 
form ( (a i , - - - , a n _i ,6] ] does represent a over L, because then ç is 
isotropic and hence also hyperbolic over L. Notice that InWq(F) = 0 
implies that p = ((ai , • • • , an_i,ò]] represents any element of F* . We 
set <p = ( ( a i , - " , û n - i » = ( l , a i ) - - - ( l , a n _ i ) , and [l,ò] = Fe + Ff 
withp(e) = 1, p(f) = ò, bp(e,f) = 1, so that p = ^-[1,6] = (p®e(B<p®f-
Any vector of p has the form z = x ® e + y <& f with x,y G <£ and 
p(2) = <£>(x) 4- Lp{x,y) 4- ^{y)b. Over L, for x,?/ G (p ® L we write 
x = £0 + ^ l ^ , 2/ = 2/0 + 2/ia with aro,xi,2/o»2/i £ y? defined over F . 
Since y? is written in diagonal form we have ip(x) = <p(xo)+l<p(xi), (p(y) 
— vivo) + IwiVi) s o that , forz = x ( 8 ) e - | - 2 / ® / 6 p 0 L , we get 

p(z) = <^(x0) + <p(xo,yo) 4- v?(îfo)& + i[<p(zi) + <POPI,Z/I) + <p(î/i)6] 

+ a[v?(x0,2/i)H-^(xi,2/o)] 

p(2) = p(x0 0 e + 2/0 ® / ) 4- p(xi ® e + 2/1 <8) / ) / 

+ a[^(ar0,2/i) + ^(xi,2/o)]-
Choose Xi = (1,0, •• • ,0),2/i = 0, i.e., p{x\ 0 e 4- y\ 0 f) = 1. Since 
p represents all elements of F* , we can find xo,2/o £ <P such that 
p(x0 0 e 4 y o 0 / ) = '- Setting x = x0 4- x i a , y = yo + y\ot = 2/0, 
we obtain, (or z = x ® e + y ® f E p ® L, z ^ 0, 

(3.3) p(z) = m/o,i, 



^-INVARIANT OF A FIELD 597 

where 2/0,1 is the first coordinate of y$. If 2/0,1 = 0? it follows that p is 
isotropic over L, and hence it represents a over L. If y0,i r1 0>then 2/o,i 
is represented by p over F , and since p is a Pfister form, it follows from 
(3.3), that p represents a over L. This proves InWq(L) = 0. Thus we 
have v(L) < v(F). 

We now prove the converse, i.e., v{F) < v{L). To this end we use 

LEMMA 3.4. Let L = F(a),a2 = l e F*. Assume InWq(L) = 0. 
Then 

(i) Any n-fold Pfister form over F is of the type ((/, a\, • • • , on_i, 6]] 
with ai , • • • ,o n_i ,6 € F* 

(ii) Am/ (n - l)-fold Pfister form over F is of the type ((61, • • • , 6n_i, 
/c2]] with 6i,--- ,6n_i,c G F*. 

Let us proceed with the proof of v(F) < v(L). Assume InWq(L) 
= 0. Then any n-fold Pfister form over F has the form q = 
((/,ai,--- ,an_i,6]] (see Lemma 3.4(i)). Now using Lemma 3.4(ii) we 
can write ((ai,--- ,an_i,ò]] = ((6i,--- ,6n_i,/c2]] with some c € F*, 
i.e., q = ((òi,--- ,6n_i)> • (l,/)[l,/c2]. But obviously (1,/)[1,Zc2] is 
isotropic, so that q = 0 in M^(F). This proves 7nWq(F) = 0, i.e., 
v{F) < v(L), and Theorem 3.1 follows, a 

For the proof of Lemma 3.4 we need the following general fact about 
Pfister forms over fields of characteristic 2. 

PROPOSITION 3.5. Let q be an n-fold Pfister form over F . 

(i) If q contains a subform [1, a],a G F , then q = ((ai, • • • ,a n , a]] for 
some 01, • • • ,a n G F*. 

(ii) Wh£e q = (p ® [1,6] wi£/i </? = ((6i,--- ,6n)) = (1) _L </?', i.e., 
g = [1,6] _L (p* - [1,6]. 7 / / G F* is represented by (pf • [1,6], £/ien 
g = ((/,ai, • • • ,an_i,c]] with some ai ,- • • ,a n_i G F*. 

PROOF. Part (i) has been proved in [1, Chapter V] in a much more 
general setting, so that we omit the proof here. Let us prove (ii). 
Assume n = 1, q — (1,61) [1,6] = [1,6] _L (61) [1,6]. If/ is represented by 
(6i)[l,6],Z = bi{x2 + xy + by2), and since (x2+xy + by2)[l,b] ^ [1,6], we 
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get q ~ [1,6] JL (h(x2 + xy + 6y2))[l,6] - [1,6] _L </)[l,6] = <1,Z>[1,6]. 
Assume now n > 1. We use induction with respect to n. Write 
<p = (1, bt) • i>, V = «62, • • • , bn)). Hence ipf = tf L {h)^, q = [1,6] JL 
t/>' • [1,6] JL (6i>^[l,6], i.e., ^'[1,6] = ^'[1,6] JL <6a>V[l,6]. If / € F* is 
represented by (£>'[1,6], we can write I = c + b\d with c represented by 
?//[l, 6] and d represented by ^[1,6] (if ^ 0). (We may assume c, d ^ 0). 
By induction we have ^[1,6] = ( l , c ) r [ l ,6 / ] with some (n — 2)-fold 
bilinear Pfister form r, 6' G F . Moreover (d)-^[l,6] = ^[1,6]. Therefore 

9 = <1,61)^[1,6] = ^ 1 , 6 ] ± < 6 1 ) ^ [ 1 , 6 ] , 

^ < 1 , C ) < 1 , M ) T [ 1 , 6 ' ] , 

But ( l , c ) ( l , 6 id ) = ( l ,c ,6 id ,c6id) = ( l , c + bxd,x,x(c + 6,d))) = 
( l , / ) ( l , x ) , i.e., g = ( 1 , Z ) ( 1 , Z ) T [ 1 , 6 ' ] . This proves (ii). D 

Now we prove Lemma 3.4. Let us assume InWq(L) = 0. Let 
q = ( (ai , • • • , a n , 6]] = (p • [1,6] be any n-fold Pfister form over F. Since 
q®L = 0, we can find nonzero vectors x = Xo+^i« , y = 2/0+2/1« € <p<S>£ 
(see notation above) such that 

q(x <8> e + 2/ ® / ) = 0, 

i.e., 

ç(x0 ® e + | / o ® / ) + /g(xi <g> e -h yi <8> / ) = 0, 

bq(x0 ® e + yo ® / , xx <g> e H- yi <g> / ) = 0. 

Let w = xo ® e H- ?/i ® / , v = xi <g) e + yi ® / G g. Then g(tt) + lq(v) = 0, 
bq(u,v) = 0. Of course we may assume q(u),q(v) ^ 0, because 
otherwise q would be isotropic over F , and hence q = 0. Since 
2 = 0, we can find vectors tii,t?i G g with bq(u,u\) = l,bq(v,vi) = 1, 
and (u,ui) _L (v,v\). Thus we have (u,ui) J_ (v,vi) Ç g. Let 
a = q{v),a' — q(v\),a" — q(u\). Then [a,a'] _L [al,a") Ç g, i.e., 
(a)[ l ,a i ] _L (a/)[l,a2] Ç g for some a i , a2 G F . But a = g(i;) is 
represented by q, so that (a)q = q, and therefore [ l ,a i ] J_ (/)[l,a2] Ç ç. 
In particular [ l ,a i ] C q, so that , by Proposition 3.5(i), we have 
q = iß • [ l ,a i ] with some n-fold bilinear Pfister form iß. Since ç = 
[ l ,a i ] _L ^ ; [ l , a i ] , it follows by cancellation that (/)[1,02] Ç ^ ' [ l , a i ] , 
and hence / is represented by iß'[\,a\}. Using Proposition 3.5(ii) we 
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conclude q = ((/,6i, • • * , òn_i,ò']] for some &i, • • • , òn_i,ò' G F*. This 
proves Lemma 3.4 (i). 

Consider an (n - l)-fold Poster form over F,q = ((oi, • • • , an_i,6]] 
= <p • [1, &],</? = ((ai,--- ,a n_i)) . Since 7nWg(L) = 0, it follows that 
(l,a)(/ = 0 over L, i.e., g represents a over L. Therefore there exist 
x — XQ + £IOJ, ?/ = t/o + yia € (p<g) L such that q(x ®e + i / ® / ) = a. 

This means #(#0 <8> e -f- 2/o 0 / ) + /ç(#i 0 e + yi <g> / ) = 0, bq(x0®e 
+2/o <8> / , # i <E> e + yi ® / ) = 1. Thus we have u,v £ q with g(w) + 
/g(t>) = 0,6f/(u,t;) = 1. Hence (w,v) Ç q and (w,v) = [q(v),lq(v)} = 
(g(v))[l,Zg(t;)2]. But (g(v)) -q^q, so that [1,/c2] Ç ç, where c = g(v). 
Now we apply Proposition 3.5(i) to conclude q = ((6i,- • • , 6n_i,Zc2]], 
i.e., Lemma 3.4(h). a 

4. Proof of Theorem 1.2. Let L/F be a finite extension. Let Fs 

be the separable closure of F in L, F C Fs C L. Hence L/F s is purely 
inseparable, and therefore (see Theorem 3.1) v(L) — v(Fs). According 
to the results of §2 we have v(F) < v(F8) < v(F) + 1, i.e., we have 
v(F) < v{L) < v(F) -f 1. 

5. An example. We will now construct a field F and a separable 
extension L/F with [L : F] = 3 and v{L) = v(F) + 1. In fact, for any 
n, it is possible to find a field F and a separable finite extension L/F 
with v(F) = n, v{L) = n + 1 , but we will just consider the simplest case 
n — 0. Let F be the quadratic separable closure of Y^{X). Obviously 
v{F) = 0. Since W3 + W + 1 € F[W] is irreducible, let L = F(/?) 
with /33 = /? -f 1. We want to show v(L) = 1, which is equivalent with 
L 7̂  pL. We assert X/32 £ pL. Otherwise there exist 2/0,2/1,2/2 £ F with 
p(yo+yiß+V2ß2) = z/32 , i.e., 2/0+2/0 = °> 2/1+2/2 = 0, 2/1+2/2+2/2 = x -
Hence F 4 4- F 2 + Y — X has a solution in F . Let us show that this 
is impossible. Obviously there is no solution in ¥2{X). Assume that 
F 2 ( I ) C ^ C F i s a subfield such that Y4+Y2+Y = X has no solution 
in E. We will show that there is no solution in any quadratic separable 
extension E (a), a2+a = t € E of E. Otherwise let u+va(u, v e E) be a 
solution. It follows that u4 +u2+u+v4t2+v4t+v2t = X,v4+v2+v = 0. 
But v3 + v + 1 = 0 has no solution in F , and hence v = 0. Then 
u4 -f u2 + u = X in F , which is a contradiction. We conclude by 
induction, that there is no solution of Y4 + Y2 H- Y = X in F , and 
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therefore we have v(L) = 1. 
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