ON THE RELATIVE GROWTH OF AREA FOR SUBORDINATE FUNCTIONS

P.J. EENIGENBURG

Introduction. Let f be analytic in the open unit disk Δ and let $A(r, f)$ denote the area of the resion on the Riemann surface onto which the disk $|z|<r$ is mapped by f. Then

$$
\begin{aligned}
A(r, f) & =\int_{|z|<r} \int|f(z)|^{2} d x d y \\
& =\pi \sum_{n=1}^{\infty} n\left|a_{n}\right|^{2} r^{2 n}
\end{aligned}
$$

If F is also analytic in Δ, we say f is subordinate to $F(f \prec F)$ if there exists a bounded analytic function $\omega, \omega(0)=0$, such that $f(z)=F(\omega(z)), z \in \Delta$. Golusin [5] has shown that if $f \prec F$, then

$$
A(r, f) \leq A(r, F), \quad r \leq 1 / \sqrt{2}
$$

Reich [6] has extended this result by showing that, for $0<r<1$,

$$
\begin{equation*}
A(r, f) \leq T(r) A(r, F) \tag{1}
\end{equation*}
$$

where

$$
T(r)=m r^{2 m-2}
$$

in the range

$$
\frac{m-1}{m} \leq r^{2} \leq \frac{m}{m+1} \quad(m=1,2, \ldots)
$$

He also finds, for each r, all pairs (f, F) for which equality holds in (1). Waniurski and this author [3] have extended Reich's results to quasisubordinate pairs. It is the purpose, however, of this paper to examine

[^0]the asymptotic behavior of the ratio $A(r, f) / A(r, F)$ for subordinate pairs (f, F). The definition of $T(r)$ immediately yields the existence of positive constants A and B such that
$$
\frac{A}{1-r} \leq T(r) \leq \frac{B}{1-r}, \quad \leq r<1 .
$$

It then follows from (1) that $f \prec F$ implies

$$
\begin{equation*}
A(r, f) / A(r, F)=\mathrm{O}\left(\frac{1}{1-r}\right), \quad \text { as } r \rightarrow 1 . \tag{2}
\end{equation*}
$$

We intend to examine the relation (2) for various choices of schlicht mappings F : a bounded mapping, a mapping onto an infinite strip, and a mapping onto a sector with central angle $\pi \alpha$. We find that the growth of $A(r, F) / A(r, F)$ becomes smaller as the range of F becomes more expansive. In particular, the relation (2) is almost best possible when F is bounded, while $A(r, f) \leq A(r, F)$ when F maps Δ onto a sector with central angle $\geq \pi$. We first establish these two extreme cases, and then we give some results which interpolate between them.

Main Results. Fix $\rho>1$. We first exhibit a function f, analytic in Δ, continuous in $\bar{\Delta}$, for which

$$
\begin{aligned}
& A(r, f) \geq \frac{K}{(1-r)\left(\log \frac{1}{1-r}\right)^{2 \rho}} \\
& \frac{1}{2}<r<1, \quad \text { Ka constant. }
\end{aligned}
$$

We simply define $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$, where

$$
a_{n}= \begin{cases}\frac{1}{k^{k \rho}} & \text { if } n=2^{k} \\ 0 & \text { otherwise }\end{cases}
$$

The justification that f has the desired properties can be found in [4].
Actually, one cannot hope to find a bounded f such that $A(r, f) \geq$ $K(1-r)^{-1}$, as the following theorem states.

Theorem 1. If $f \in H^{2}$ then $\lim _{r \rightarrow 1}(1-r) A(r, f)=0$.

Proof. Since for $r \leq r_{n}=1-\frac{1}{n}$ we have $A(r, f) \leq A\left(r_{n}, f\right)$, it suffices to show that $\left(1-r_{n}\right) A\left(r_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty$. But

$$
\begin{align*}
\left(1-r_{n}\right) A\left(r_{n}, F\right) \leq & \frac{\pi}{n} \sum_{k=1}^{n} k\left|a_{k}\right|^{2} \\
& +\frac{\pi}{n} \sum_{k=n+1}^{\infty} k\left|a_{k}\right|^{2}\left(1-\frac{1}{n}\right)^{2 k} \tag{3}
\end{align*}
$$

Let $\varepsilon>0$. Choose N such that $\sum_{k=N+1}^{x}\left|a_{k}\right|^{2}<\varepsilon$. Then $\frac{1}{n} \sum_{k=N+1}^{n} k\left|a_{k}\right|^{2}<\varepsilon$. Consequently, the first term of the right side of (3) satisfies

$$
\begin{aligned}
\frac{\pi}{n} \sum_{k=1}^{n} k\left|a_{k}\right|^{2} & =\frac{\pi}{n} \sum_{k=1}^{N} k\left|a_{k}\right|^{2}+\frac{\pi}{n} \sum_{k=N+1}^{n} k\left|a_{k}\right|^{2} \\
& \leq \frac{\pi}{n}(\text { constant })+\pi \varepsilon \\
& \leq 2 \pi \varepsilon, \text { if } n \text { is sufficently large. }
\end{aligned}
$$

For the second term of the right side of (3), a differentiation shows $k\left(1-\frac{1}{n}\right)^{2 k}$ is a decreasing function of k, for $k \geq\left(\log \left(\frac{n}{n-1}\right)\right)^{-1}$. Since $\log (1+x)>x-x^{2} / 2$ for $0<x<1$, the choice $x=1 /(n-1)$ shows that $n>\left(\log \left(\frac{n}{n-1}\right)\right)^{-1}$ for $n>2$. Hence. $k\left(1-\frac{1}{n}\right)^{2 k}$ is a decreasing function of k, for $k \geq n$, and so

$$
\begin{aligned}
\frac{1}{n} \sum_{k=n+1}^{\infty} k\left|a_{k}\right|^{2}\left(1-\frac{1}{n}\right)^{2 k} & \leq \frac{1}{n} \sum_{k=n+1}^{\infty}\left|a_{k}\right|^{2} n\left(1-\frac{1}{n}\right)^{2 n} \\
& \leq \sum_{k=n+1}^{\infty}\left|a_{k}\right|^{2} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

The proof is complete.
We now take up the case where F maps Δ onto a sector with central angle $\geq \pi$. Brannan, Clunie, and Kirwan [1] have shown that if

$$
F(z)=\left(\frac{1+c z}{1-z}\right)^{\alpha}, \quad \alpha \geq 1,|c| \leq 1
$$

then every $f \prec F$ can be expressed as

$$
f(z)=\int_{-\pi}^{\pi} F\left(z e^{-i t}\right) d \mu(t)
$$

for some probability measure μ on $|z|=1$.

THEOREM 2. Let F be analytic in Δ, and let μ be a probability measure on $|z|=1$. If F is defined by

$$
f(z)=\int_{-\pi}^{\pi} F\left(z e^{-i t}\right) d \mu(t)
$$

then

$$
A(r, f) \leq A(r, F)
$$

Proof. Letting $z=\rho e^{i \theta}$, we have

$$
\begin{aligned}
A(r, f) & =\int_{0}^{r} \int_{0}^{2 \pi}\left|f^{\prime}(z)\right|^{2} \rho d \theta d \rho \\
& =\int_{0}^{r} \int_{0}^{2 \pi}\left|\int_{-\pi}^{\pi} F^{\prime}\left(z e^{-i t}\right) e^{-i t} d \mu(t)\right|^{2} \rho d \theta d \rho \\
& \leq \int_{0}^{r} \int_{0}^{2 \pi}\left(\int_{-\pi}^{\pi}\left|F^{\prime}\left(z e^{-i t}\right)\right| d \mu(t)\right)^{2} \rho d \theta d \rho \\
& \leq \int_{0}^{r} \int_{0}^{2 \pi} \int_{-\pi}^{\pi}\left|F^{\prime}\left(z e^{-i t}\right)\right|^{2} d \mu(t) \rho d \theta d \rho
\end{aligned}
$$

(by Jensen's inequality)

$$
\begin{aligned}
& =\int_{0}^{r} \int_{-\pi}^{\pi}\left(\int_{0}^{2 \pi}\left|F^{\prime}\left(\rho e^{i(\theta-t)}\right)\right|^{2} d \theta\right) d \mu(t) \rho d \rho \\
& =\int_{0}^{r} \int_{0}^{2 \pi}\left|F^{\prime}\left(\rho e^{i \phi}\right)\right|^{2} d \phi \rho d \rho \\
& =A(r, F)
\end{aligned}
$$

The proof is complete.

In preparation for our final result, we need to establish some notation. First, K will denote a constant, not necessarily the same in each instance. Also, if $p(x)$ and $q(x)$ are positive functions on the same domain X, then $p(x) \sim q(x)$ will mean that the ratio $p(x) / q(x)$ is bounded away from 0 and ∞ on X. That is, there exist positive constants m and M such that

$$
m<p(x) / q(x)<M, \quad x \in X
$$

Lemma 1. [2, p. 84] If $z=r e^{i \phi}, 1 / 2<r<1$, then

$$
\int_{-\pi}^{\pi} \frac{d \phi}{|1-z|^{p}} \sim \begin{cases}\frac{1}{(1-r)^{p-1}} & \text { if } p>1 \\ \log \frac{1}{1-r} & \text { if } p=1\end{cases}
$$

In fact, a more careful analysis would show that the limits of integration can be replaced by $-\pi / 2$ and $\pi / 2$. That is, all of the growth is attained in the right half plane. This remark will be used in the proof of the next result.

LEmMA 2. If $F(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}, \alpha>0$, then

$$
A(r, F) \sim(1-r)^{-2 \sigma}, \quad \frac{1}{2}<r<1
$$

If $F(z)=\log \left(\frac{1+z}{1-z}\right)$, then

$$
A(r, F) \sim \log \frac{1}{1-r}, \quad \frac{1}{2}<r<1
$$

Proof. In the case $\alpha>0$ we have

$$
\left|F^{\prime}(z)\right| \sim \frac{1}{|1-z|^{1+\alpha}}, \quad z \in \Delta, \operatorname{Re} z \geq 0
$$

and

$$
\left|F^{\prime}(z)\right| \sim \frac{1}{|1+z|^{1-\alpha}}, \quad z \in \Delta, \operatorname{Re} z<0
$$

Since $1-\alpha \leq 1+\alpha$, it follows that, for $z=\rho e^{i \theta}, 1 / 2<r<1$,

$$
\begin{aligned}
A(r, F) & \sim \int_{0}^{r} \int_{-\pi / 2}^{\pi / 2} \frac{d \theta}{|1-z|^{2(1+\alpha)}} \\
& \sim(1-r)^{-2 \alpha}, \text { by Lemma } 1
\end{aligned}
$$

The logarithm case follows by this same reasoning, but with $\alpha=0$. The proof is complete.

We now state our main result giving the growth of $A(r, f) / A(r, F)$ for various domains $F(\Delta)$.

THEOREM 3. If $f \prec F$, where $F(z)=K\left(\frac{1+z}{1-z}\right)^{\alpha}$, then

$$
A(r, f) / A(r, F)= \begin{cases}\mathrm{O}(1) & \text { if } \alpha>1 / 2 \tag{4}\\ \mathrm{O}\left(\log \frac{1}{1-r}\right) & \text { if } \alpha=1 / 2 \\ \mathrm{o}\left(\frac{1}{(1-r)^{1-2 \alpha}}\right) & \text { if } 0<\alpha<1 / 2\end{cases}
$$

Also,

$$
A(r, f) / A(r, F)= \begin{cases}\mathrm{o}\left(\frac{1}{(1-r)} \log \frac{1}{1-r}\right) & \text { if } F(z)=K \log \frac{1+z}{1-z} \tag{5}\\ \mathrm{O}\left(\frac{1}{1-r}\right) & \text { if } F(z)=K z\end{cases}
$$

Proof. We first consider the case $\alpha>1 / 2$. By Littlewood's subordination theorem and Lemma 1,

$$
\int_{-\pi}^{\pi}|f(z)|^{2} d \theta \leq K \int_{-\pi}^{\pi} \frac{d \theta}{|1-z|^{2 \alpha}} \leq K(1-r)^{1-2 \alpha}
$$

We now use a theorem of Hardy and Littlewood's relating the mean growth of an analytic function with the mean growth of its derivative [2, p. 80]. The result is that

$$
\int_{-\pi}^{\pi}\left|f^{\prime}(z)\right|^{2} d \theta \leq K(1-r)^{-2 \alpha-1}
$$

and hence $A(r, f) \leq K(1-r)^{-2 \alpha}$. By Lemma 2, we may divide the left side by $A(r, F)$ and the right side by $(1-r)^{-2 \Omega}$, thus giving the desired result.

Now consider the case $\alpha=1 / 2$. Applying Lemma 1 .

$$
\int_{-\pi}^{\pi}|f(z)|^{2} d \theta \leq \log \frac{1}{1-r}
$$

By the Cauchy formula

$$
\begin{aligned}
f^{\prime}(z) & =\frac{1}{2 \pi i} \int_{|\zeta|=p} \frac{f(\zeta) d \zeta}{(\zeta-z)^{2}} \\
& =\frac{\rho}{2 \pi} \int_{-\pi}^{\pi} \frac{f\left(\rho e^{i(t+\theta)}\right) e^{i(t-\theta)}}{\left(\rho e^{i t}-r\right)^{2}} d t
\end{aligned}
$$

where $\rho=\frac{1}{2}(1+r)$. Minkowski's inequality (in continuous form) then gives

$$
\begin{align*}
M_{2}\left(r, f^{\prime}\right) & \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{M_{2}(\rho, f) d t}{\rho^{2}-2 \rho r \cos t+r^{2}} \\
& =\frac{M_{2}(\rho, f)}{\rho^{2}-r^{2}} \leq \frac{K\left(\log \frac{1}{1-r}\right)^{1 / 2}}{1-r} \tag{6}
\end{align*}
$$

where $M_{2}\left(r, f^{\prime}\right)$ denotes the mean square $\left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta\right\}^{1 / 2}$. Using (6) and integration by parts gives

$$
A(r, f) \leq\left(\frac{\kappa}{1-r}\right) \cdot \log \left(\frac{1}{1-r}\right)
$$

Application of Lemma 2 yields

$$
A(r, f) / A(r, F) \leq K \log \left(\frac{1}{1-r}\right)
$$

We finally consider the case $0<\alpha<1 / 2$. This, and also (5), are easily proved since $f \in H^{2}$. We may thus use Theorem 1 to obtain $A(r, F)=o(1-r)^{-1}$. Then we divide each side by the approximate relations from Lemma 2.

This completes the proof of Theorem 3. It would be interesting to know whether, in the case $\alpha=1 / 2$, the "big O " may be replaced by "little o".

The author is indebted to Douglas Campbell for his contribution to the proof of Theorem 1 and also to the referee for many helpful suggestions.

REFERENCES

1. D.A. Brannan, J.E. Clunie and W.E. Kirwan, On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. AI 523 (1973), 1-18.
2. P.L. Duren, Theory of H^{p} Spaces, Academic Press, New York and London, 1970.
3. P.J. Eenigenburg and J. Waniurski, An area inequality for quasi-subordinate analytic functions, Annales Polon. Math. 34 (1976), 25-33.
4. -_ and J.D. Nelson, On area and subordination, Complex Analysis, Proc. S.U.N.Y. Brockport Conference, Marcek Dekker, N.Y., 1976, 53-60.
5. G.M. Golusin, On majorants of subordinate analytic functions I, Mat. Sbornik, N.S. 29 (1951), 209-224.
6. E. Reich, An inequality for subordinate analytic functions, Pacific J. Math. 4 (1954), 259-274.

Western Michigan University. Kalamazoo. MI 49008

[^0]: This research was supported in part by a Western Michigan University Research Fellowship.

 Received by the editors on March 18, 1986 and in revised form on October 10. 1986.

