ON NORM AND ZERO ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS FOR GENERAL MEASURES, I

MATTHEW F. WYNEKEN

Abstract

Let μ be a positive unit Borel measure with infinite support in the interval $I=[-1,1]$, and let $\left\{p_{n}(x)\right\}_{n \geq 0}$ be the monic orthogonal polynomials associated to μ. Let ν_{n} denote the unit measure having mass $1 / n$ at each zero of $p_{n}(x)$, and let $\lambda_{n}=\left(\int\left(p_{n}(x)\right)^{2} d \mu\right)^{1 / 2 n}$. It is known that, subject to the condition that no set of unit μ-measure has capacity zero, when a subsequence of the sequence $\left\{\nu_{n}\right\}_{n \geq 1}$ converges, the corresponding subsequence of $\left\{\lambda_{n}\right\}_{n \geq 1}$ converges as well. We give an example which shows that the converse statement is not true in general.

Introduction and Definitions. We say that μ is a weight measure if it is a positive unit Borel measure with infinite support in the interval $I=[-1,1]$, where the support $S(\mu)$ is the smallest closed set of unit μ-measure. Given a weight measure μ, for $n=0,1,2, \ldots$, let $p_{n}(x)=x^{n}+\cdots$, denote the $n^{\text {th }}$ orthogonal polynomial associated to μ, so that

$$
\left(\int p_{m}(x) p_{n}(x) d \mu\right)^{1 / 2}=N_{n} \delta_{m, n},
$$

where $\delta_{m, n}=\{0$ if $m \neq n, 1$ if $m=n\}$. Let ν_{n} denote the zero measure for $p_{n}(x)$, i.e., the unit measure with mass $1 / n$ at each zero of $p_{n}(x)$, and let $\lambda_{n}=\left(N_{n}\right)^{1 / n}$ be the $n^{\text {th }}$ linearized norm. It is known that, subject to the condition that no set of unit μ-measure has capacity zero, when a subsequence of the sequence $\left\{\nu_{n}\right\}_{n \geq 1}$ converges, the corresponding subsequence of $\left\{\lambda_{n}\right\}_{n \geq 1}$ converges as well. Here we give an example which shows that the converse statement is not true in general.
If, for a unit Borel measure μ defined on I, we have $\lim _{n \rightarrow \infty} \int f d \nu_{n}=$ $\int f d \mu$ for all functions f continuous on I, then we say that the sequence $\left\{\nu_{n}\right\}_{n \geq 1}$ converges weakly to μ or that μ is a weak limit of $\left\{\nu_{n}\right\}_{n \geq 1}$, and we write $\lim _{n \rightarrow \infty} \nu_{n}=\mu$. By a theorem of Helly, $\left\{\nu_{n}\right\}_{n \geq 1}$ always has weakly convergent subsequences.

Received by the editors on March 12, 1987.

The capacity of a bounded Borel set B is taken as its inner logarithmic capacity, i.e., $C(B)=\sup _{K \subset B} C(K)$, where K runs through all compact subsets of B, and $C(K)$ is the capacity of K as derived from the logarithmic potential function $U(z, \mu)=\int \log \left(|z-t|^{-1}\right) d \mu(t)[\mathbf{4}]$. The following are properties of capacity [5]: For Borel sets B_{1} and B_{2},
(i) $B_{1} \subset B_{2} \Rightarrow C\left(B_{1}\right) \leq C\left(B_{2}\right)$,
(ii) $C\left(B_{1}\right)=0 \Rightarrow C\left(B_{2} \cup B_{1}\right)=C\left(B_{2} \backslash B_{1}\right)=C\left(B_{2}\right)$,
(iii) if K_{n} is compact, and $K_{n} \subset K_{n+1} \subset I(n=1,2, \ldots)$, then $\lim _{n \rightarrow \infty} C\left(K_{n}\right)=C\left(\cup_{n \geq 1} K_{n}\right)$.

A carrier of a weight measure μ is a Borel subset B of $S(\mu)$ such that $\mu(B)=1$. Associated with μ are two numbers, $\underline{C}=\inf C(B)$, where the infimum is taken over all carriers, and $\bar{C}=C(S(\mu))$. There exist weight measures μ for which $\underline{C}<\bar{C}$ and these measures are called undetermined. The sequences of zero measures and linearized norms of an undetermined measure may or may not converge $[\mathbf{7}, \mathbf{8}, \mathbf{9}]$.

Let B be a bounded Borel subset of the complex plane \mathbf{C} having positive capacity. The equilibrium measure for B is the unique unit measure μ which satisfies the following [3, p. 171]:
(i) $U(z, \mu) \leq \log \left(C(B)^{-1}\right)$ for $z \in \mathbf{C}$,
(ii) $U(z, \mu)=\log \left(C(B)^{-1}\right)$ for $z \in B \backslash Z, C(Z)=0$,
(iii) $S(\mu) \subset \bar{B}$, where \bar{B} denotes the closure of B.

We denote the equilibrium measure for B by μ_{B}.
When $B \subset I$, condition (iii) can be changed to (iii)* $S(\mu) \subset I$. To see this let μ be any unit measure satisfying (i), (ii), and (iii)*. Let $K_{n} \subset K_{n+1}(n=1,2, \ldots)$ be compact subsets of $B \backslash Z$ such that $C\left(K_{1}\right)>0$ and $\lim _{n \rightarrow \infty} C\left(K_{n}\right)=C(B \backslash Z)=C(B)$. Let μ_{n} be the equilibrium measure for K_{n}, and let

$$
v_{n}(z)=\left(U(z, \mu)-\log \left(C(B)^{-1}\right)\right)-\left(U\left(z, \mu_{n}\right)-\log \left(C\left(K_{n}\right)^{-1}\right)\right)
$$

Then $v_{n}(z)$ is superharmonic on $\mathbf{C} \backslash K_{n}$ and has a finite limit as z tends to infinity. Since $U(z, \mu)$ is lower-semicontinuous we have, for $\zeta \in K_{n}$,

$$
\begin{aligned}
\liminf _{z \rightarrow \zeta} v_{n}(z) & \geq \liminf _{z \rightarrow \zeta}\left(U(z, \mu)-\log \left(C(B)^{-1}\right)\right) \\
& -\limsup _{z \rightarrow \zeta}\left(U\left(z, \mu_{n}\right)-\log \left(C\left(K_{n}\right)^{-1}\right)\right) \\
& \geq U(\zeta, \mu)-\log \left(C(B)^{-1}\right)=0
\end{aligned}
$$

Hence, by the minimum principle for superharmonic functions [1, p. 59] we have $v_{n}(z) \geq 0$ for $z \in \mathbf{C} \backslash K_{n}$ and a fortiori for $z \in \mathbf{C} \backslash I$. Thus, for some weakly convergent subsequence of $\left\{\mu_{n}\right\}_{n>1}$, say $\lim _{k \rightarrow x} \mu_{n_{k}}=\nu$, we have $U(z, \mu)-U(z, \nu) \geq 0$ for $z \in \mathbf{C} \backslash I$. Thus $U(z, \mu)-U(z, \nu)=0$ for $z \in \mathbf{C} \backslash I$, and hence $\mu=\nu[\mathbf{4}, \mathrm{pp} .34,50]$. Since all this is true for $\mu=\mu_{B}$ we have $\nu=\mu_{B}$. Thus, when $B \subset I$, any measure μ satisfying (i), (ii), and (iii)* must equal μ_{B}.

Results and proofs. We first state a result on the relationship between the sequences of zero measures and linearized norms which is due to Ullman and whose proof will appear elsewhere.

Proposition. Let μ be an undetermined weight measure having no carrier of capacity zero. If a subsequence $\left\{\nu_{n_{k}}\right\}_{k^{\geq 1}}$ of $\left\{\nu_{n}\right\}_{n \geq 1}$ has weak limit ν_{0}, then the corresponding subsequence $\left\{\lambda_{n_{k}}\right\}_{k \geq 1}$ of $\left\{\lambda_{n}\right\}_{n \geq 1}$ converges to a limit λ_{0}. Furthermore, λ_{0} is associated with ν_{0} in the sense that, if $\left\{\nu_{m_{k}}\right\}_{k \geq 1}$ is any other subsequence of $\left\{\nu_{n}\right\}_{n \geq 1}$ converging weakly to ν_{0}, then the subsequence $\left\{\lambda_{m_{k}}\right\}_{k \geq 1}$ also converges to λ_{0}.

It is our intention here to show that the converse statement to the proposition is not true in general by constructing an example of a weight function $w(x)$ on I such that, for $d \mu=w(x) d x$, the subsequence $\left\{\lambda_{n_{m}}\right\}_{m \geq 1}$ converges while the subsequences $\left\{\nu_{n_{2 k-1}}\right\}_{k \geq 1}$ and $\left\{\nu_{n 2 k}\right\}_{k \geq 1}$ converge weakly to unequal limits.
We now give four lemmas to be used in the construction. The first lemma extends the "transfer function" lemma of Ullman.

Lemma 1. $[\mathbf{6}, \mathbf{8}]$. Let \boldsymbol{K} be a finite disjoint union of nondegenerate closed subintervals in I. Then, for each positive integer n, there is a sequence $\left\{c_{n}\right\}_{n \geq 1}$ of positive numbers depending only on K such that $\lim _{n \rightarrow \infty} c_{n}^{1 / n}=1$, and there is a family $\left\{\tau_{n, \theta}(x)\right\}_{n \geq 1.0<\theta \leq 1}$ of nonnegative Borel measurable functions such that, for each $\theta, 0<\theta \leq 1$, and each polynomial $q_{n}(x)$ of degree n :
(i) $\int \tau_{n, \theta}(x) d x=n^{-2}$,
(ii) $A_{n}(\theta)=\left\{x: \tau_{n, \theta}(x)>0\right\}$ is a compact subset of K, and
(iii) $\int\left(q_{n}(x)\right)^{2} \tau_{n, \theta}(x) d x \geq c_{n}\left(\left\|q_{n}(x)\right\|_{K}\right)^{2}$, where $\left\|q_{n}(x)\right\|_{K}$ $=\max _{x \in K}\left|q_{n}(x)\right|$.
We say that $\tau_{n, \theta}(x)$ is a transfer function and $A_{n}(\theta)$ a transfer set for K. Moreover, the transfer functions $\tau_{n . \theta}(x)$ can be chosen in such a way that $C\left(A_{n}(\theta)\right)$ is a continuous and nondecreasing function of θ so that, for any compact subset J of I,

$$
(C(J), C(J \cup K)] \subset\left\{C\left(J \cup A_{n}(\theta)\right): 0<\theta \leq 1\right\} .
$$

Proof. For $z \in \mathbf{C}$, let $G(z)=\log \left(C\left(K^{\prime}\right)^{-1}\right)-U\left(z, \mu_{K}\right)$, and let $G_{\delta}=\max _{z \in K_{\delta}}|G(z)|$ where $K_{\delta}=\left\{z \in \mathbf{C}: \min _{t \in K}|z-t| \leq \delta\right\}$. It has been shown [6] that if $x^{*} \in K$ is chosen such that $\left|q_{n}\left(x^{*}\right)\right|=\left\|q_{n}(x)\right\|_{K}$ and we set $d_{n}=\left[n \exp \left(n G_{2 / n}\right)\right]+1$ (brackets [.] indicating the least integer function), then, for x such that $\left|x-x^{*}\right| \leq\left(2 d_{n}\right)^{-1}$, it follows that $\left|q_{n}(x)\right| \geq(1 / 2)\left\|q_{n}(x)\right\|_{K}$. Let $I_{k}=\left[-1+(k-1)\left(2 d_{n}\right)^{-1},-1+k\left(2 d_{n}\right)^{-1}\right]$ and let $\left\{K_{i}: 1 \leq i \leq m_{n}\right\}$, where $m_{n} \leq 4 d_{n}$, be the nonempty sets (excluding any isolated points) among $\left\{K \cap I_{k}: 1 \leq k \leq 4 d_{n}\right\}$. We may express each K_{i} as a finite union of closed intervals, say $K_{i}=J_{1} \cup \cdots \cup J_{m}$, and if we set $J_{j}=\left[a_{j}, b_{j}\right]$ for $1 \leq j \leq m$, then let $J_{j}(\theta)=\left[\left(a_{j}+b_{j}\right) / 2-\theta\left(b_{j}-a_{j}\right) / 2,\left(a_{j}+b_{j}\right) / 2+\theta\left(b_{j}-a_{j}\right) / 2\right]$ and $K_{i}(\theta)=J_{1}(\theta) \cup \cdots \cup J_{m}(\theta)$ for $0<\theta \leq 1$. Then set $c_{n}=\left(4 n^{2} m_{n}\right)^{-1}$ and $\tau_{n, \theta}(x)=\left(n^{2} m_{n}\right)^{-1} \sum_{1 \leq i \leq m_{n}} \chi_{K_{i}(\theta)}(x)\left(\ell\left(K_{i}(\theta)\right)\right)^{-1}$, where $\chi_{K_{i}(\theta)}(x)$ is the characteristic function of the set $K_{i}(\theta)$, and where ℓ indicates linear measure. Now x^{*} will be in one of the sets $K_{i}(1)$, say $x^{*} \in K_{i^{*}}(1)$, so we then have

$$
\begin{aligned}
\int\left(q_{n}(x)\right)^{2} \tau_{n . \theta}(x) d x & \geq\left(n^{2} m_{n}\right)^{-1} \int\left(q_{n}(x)\right)^{2} \chi_{K_{i^{*}}(\theta)}(x)\left(\ell \left(K_{\left.\left.i^{*}(\theta)\right)\right)}^{-1} d x\right.\right. \\
& \geq c_{n}\left(\left\|q_{n}(x)\right\|_{K}\right)^{2} .
\end{aligned}
$$

The fact that $\lim _{n \rightarrow \infty} c_{n}^{1 / n}=1$ follows since $\lim _{\delta \rightarrow 0} G_{\delta}=0[4$, p. 7$]$. Now let $A_{n}(\theta)=K_{1}(\theta) \cup \cdots \cup K_{m_{n}}(\theta)$. The function $C\left(A_{n}(\theta)\right)$ is nondecreasing by monotonicity of capacity. To see that $C\left(A_{n}(\theta)\right)$ is continuous we will prove the general statement that, for a given Borel subset B of I and for a given positive ε, there exists a positive δ such that, for any Borel subset A of I where $C(A)<\delta$, we have

$$
C(B)-\varepsilon \leq C(B \backslash A) \leq C(B \cup A) \leq C(B)+\varepsilon .
$$

We may assume that $C(B)>0, C(B)^{2} \geq C(A)>0, C(B \backslash A)>0$, and that B and A are subsets of $[-1 / 2,1 / 2][4$, p. 56]. From the inequality [4, p. 63] $(\log C(B))^{-1} \geq(\log C(B \backslash A))^{-1}+(\log C(A))^{-1}$, it follows that $C(B \backslash A) \geq C(B)^{2}$ and also that

$$
C(B) \leq C(B \backslash A)^{\left(\frac{\log C(A)}{\log C(A)+\log C(B \backslash A)}\right)} .
$$

Hence $C(B) \leq C(B \backslash A)+\varepsilon$ provided we choose $C(A)$ sufficiently small so as to satisfy

$$
\begin{aligned}
1+\frac{\log \left(1+\frac{\varepsilon}{C(B \backslash A)}\right)}{\log C(B \backslash A)} & \leq 1+\frac{\log \left(1+\frac{\varepsilon}{C(B)^{2}}\right)}{\log \left(C(B)^{\prime}\right.} \\
& \leq \frac{\log (C(A)}{\log C(A)+\log C(B \backslash A)} .
\end{aligned}
$$

Similarly, it follows from the inequality [4, p. 63] $(\log C(B \cup A))^{-1} \geq$ $(\log C(B))^{-1}+(\log C(A))^{-1}$ that

$$
C(B \cup A) \leq C(B)^{\left(\frac{\log C(A)}{\log C(A)+\log C(B)}\right)},
$$

and hence that $C(B \cup A) \leq C(B)+\varepsilon$ provided we choose $C(A)$ sufficiently small so as to satisfy

$$
1+\frac{\log \left(1+\frac{\varepsilon}{C(B)}\right)}{\log C(B)} \leq \frac{\log C(A)}{\log C(A)+\log C(B)} .00
$$

Lemma 2. (Szegö and Tonelli) [4, p. 73]. Let K be a compact subset of I and let $M_{n}(K)=\inf \left\|q_{n}(x)\right\|_{K}$, where the infimum is taken over all monic polynomials $q_{n}(x)$ of degree n.
(i) If K contains at least n points, then there is a unique monic Chebychev polynomial of degree n for K^{\prime}, denoted $T_{n}\left(x, K^{*}\right)$, such that $\left\|T_{n}\left(x, K^{\prime}\right)\right\|_{K}=M_{n}\left(K^{\circ}\right)$.
(ii) If K^{\prime} is infinite, then $\lim _{n \rightarrow \infty}\left(M_{n}\left(K^{\prime}\right)\right)^{1 / n}=C\left(K^{\prime}\right)$.
(iii) For $x \in I,\left|T_{n}\left(x, K^{\prime}\right)\right| \leq 2^{n}$.

Lemma 3. [7]. Let μ be a weight measure with subsequence of monic orthogonal polynomials $\left\{p_{n_{m}}(x)\right\}_{m \geq 1}$ and zero measures $\left\{\nu_{n_{m}}\right\}_{m \geq 1}$.

Let B be a carrier of μ of positive capacity with equilibrium measure μ_{B}. Then the following two statements are equivalent:
(i) $\lim _{m \rightarrow x} \nu_{n_{m}}=\mu_{B}$,
(ii) $\lim \sup _{m \rightarrow \infty}\left|P_{n_{m}}(x)\right|^{1 / n_{m}} \leq C(B)$
for all x in some Borel subset B^{*} of B of the same capacity.

Let B be a bounded Borel set of positive capacity with equilibrium measure μ_{B}. We denote by $A\left(\mu_{B}\right)$ the set $\left\{z \in \mathbf{C}: U\left(z, \mu_{B}\right)=\right.$ $\left.\log \left(C(B)^{-1}\right)\right\}$, and we will use the fact that $C\left(A\left(\mu_{B}\right)\right)=C(B)[2$, p. 189].

Lemma 4. (Ullman). Let B_{1} and B_{2} be two Borel subsets of I, each having positive capacity C. Then $\mu_{B_{1}}=\mu_{b_{2}}$ if and only if $C\left(B_{1} \cup B_{2}\right)=C$.

Proof. Assuming $C\left(B_{1} \cup B_{2}\right)=C$, it follows that $\mu_{B_{1} \cup B_{2}}$ is an equilibrium measure for B_{1} and B_{2}, so $\mu_{B_{1}}=\mu_{B_{2}}$. Conversely, if $\mu_{B_{1}}=$ $\mu_{B_{2}}$, then $U\left(z, \mu_{B_{1}}\right)=U\left(z, \mu_{B_{2}}\right)=\log \left(C^{-1}\right)$ for $z \in B_{1} \cup B_{2} \backslash Z$ where $C(Z)=0$. Thus $C \leq C\left(B_{1} \cup B_{2}\right)=C\left(B_{1} \cup B_{2} \backslash Z\right) \leq C\left(A\left(\mu_{B_{1}}\right)\right)=C$, so $C\left(B_{1} \cup B_{2}\right)=C$. ㅁ

We now proceed with the construction of $w(x)$. Choose intervals I_{1} and I_{2} in I and some number λ such that $\max \left\{C\left(I_{1}\right), C\left(I_{2}\right)\right\}<$ $\lambda<C\left(I_{1} \cup I_{2}\right)$. For a compact set K, let $T_{n}(x, K)$ be the Chebychev polynomial of degree n for K, and let $\left\|T_{n}(x, K)\right\|=\left\|T_{n}(x, K)\right\|_{K}$. Let $\left\{\delta_{m}\right\}_{m \geq 1}$ be a sequence of positive numbers decreasing to zero, and let $n_{0}=1$. Then n_{1} can be chosen such that $\left\|T_{n_{1}}\left(x, I_{1}\right)\right\|^{1 / n_{1}}<\lambda$ (Lemma 2) and $\sum_{n>n_{1}} n^{-2} \leq(\lambda / 2)^{2 n_{0}}$, and there exists θ_{1} such that $\lambda-\delta_{1}<C\left(I_{2} \cup A_{n_{1}}\right)<\lambda$ where $A_{n_{1}}=A_{n_{1}}\left(\theta_{1}\right)$ is a transfer set for I_{1} (Lemma 1); set $\tau_{n_{1}}=\tau_{n_{1}, \theta_{1}}$. Similarly, n_{2} can be chosen such that $\left\|T_{n_{2}}\left(x, I_{2} \cup A_{n_{1}}\right)\right\|^{1 / n_{2}}<\lambda, \sum_{n \geq n_{2}} n^{-2} \leq(\lambda / 2)^{2 n_{1}}$, and there exists θ_{2} such that $\lambda-\delta_{2}<C\left(I_{1} \cup A_{n_{2}}\right)<\lambda$, where $A_{n_{2}}=A_{n_{2}}\left(\theta_{2}\right)$ is a transfer set for $I_{2} \cup A_{n_{1}}$; set $\tau_{n_{2}}=\tau_{n_{2}, \theta_{2}}$.

Generally, having chosen $n_{1}, n_{2}, \ldots, n_{2 k-2}$ and $A_{n_{1}}, A_{n_{2}}, \ldots, A_{n_{2 k-2}}$, choose $n_{2 k-1}$ such that $\left\|T_{n_{2 k-1}}\left(x, I_{1} \cup A_{n_{2}} \cup A_{n_{4}} \cup \cdots \cup A_{n_{2 k-2}}\right)\right\|^{1 / n_{2 k-1}}$
$<\lambda$ and $\sum_{n \geq n_{2 k-1}} n^{-2} \leq(\lambda / 2)^{2 n_{2 k-2}}$, and let $A_{n_{2 k-1}}\left(\right.$ with $\left.\tau_{n_{2 k-1}}\right)$ be a transfer set for $I_{1} \cup A_{n_{2}} \cup A_{n_{4}} \cup \cdots \cup A_{n_{2 k-2}}$ such that $\lambda-\delta_{2 k-1}<$ $C\left(I_{2} \cup A_{n_{1}} \cup A_{n_{3}} \cup \cdots \cup A_{n_{2 k-1}}\right)<\lambda$. (We can do this because $\lambda-\delta_{2 k-3}<C\left(I_{2} \cup A_{n_{1}} \cup A_{n_{3}} \cup \cdots \cup A_{n_{2 k-3}}\right)<\lambda$.) Similarly, choose $n_{2 k}$ such that $\left\|T_{n_{2 k}}\left(x, I_{2} \cup A_{n_{1}} \cup A_{n_{3}} \cup \cdots \cup A_{n_{2 k-1}}\right)\right\|^{1 / n_{2 k}}<\lambda$ and $\sum_{n \geq n_{2 k}} n^{-2} \leq(\lambda / 2)^{2 n_{2 k-1}}$, and let $A_{n_{2 k}}\left(\right.$ with $\left.\tau_{n_{2 k}}\right)$ be a transfer set for $\bar{I}_{2} \cup A_{n_{1}} \cup A_{n_{3}} \cup \cdots \cup A_{n_{2 k-1}}$ such that $\lambda-\delta_{2 k}<C\left(I_{1} \cup A_{n_{2}} \cup A_{n_{4}} \cup\right.$ $\left.\cdots \cup A_{n_{2 k}}\right)<\lambda$.
Let $w(x)=c \sum_{k \geq 1}\left(\tau_{n_{2 k-1}}(x)+\tau_{n_{2 k}}(x)\right), c=\left(\sum_{m \geq 1}\left(n_{m}\right)^{-2}\right)^{-1}$, and let $d \mu=w(x) d x$. Let $p_{n}(x)$ be the $\mathrm{n}^{\text {th }}$ orthogonal polynomial associated to μ, λ_{n} be the $n^{\text {th }}$ linearized norm, and ν_{n} the zero measure for $p_{n}(x)$. First, it follows from Lemma 1 and the fact $\left\|p_{n}(x)\right\|_{K} \geq$ $\left(C\left(K^{\prime}\right)\right)^{n}\left[4\right.$, p. 62] that $\liminf _{k \rightarrow \infty} \lambda_{n_{2 k-1}} \geq \lambda$ and $\liminf _{k \rightarrow \infty} \lambda_{n_{2 k}} \geq$ λ. Next, we have

$$
\begin{align*}
& \left(N_{n_{2 k-1}}\right)^{2}=\int\left(p_{n_{2 k-1}}(x)\right)^{2} w(x) d x \\
& \leq \int\left(T_{n_{2 k-1}}\left(x, I_{1} \cup A_{n_{2}} \cup A_{n_{4}} \cup \cdots \cup A_{n_{2 k-2}}\right)\right)^{2} w(x) d x \tag{5}\\
& \leq \int\left(T_{n_{2 k-1}}\left(x, I_{1} \cup A_{n_{2}} \cup A_{n_{4}} \cup \cdots \cup A_{n_{2 k-2}}\right)\right)^{2} w(x) d x \\
& I_{1} \cup A_{n_{2}} \cup A_{n_{4}} \cup \cdots \cup A_{n_{2 k-2}} \\
& +\int\left(T_{n_{2 k-1}}\left(x, I_{1} \cup A_{n_{2}} \cup A_{n_{4}} \cup \cdots \cup A_{n_{2 k-2}}\right)\right)^{2} w(x) d x \\
& I \backslash\left(I_{1} \cup A_{n_{2}} \cup A_{n_{4}} \cup \cdots \cup A_{n_{2 k-2}}\right) \\
& \leq \lambda^{2 n_{2 k-1}}+c 2^{2 n_{2 k-1}}\left(\left(n_{2 k}\right)^{-2}+\left(n_{2 k+1}\right)^{-2}+\cdots\right) \quad(\text { Lemma } 2) \\
& \leq(1+c) \lambda^{2 n_{2 k-1}} \text {, }
\end{align*}
$$

so $\lim \sup _{k \rightarrow \infty} \lambda_{n_{2 k-1}} \leq \lambda$. Similarly,

$$
\begin{aligned}
\left(N_{n_{2 k}}\right)^{2} & =\int\left(p_{n_{2 k}}(x)\right)^{2} w(x) d x \\
& \leq \int\left(T_{n_{2 k}}\left(x, I_{2} \cup A_{n_{1}} \cup A_{n_{3}} \cup \cdots \cup A_{n_{2 k-1}}\right)\right)^{2} w(x) d x \\
\leq & \int\left(T_{n_{2 k}}\left(x, I_{2} \cup A_{n_{1}} \cup A_{n_{3}} \cup \cdots \cup A_{n_{2 k-1}}\right)\right)^{2} w(x) d x \\
& I_{2} \cup A_{n_{1}} \cup A_{n_{3}} \cup \cdots \cup A_{n_{2 k-1}}
\end{aligned}
$$

$$
\begin{aligned}
& +\int\left(T_{n_{2 k}}\left(x, I_{2} \cup A_{n_{1}} \cup A_{n_{3}} \cup \cdots \cup A_{n_{2 k-1}}\right)\right)^{2} w(x) d x \\
& I \backslash\left(I_{2} \cup A_{n_{1}} \cup A_{n_{3}} \cup \cdots \cup A_{n_{2 k-1}}\right) \\
\leq & \lambda^{2 n_{2 k}}+c 2^{2 n_{2 k}}\left(\left(n_{2 k+1}\right)^{-2}+\left(n_{2 k+2}\right)^{-2}+\cdots\right) \\
\leq & (1+c) \lambda^{2 n_{2 k}},
\end{aligned}
$$

so $\lim \sup _{k \rightarrow \infty} \lambda_{n_{2 k}} \leq \lambda$. Hence $\lim _{m \rightarrow \infty} \lambda_{n_{m}}=\lambda$. If we let $A_{1}=$ $A_{n_{1}} \cup A_{n_{3}} \cup \cdots$, and $A_{2}=A_{n_{2}} \cup A_{n_{4}} \cup \cdots$, then it will follow that $\lim _{k \rightarrow \infty} \nu_{n_{2 k-1}}=\mu_{I_{1} \cup A_{2}}$, and $\lim _{k \rightarrow \infty} \nu_{n_{2 k}}=\mu_{I_{2} \cup A_{1}}$. The arguments for these limits are identical so we demonstrate the first. By Lemma 3 if suffices to show that $\lim \sup _{k \rightarrow \infty}\left|p_{n_{2 k-1}}(x)\right|^{1 / n_{2 k-1}} \leq C\left(I_{1} \cup A_{2}\right)$ for $x \in I_{1} \cup A_{2}$. Should this be fals there would exist $x^{*} \in I_{1} \cup A_{2}$, some positive ε, and an increasing sequence of positive integers $\left\{n_{j}\right\}_{j \geq 1} \subset$ $\left\{n_{2 k-1}\right\}_{k \geq 1}$ such that $\left|p_{n_{j}}\left(x^{*}\right)\right|>\left(C\left(I_{1} \cup A_{2}\right)+\varepsilon\right)^{n_{j}}(j=1,2, \ldots)$. Then

$$
\left(N_{n_{j}}\right)^{2} \geq c_{n_{j}}\left(\left\|p_{n_{j}}(x)\right\|_{I_{1} \cup A_{2}}\right)^{2}>c_{n_{j}}\left(C\left(I_{1} \cup A_{2}\right)+\varepsilon\right)^{2 n_{j}}
$$

which would imply that $\lim \sup _{j \rightarrow \infty} \lambda_{n_{j}}>C\left(I_{1} \cup A_{2}\right)$, a contradiction. Finally, we have $C\left(I_{1} \cup A_{2}\right)=C\left(I_{2} \cup A_{1}\right)=\lambda<C\left(I_{1} \cup I_{2}\right)$, so it follows from Lemma 4 that $\mu_{I_{1} \cup A_{2}} \frac{1}{T} \mu_{I_{2} \cup A_{1}}$.

The author wishes to thank Professor Joseph L. Ullman for many helpful conversations, and Professor Kristina Hansen for her editorial comments.

REFERENCES

1. L.L. Helms, Introduction to Potential Theory, Wiley-Interscience, New York, 1969.
2. Ch.-J. de La Vallée Poussin, Le potential logarithmique, Gauthier-Villars, Paris, 1949.
3. N.S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York, 1972.
4. M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959.
5. J.L. Ullman, On the regular behavior of orthogonal polynomials, Proc. London Math. Soc., 24 (1972), 119-148.
6. -_, Orthogonal polynomials for general measures, II. In: Polynômes Orthogonaux et Applications, Proceedings, Bar-le-Duc 1984. Lecture Notes in Mathematics, vol. 1171, Springer-Verlag, New York, 1985, 247-254.
7. and Weak limits of zeros of orthogonal polynomials, Constr. Approx., 2 (1986), 339-347.
8. _ and L. Ziegler, Norm oscillatory weight measures, J. of Approx. Theory, 46 (1986), 204-212.
9. M.F. Wyneken, Norm asymptotics of orthogonal polynomials for general measures, Constr. Approx. 4 (1988), 123-131.

Department of Mathematics. University of Michigan-Flint. Flint. Mi 48502-2186
A constructive proof of convergence of the even approximants of positive PC -fractions
By William B. Jones and W.J Thron 199
Contraction of the Schur algorithm for functions bounded in the unit disk By William B. Jones and W.J. Thron 211
Symmetry techniques for q-series: Askey-Wilson polynomials By E.G. Kalnins and Willard Miller, Jr 223
Monotone polynomial approximation in L^{p} By D. Leviatan 231
Jackson type theorems in approximation by reciprocals of polynomials By A.L. Levin and E.B. Saff 243
Proximinality in $L^{p}(S, Y)$ By W.A. Light 251
Sufficient conditions for asymptotics associated with weighted extremal problems on \mathbf{R} By D.S. Lubinsky and E.B. Saff 261
On the Riemann convergence of positive linear operatorsBy H. Mevissen, R.J. Nessel. and E. Van Wickeren271
Approximation by Cheney-Sharma-Kantorovič polynomials in the L)p-metric By Manfred M. Müller 281
Characterization of measures associated with orthogonal polynomials on the unit circle By Paul Nevai 293
n-convexity and majorization
By J.E. Pečarič and D. Zwick 303
Rational approximation - analysis of the work of Pekarskii By Jaak Peetre and Johan Karlsson 313
Proximinalityof certain subspaces of $C_{b}(S ; E)$ By Joao B. Prolla and Ary O. Chiacchio 335
Extension of a Theorem of Laguerre to entire functions of exponential type II
By Q.I. Rahman and G. Schmeisser 345
Sharp lower bounds for a generalized Jensen inequality
By A.K. Rigler. S.Y. Trimble and Richard S. Varga 353
Real vs. complex rational Chebyschev approximation on an interval By A. Ruttan and R.S. Varga 375
Extensions of the Heisenberg group and coaxial coupling of transverse eigenmodes By Walter Schempp 383
A note on positive quadrature rules By H.J. Schmid 395
On norm and zero asymptotics of orthogonal polynomials for general measures, I By Matthew F. Wyneken 405

