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RATIONAL APPROXIMATION-ANALYSIS 
OF THE WORK OF PEKARSKIÌ 

J. PEETRE AND J. KARLSSON 

ABSTRACT. We discuss two great papers by the Soviet 
mathematician A.A. Pekarskiï (Mat. Sb. 124 (1984), 571-
588 and 127 (1985), 3-19), where a decisive step is made in 
the long open problem of describing the space of functions 
admitting a given rate of best rational approximation. We 
also indicate several directions for further work. 

0. Introduction. The main objective of this talk is to report (§4 
-§6) on two great papers by A.A. Pekarskii [16], [17]. which, as far as 
we can see, constitute a real breakthrough in the long open problem 
concerning the rate of best rational approximation in the Lp-metric. 

Whereas much work has been devoted to the corresponding problem 
for polynomial approximation (originally only in the case of the uniform 
or Chebyshev norm; see any monograph on approximation theory), our 
understanding of rational approximation from this point of view has 
until recently been rather meager (we summarize some previous results 
in §2). The difficulty comes from the circumstance that the problem 
(in the case of rational approximation) is to some extent non-linear in 
nature (the set of rational functions of degree not exceeding a given 
number is not a vector space). From the abstract point of view of 
interpolation of normed Abelian groups [15], it is that in this case one 
has a non-Archimedean norm, not an Archimedean one. 

Approximation theorists usually tend to work on an interval. Pekarskii's 
result is formulated for the case of the unit circumference T and all 
functions are assumed to be analytic in the unit disk D (or rather 
distributional boundary values of functions analytic there; this latter 
assumption, however, is not so very restrictive as it sounds) so that 
function theoretic techniques becomes available. More precisely, his 
main result: 
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THEOREM . R^a = B* where \/a = l/p + a, 1 < p < oc, a > 0. 

Thus the surprising (?) fact is that the approximation spaces R^a 

(definition in §1) are exactly certain Besov spaces (definition in §1). 
Approximate results in this sense (within an e) have been known for 
quite a time (see §2). 

We consider this an excellent opportunity to speak about the work 
of an outstanding analyst. It is thus hoped that this compilation will 
serve as introduction to Pekarski's papers. In the last §7 we indicate 
some directions for further work. 

Acknowledgement. We would like to thank the following math
ematicians for various helpful comments: M. Cwikel, H. König, V.V. 
Peller, P.P. Petrushev, V.A. Popov, J. Sjöstrand. 

1. Definitions. The scale of Besov spaces B^q (or B^q or any 
other combination of the indices), where — oo < a < oo,0 < p, q < oo, 
can be defined for any manifold (without boundary), thus especially 
for the unit circumference T: in the latter case though, we are here 
mainly interested in functions (distributions) which are (distributional) 
boundary values of functions analytic in the unit disk D(dD = T) . If 
0 < p < 1 they should be thought of as "modelled" on the Hardy space 
Hp, rather than Lp. It is convenient to put B™ = B^p. 

Among the many definitions available the one based on "dyadic" 
decomposition is the one which is most productive in the present 
context. Let us recall that - we are now thinking of a group manifold 
(e.g., T) - that / e B^q if and only if / can be written as / = £„<£„ 
where ipu E LP(HP) with supp<£„ C {2u~l < \£\ < 2"+1} and 

[E( 2 , / a i i^ i ip) ç ] 1 / ç <~-

It is important here to bear in mind the "meaning" of the parameters: 
a measures the smoothness of the function (how may (fractional) 
derivatives we have control of) and p has to do with the metric (Lp or 
Hp), the parameter q being connected with the interpolation process. 
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We denote by Lp, where — oo < a < oo, 1 < p < oo, the (Bessel) 
potential or Lipschitz spaces. They are described by the property that 
the a-th fractional derivative (suitable defined) is exactly in Lp. For 
0 < p < 1 we denote by H^ the corresponding spaces "modelled" on 
Hp. 

For an introduction to the theory of Besov (and potential) spaces 
see [13] or [1, Chapter 6]. For a more scholarly treatment we refer to 
Triebers books (e.g., [34]). 

If X is "any" metric (we are now thinking of T or else sometimes a 
bounded interval C R) we denote by gn(f,X) the best approximation 
of the function / in X by rational functions of degree < n: 

Qn(f,X) = inî\\f-tl>n\\x, 

where ipn is rational, deg^ n < n. If X = Lp (or X = Hp) we write 
Qn{f,p) or, in particular, p — oo we suppress the last argument, thus 
writing Qn{f) for gn{f^oo). Also in the "analytic" case, according to 
our convention, the poles of the approximating functions t/?n should all 
lie outside the closed disk D. 

We define then the approximation spaces R%q, where a > 0,0 < q < oc, 
by the requirement that / G Rxq if and only if 

V 

(The connection with the rate of best approximation is defined if we 
take q = oo : f e fi^oo ^ anc* o n l y ^ 0n(f,X) = 0(n~a).) Again, if 
X = Lp (or X = Hp) we write just JÇq. If X = BMO we write R^q. 

2. History. Even though the initial investigations of rational ap
proximation, characterization of the best approximant and some model 
problems were carried out more or less simultaneously with the cor
responding work on polynomial approximation by Chebyshev and his 
student Zolotarev, the subject lay largely dormant for decades. Work 
in trying to characterize the rate of rational approximation increased 
in volume in the 1960's, largely triggered off by Newman's paper [12] 
on the approximation of |x|. Before that, however, developments in the 
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Soviet Union had produced an "almost" characterization of the degree 
of rational approximation, due to Gonchar [9]. 

Here the main idea is to allow exceptional sets. Gonchar proved in 
1955 [9] that if gn{f) = 0(n~1-6) for some 6 > 0 then / is differentiate 
a.e. He went on to prove 

THEOREM . Let f be a function such that, for any e > 0, we can find 
a perfect set P£ of almost full measure, m(I/P£) < e, such that the 
restriction of f to Pe is in Lipa (with the usual convention if a > 1). 
Then there exists, for any 6 > 0, a perfect set Qs with m(I/Qs) < 6 
such that Qn(f,Qs) = 0(n~a). Conversely, assuming the conclusion 
we arrive at the premise, but with Lipa replaced by Lipa+r?,r/ > 0. (Of 
course, g7l(fr) is now the best uniform approximation on the set in 
question.) 

Newman's [12] exhibiting of a special function admitting a much bet
ter order of approximability by rationals than by polynomials led to a 
lot of work where various consequences are derived. Convex functions 
and functions of bounded variation were approximated using pasting ar
guments; Sziisz and Turan proved [35] that piecewise analytic functions 
have order of approximation 0(e~c^) and [33] that functions whose 
r-th derivative is of bounded variation have order 0( log 2 r + 2 n / n r + 1 ) . 
The latter result was improved by Freud [8] to 0(log2 n / n r + 1 ) and 
eventually by Popov [29] to 0(n~r~l). This final result, as observed 
by Freud, could be used to prove the so-called Newman conjecture: 
/ e Lipj => Qn(f) = 0(\/n). The proven Newman conjecture was 
an exception to the general belief that nothing sensible can be said 
about the degree of rational approximation in terms of the smoothness 
of the function. Restricted classes were studied, e.g., convex functions 
in Lipa (Bulanov et al.). A good reference for the history of this and 
some of the more esoteric pasting work relating local approximating by 
polynomias and rationals to global rational approximation is [24]. 

An interesting almost characterization was obtained by Petrushev 
[23] (see also [24]) who, after improving on Popov's results on functions 
of bounded variations, studied functions with unbounded but manage-
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able variation. Define the modulus of variation 

n - l 

n(f;n) = sup ^ \f{xt) - / ( x i + i ) | 

where the supremum is taken over all subdivisions of the interval with 
n points. Then a weak version of Petrushev's result can be stated: 

THEOREM . Suppose « ( / ;n ) = O(n^),0 < e < 1, a > 0, / € LipQ. 
ThenQnU) = 0{n^-1). 

This fits (almost) with a converse result due to Popov [28]: gn{f) — 
0{nß-1), 0 < ß < 1 => K(f;n) = 0{nß). 

During these developments people began working systematically with 
different norms, relations between spline approximation and rational 
approximation (implicit in much previous work), and using interpola
tion spaces. This "wave of modern real variable methods" resulted, 
among other things, in an "almost" characterization due to Brudnyi 

[3]-

THEOREM . £ £ + 0
 c ^p,oc c ^a-o where (as in Pekarskïs theorem, 

see Introduction) \ja — a + l/p, a > 0, 1 < p < oo. 

Here L°+0 = Uq>(TL« and L£_0 = nq<(TL«,L« defined as in §1. The 
reader might want to refer to the paper by DeVore [4] for a nice clean 
proof of both Popov's and Brudnyi's results using certain maximal 
functions based on local approximation by polynomials. 

Finally, a result that bears comparison to Pekarskii's was obtained 
by Peller [20] in 1980, as a byproduct of his characterization of the 
symbols of Hankel operators in Schatten classes. This pertains to the 
limiting case p — oo, but with the uniform metric (I>oo 

or Hoc) being 
replaced by BMO. Thus: iÇ 1 / Q = B* / a . (Actually, the result in [20] 
is only for a < 1; the extension to a > 1 was obtained, apparently 
simultaneously, by Peller [21] and Semmes [32] (using Hankel theory) 
and by Pekarskii [20] (directly).) 
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For the related problem of approximation by spline functions see, e.g., 
[25], [26], [19] (cf. §8). 

3. Education: normed Abelian groups. This section briefly re
calls the salient facts about the theory of interpolation of (quasi-)normed 
Abelian groups as developed, around 1970, by one of the authors and 
G. Sparr in [15] (see also Chapter 7 of the book [1], and for a more 
ad hoc presentation [27]). In fact, this theory was created precisely 
with applications to "non-linear" approximation in mind. Below we 
assume that the reader has some previous knowledge of interpolation. 
Numbers of theorems etc. refer to [1]. 

If A is any Abelian group, a quasi-norm in A is a functional || • || 
in A satisfying the quasi-triangle inequality: \\a + b\\ < c(\\a\\ + ||6||) 
for some constant c independent of a and b in A. We have a norm 
if c = 1 (non-Archimedian case). If we have the stronger inequality 
\\a + 6|| < cmax(||a||, ||6||) we have an ultranorm (Archimedian case). 

LEMMA 3.10.1 (AOKI, ROLEWICZ). For any quasinorm || • || there 
exists a norm ||-||* and a number g such that \\a\\e & \\a\\* (equivalence 
of quasinorms). 

For "compatible" (definition in [1]) pairs A — (A0,Ai) of quasi-
normed Abelian groups one can now define K- and J-spaces much 
as in the case of Banach spaces. Especially, one has a G -Ae,9;K = 
(A0,Ai)o,q:K if and only if ^(t~eK(t,a))qdt/t < oo, where 
(K-functional) 

K(t,a)= inf (||ao|Uo + ' I M k ) . 
a = a o + t t i 

The usual theorems hold (equivalence theorem, reiteration theorem 
etc.). (In view of the former we subsequently may drop the K in the 
notation, thus writing simply AQ^ provided 0 < 6 < 1.) 

The point is that passing to the standpoint of quasi-normed Abelian 
groups allows additional flexibility: we can take powers of quasi
norms without destroying the quasi-norm property. More specifically, 
if A is any quasi-normed Abelian group and g a positive number, let 
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A(gi denote the same algebraic structure with the new quasi-norm 
IH|^> = (||fl|U)^ 

^THEOREM 3.11.6. (POWER THEOREM). For any compatible pair 
A = (AQ,A\) of quasi-normed Abelian groups, 

holds with 0 = T]Q\Ig, g — (1 — rç)£o +Wi? q — gr where 0 < g < 1,0 < 
r < oo. 

Now introduce a new functional (besides the K- and the J-functional), 
the E-junctional'. 

E{t,a) = inf \\a-a0\\Al-
IMU0<* 

which gives rise to new spaces, the E-spaces: a G Anq.£ if and only if 

(f{^(taE(t,a))qdt/t)l/q < oo. Complementing the usual equivalence 
theorem (connecting K and J , we have 

THEOREM 7.1.7. For any compatible pair A = (A0,Ai) of quasi-
normed Abelian groups, 

where 6 = 1/(Q -f 1), r = 0<?. 

Summarizing, approximation spaces are interpolation spaces. In 
particular, it is clear that in order to "describe" approximation spaces 
in concrete cases (as the one considered here) it suffices to prove 
inequalities of Bernstein and Jackson type. 

We conclude by listing some of the basic examples to which the theory 
applies. 

EXAMPLES. 1) A\ — L x , AQ = Lo — all measurable functions with 
the ultranorm ||a||Lo = means supp a. In this case E(t,a) = a*(t) 
(decreasing rearrangement). 
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2) Analogous example with operators in a Hilbert space. A\ — 
bounded operators, A§ — SQ — finite rank operators T with ||T||5o = 
rank T. 

3) A\ = LP,AQ = polynomials with | | / | | J4O — degree of / . 

4) A\ — Lp, Ao = rationals with again | | / | |A0 = degree of / (the 
number of poles). 

Notice that we are in the Archimedean case in example 3) and in the 
non-Archimedean case in example 4), as foreseen in §0. 

4. Converse (the Bernstein inequality). In [16] Pekarskii 
establishes four inequalities of Bernstein type: 

(l)\\r\\Hs ïc^pWWrÏÏH,. 

(2)\\r\\D„<c2(a,p)n«\\r\\Hp. 

(Z)\\r\\H?/n<e3(a,p)n«\\r\\BMOA. 

(4) ||r||fl«/ft ^c^pWWrÏÏBMOA. 

Here, as before, \/a = a -f l/p (with 1 < p < oo) and r stands for 
a rational function with all its poles off D,n being their number (the 
degree of r). By what was said in §3, it is clear that his main theorem 
is a consequence of (2). Now we proceed to the proof of (1).» 

A. Pekarskii's Proof. In the definition of the Hardy-Sobolev spaces 
H(* it is, in the present context, expedient to to use the Riemann-
Liouville derivative, not, as usual, the Weyl derivative. Indeed, for any 
/ (analytic in D) we set (see [16], formula (1)) 

2m JKÌ=6 \ Ĉ  

\z\ < g < I ([a] = integer part of a) . 

Then the main step in Pekarskii's proof of (1) is the modified formula 
[16, formula (31)] 
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valid for all rational functions r with poles outside D. Here B is the 
Blaschke product 

*(*> = I I T 
-ak 

A = i - - a*z 

where a$ and 1/äi , . . . , l/ô„ are the poles of r. The idea is that, 
although the factor (1 — z/Q~l~a blows up as z approaches the 
boundary point £, this is compensated by the skillfully chosen factor 
(1 - B(z)/B(Q)-l-a, which is small there. The proof of (5) is 
immediate; just use Cauchy's formula. 

The rest of the proof of (1) is now embodied in four lemmas, which 
we for convenience state in extenso, although it is only lemma 4 that 
is needed to understand the line of thought. 

Set 
B(z)-B(0 

Q(z,0 = 

k=0 

^ß)=±cr^\yr
j—Aß>o). 

LEMMA 1. Let z e T and 1 € N . Then 

(21-1)1 
J \Q(z,0\2l\dC\ 

2TT 

<2l 

/ T 
1 

= z l E ( )(-i)1" jß" j(2)[ß j(*)*'"1] ( 2 l - 1 )-
J = l J 

LEMMA 2. Let z e T and s e N . Then 

\B{s)(z)\<2ss\\s{z,l/s). 

LEMMA 3. Let z € T and a > 0. T/ien 

| | Q ( . , 2 ) | | 1 + Q < c ( a ) A # T ( * , ^ ) . 
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LEMMA 4. For f e LP(T), p e [l,oc], and a > 0 set 

9(z) = J\Q(CiZ)\l+af(Q\d<;\. 

Then g € La and 
Mìa <c(Q,p)n t t | |< /Mp 

where l/a = ì/p -f a. 

COMMENT. Lemmas l and 2 are straightforward, especially Lemma 
2. Lemma 3 follows from Lemma 1 and Lemma 2. Lemma 4 follows 
from Lemma 3 essentially by interpolation. We shall discuss this in 
detail in subsection B. It is clear that the basic inequality (1) follows 
from Lemma 4 using Pekarskii's main formula (5). Inequality (2) again 
follows readily from (1) using an interpolation inequality. Again (3) 
and (5) are easy limiting cases and will not be discussed here. 

B. Schur interpolation. At least as long as a > 1, Lemma 4 can be 
derived from Lemma 3 by complex interpolation. However, there is a 
more direct route by adapting a classical argument originating from I. 
Schur's classical paper [31] (1911). This we will set forth now. 

Recall first that the (Riesz-)Thorin theorem says that if T is a linear 
operator on some measure space such that 

then 

T : Lpo —» Lqo, T : LPl —• Lqi, 

1 : Lp > Lq 

for appropriate intermediate values of the exponents 

1 1~° ° 1 1 - 0 0 ,n / n 1X, 
- = + —, - = + — (AG (0,1)) . 
P Po Pi q qo q\ 

As Riesz himself acknowledges in [30], the special case po = qo = 1, 
Pi — qi — oo is elementary and in principle contained in Schur [31]. 
We shall now show that the same type of argument can be used in 
an even somewhat more general situation. We consider only integral 
operators 

Tf{x) = JQ(x,y)f(y)dy. 
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THEOREM. We have 

\\Tf\\qi < | | / |Q(x,y) |dxir;Ö . | | / \Q(x,y)\dy\\ \\f\\p 

where 

9 91 P PO 

Explanation. The finiteness of the expression || J /|<2(j\ y\ dx\\p'{) 

entails that T : LPo —• L1 is a bounded map. Similarly, the finiteness 
of the second expression entails that T : L ^ —» Z/71 is bounded. 

PROOF. We convert the problem into one of estimating the bilinear 
expression (Tf,g), f G LP{\ g G LqK A clever application Holder's 
inequality then completes the argument. 

Actually, the present formulation of the theorem is yet insufficient. 
We have to add a version where T is allowed to vary. (In the case of 
complex interpolation this corresponds to interpolation of an "analytic" 
family {^2}0<Re2<i-) ^n t n e P r e s e n t context we can do with a "convex" 
family {Te}o<o<i instead. Indeed, it suffices to impose a condition of 
the type 

(6) \Qe(x,y)\<\Qo -"(*,v)\\Ql(x,y 

on the kernels, to produce an analogous result involving 

(?) II [\Qo(x,y)\dx\\ and || f \Qi(x,y)\ 
"J "PÒ

 ]]J 
\dy 

Po 

We leave the details to the reader, a 

C. An interpolation inequality. To get inequality (2) from inequality 
(1) one can use the general interpolation inequality 

(8) 

where 

1 1 ~ = -+a, 
CT p 

< C 
1 - 0 

1 1 
- = - + a , 
r p 

a = /?0, 1 
a 

-e e 
— + -
P T 

( « € ( 0 , 1 ) ) . 
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See, e.g., [34] for a general background. Pekarskii gives (in [16]) an 
ad hoc approach. However, his proof can be interpreted from a more 
general point of view. Let us briefly elaborate this. 

There are classically two ways of characterizing Hardy classes: 1° via 
Littlewood-Paley theory (area functions and all that), 2° using suitable 
(non-tangential etc.) maximal functions. The traditional proof of (8) 
goes via 1°, whereas Pekarskii's approach uses 2°. On the interpolation 
level it amounts to the following result, implicit in [16]. 

LEMMA. Let K be a measurable function of two variables x,f {where 
0 < t < oc). Then 

|| \\rnK(x,t)\\a\\„ <const. | |sup|A' | | | ^ ö | | s u p ^ | A ' | ||ör, 
/ t 

where I/a = (1 -0)/p + 0/r, a = 0ß{6 € (0,1)). {The t integration is 
with respect to the measure dt/t.) 

5. Direct part (the Jackson inequality). We wish to establish 
the following statement, which, again by §3, is all we need to complete 
the proof of the main theorem. 

CLAIM. For every function / € B™ there exists a rational function ifr 
with deg < n such that 

\\f-H>im)\\Hp<c(a,Plm)n-a\\f\\Bs. 

(Here m is any integer such that cr(ra + 1) > 1.) 

It is convenient to break up the argument into several steps. 

Step 1. This involves a new characterization of Besov space. We write 
/ (E B%) in the form 

/=i>r 
where each ^ is analytic in a concentric disk of radius ///,. = 1 + 2~k 

and - this is the crucial part, of course - in addition 

[f;(2i"2*'"ii^")(M,.)iiHPr]1/p<oo. 
A=2 
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This is not hard to prove. In one direction one can use the usual 
^dyadic" decomposition. 

In the sequel it is convenient to put 

Thus we have 

( i ) 

a, = 2A-"'|l4"'W)||/,p 

[£>*«*)-]I/,T 
< oo. 

A-=2 

Step 2. One shows tha t for each k there exists a rational function TA 
with degi/'A < n such that 

Î A *n Hv<c2*«nï"ak. 

Here «A are the numbers appearing in (1) and n^ are any numbers such 
that n — En A •• (Notice tha t we do not assume 7? A-, nor n, to be integers. 
If T?A < 1 we adopt the convention tha t t'A = 0.) 

This is also quite easy, in principle. The idea is as follows. One 
writes each ipk as a Cauchy integral over a circle ''halfway" between 
the circles \z\ = 1 and \z\ — //A (the latter thus being the "boundary 
for analyticity11). Next one writes this abig" Cauchy integral as a sum of 
" smai r Cauchy integrals extended over arcs ^ 7 A of length comparable 
to the number 2~A . Finally, the approximating rational function Î/'A 
is obtained by put t ing together suitable finite segments of the Laurent 
developments of the small Cauchy integrals about the center of the 
arcs 7^ A . Thus it is really only the demen ta of function theory that 
participate. 

Step 3. We have to show tha t with a clever choice of 77A the rational 
function yj — ET/;A will d ° the job. (As 7?A < 1 except for a finite set of 
indices this is really a finite sum.) 

First we rearrange the a^ in decreasing order, denoting the rearranged 
sequence by 6A . Then (1) takes the form 

(2) [£(2'^r] 
1 / < T 

< OO, 
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where thus f *. too is just some enumeration of the indices k. 

We now invoke the following interpolation lemma, only implicit in 
[17]. 

LEMMA. Let gk. be measurable functions such that 

i° l b - I k < h, 

2° n a t i l a <6*2 ( '*-" t ) / < r 

and (crucial if p > 1!) 

3° 2f* 6A. « (nk./n)'l/<T with n = ] T n*, n* = 28k. 

Then 

(3) | | $ > | | <C(5>,2«"— »)")1/", 
II II Lp \ ' 

where C is a suitable constant, with the usual relations between the 
parameters, viz. 1/a = a + l/p, 0 < p < oc, a > 0. 

Notice that 
(bk2

n{tk-"k))p « n- f t p(6 f c2' f cT 

so that the right hand side of (3) can also be written as 

From this it is easy to complete the proof of the claim. (One chooses 

ipk such that 3° holds with gk. = (p)]" - V^m); this fixes the choice of 

PROOF OF THE LEMMA. 0 < p < 1. This is easy (and does not require 
3°). From a trivial limiting case of Holder's inequality, viz. 

Ik lk < Iklll^llsAllL 
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with (in general) l/p = (1 — 6)/a + 0/oc, that is (in our case) 6 — acr, 
we infer that 

\\9,\\Lp<bK.r««-^. 

Now use that (if 0 < p < 1) 

i/;> 

(4) l |X>IL - (Elicli") • 

1 < p < oc. 3° helps us to circumvent the fact that (4) in general is 
not true if p > 1. We require, however, two more lemmata which are 
more or less well-known. 

LEMMA 2.4 (in [17].) 

{r(±d*r''MY«)"'*<[±<r«>r]'*. 
where 1 < p < oo, A^(X) = min(2-y, 1/x) and the dj are arbitrary 
positive numbers. 

LEMMA 2.3 (in [17].) 

^ ^ A , ( X ) ) ^ X < ^ ( ^ A ; ( X ) ) / ^ X , 

where 1 < p < oo and the Xj are positive measurable functions. A* 
being their increasing rearrangements. 

We notice that Chebyshev's inequality gives 

gtW^bU^-M)1"-

Now write 

j keGj sk<0 
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where each set Gj consists of those indices k such that s^ — tk — 
const. = j . The sum S" is easy (easier) to handle, so below we 

concentrate on S'. Our two lemmata show that 

< c(j2(^{tk""')bk)p) 

P\ l/P 

k 

where the last inequality depends on the following auxiliary reasoning 
(it is only here that condition 3° comes up). Within each set Gj 
the index Sj is essentially uniquely determined by tk- Therefore the 
numbers 2a(^~Sfc)ò^. can be treated as a geometric progression. In a 
geometric series the largest term is the dominant one. Hence we can 
replace the sum with just one term. 

6. Further comments. In this section we briefly review some 
"postliminary" cases of the main result discussed in the previous 
sections. 

First of all, if p = oc there is a natural substitute for the usual 
(uniform) metric, namely, BMO. With this change, the main result 
formally carries over: R"x, = BJ*/rt, as a — a if p = oc. As already told 
in §2 this result was first obtained via the theory of Hankel operators. 
For the uniform metric itself (i.e., X = L^ or rather H^) only results 
"within e" are available, for time being, at least (for details see [17], 
especially p. 17-18, where an exact result with a > 1 can be found). 
The case of the "Bloch metric" has been considered by Semmes [32]. 

Again, if 0 < p < 1 a curious thing takes place. Let us introduce a 
"modified" approximation space Rpq, obtained exactly in the same way 
as Rpq upon replacing the quantity Qn{f,v) by the "modified" best 
rational approximation p n ( / ,p) , where for a general metric, 

e„(/,X) = inf||/-^m)IU, 

where i/>n is rational, deg ipn < n. Here m is an integer which (in the 
case at the hand) has to be adjusted so that 1/p-l < m < 1/p. Then 
again the main result carries over: Rpa = B£ in the usual hypothesis 
1/a = a + 1/p [17]. (With R in place of R the result is not true.) 
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What happens if a —• oc? Let us remark that Newman's result 
[12] formally agrees with Pekarskii's in the sense that the function |x| 
obviously belongs to all spaces B", (we are thinking of the case of 
the uniform metric). So the question arises of giving a description of 
the space of functions admitting a prescribed order of best rational 
approximation which is not necessarily a power. 

Finally, let us remark that we have found R"a only in a case when 
the parameters are coupled in a special way (viz. \ja — a + 1/p). 
Really, what one would like to have had instead is the case a = oc, 
which, as we have seen (§1), is directly related to the original problem. 
From the "abstract nonsense" point of view (§3) there is a simple way 
out: Just introduce the space formally obtained by real interpolation 
from the "diagonal" Besov scale B" with \jo — a — const, and we 
are in business. These new spaces, let us denote them by G£ , where 
q is the interpolation parameter, are, apparently, very important in 
analysis, as they also arise in Hankel theory. They are no longer Besov 
spaces. There arises therefore the question of studying their properties, 
especially, trying to find a more concrete representation. One such 
description of uG-spaces" is briefly indicated in [14] and another one 
can be found in [22]. 

7. Perspective. Concluding, we would like to indicate some more 
directions for subsequent work. (Pekarskii's methods being of such a 
general character, it is tempting to try to push the results as far as 
possible... ) 

1. First of all one may ask what can be said about other metrics 
(than Lp or Hp). Especially, what about the Lipschitz metric? Some 
results in this direction (based on Hankel operators) were indicated in 
[14]. 

2. Next, what about other domains, say, multiply connected domains 
0 with a smooth boundary (so that the Besov spaces are defined)? 
If the domain is simply connected, by conformai mapping we are 
essentially back in the previous case of the unit disk D. We conjecture 
that Pekarskii's theorem is valid also in this more general situation. 

3. In this connection it is useful to notice the fact that a rational 
function as a quotient of polynomials is never used. What is really 
more important is the partial fraction expansion of rational functions. 
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This suggests that in more general situations, instead of rationals (or 
m-th derivatives of rationals), one should use finite sums of reproducing 
kernels of one kind or other. For instance, to every ft there corresponds 
a natural reproducing kernel, namely the Bergman kernel Ba(a G ii). 
Define a new kernel Ka by the requirement K'a = Ba, Ka(a) — 0. Thus 
we are led to approximate with finite sums Y,cvKQv{av G fJ). 

4. Connection with Hankel forms. As we have already mentioned, 
the first definitive results on the rate of best rational approximation 
were, in the case of the BMO-metric, obtained by Peller [20], using 
Hankel operators. This connection with Hankel operators is, to some 
extent, still a mystery. In [11] a theory of Hankel forms (rather than 
operators) over quite general "homogeneous" domains (in any number 
of (complex) variables) has been developed and especially applied to the 
case of Fock space. In the latter case, one also has an approximation 
byproduct. Consider the space F^*(Cn) of entire functions / in C" 
such that f(z) • exp( -^ • a|2|2) G L p (C n ) , where 1 < p < oo and 
a > 0. Then it is a question of approximation with finite sums 
Ecuexp(-zau). It turns out that the corresponding approximation 
spaces (for approximation in the F^-metric) can be identified using 
the scale of spaces F^(Cn). 

5. Somehow the above is also tied up what has been called BoVs 
theorem (cf. [2]), which is basic in function theory for, for instance, such 
things as Eichler cohomology [7]. Consider the group G of unimodular 
2 x 2 matrices (p G G if and only if <p = (" * ) , ad - be = 1). Let 
the holomorphic function f(z) transform under G according to the 
rule f(z) —> f(ipz)(cz + d) / i_1,/x a fixed integer > 0. Then Bol's 
theorem states that its ^-th derivative f^L\z) changes by the rule 
f^l){z) —• f^L\z)(cz + d)~ß~l. As a generalization of the Schwarz 
derivative, a basic object in conformai mapping, one can now form 
the expression / ^ ( [ / ( ^ p - D A / ^ 1 ) ) (where D = d/dz, X another 
integer) which likewise changes "convariantly" under G. The nullspace 
of this differential operator consists of Abelian functions. Thus one is 
lead to an approximation problem with linear combinations of Abelian 
functions. 

6. These functions are not quite unrelated to the previous reproduc
ing kernels. 

7. Since so much function theory has been involved in the previous 
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treatment, it is natural to ask what can be said about the case of 
several complex variables. A first major concern is then what are the 
natural objects with which we should try to approximate? In the light 
of what was said above, the following suggests itself quite naturally. 
Let z = (ZQ, ..., zn) be homogeneous coordinates in an n-dimensional 
space, restricted by the requirement |zo|2 — l 2 i | 2 \zn\2 > 0; in other 
words, if we project we get the complex unit ball. As approximating 
functions we now propose linear aggregates of rational functions of the 
special form PIA(z)/L{z), where Pß is a homogeneous polynomial (form) 
of degree ß and L(z) a linear form not vanishing in the domain under 
consideration, so that, in particular, the pole divisor is a hyperplane. 
A first question is then whether such functions are dense in any of the 
usual function spaces, for instance, the ball algebra. 

8. Latest developments, (added July 1986). In a recent paper 
[19] Pekarskii has extended his techniques in [16] (cf. §4) to prove a 
Bernstein type inequality in the case of rational approximation on an 
interval. Combining this result with earlier results by Petrushev [25], 
[26] on spline approximation and recent work by DeVore and Popov 
[36], this gives a rather complete picture of what is going on in that 
case also. In a lecture at Lund (June 25, 1986) Peller gave an outline of 
how to reduce rational approximation on a circle (disk) to the case of an 
interval, and vice versa, based on the very interesting transformation 
theory of the scale of spaces B" as developed by Dyn'kin [5, 6]. 

9. Note (added Dec. 1986). This is an abridged version (all jokes 
omitted). The authors will send copies of the original, uncensored 
manuscript on request. 
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