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ABSTRACT. We derive a sufficient condition for asymp-
totics as n —• oo, for 

Enp(W) := inf{| |(xn + P(x))W(x)\\Lp(R) : deg(P) < n} , 

where 1 < p < oo, and W(x) is a weight function supported 
on R. This will be used in a forthcoming paper to show that 
if Wa(x) := e x p ( - | x | a ) , x € R , a > 0, then, for 1 < p < oo, 

lim ^ ( ^ l / l ^ n 1 / 0 ^ ) ^ 1 ^ - " / 0 } - 2KPi 
n—»oo 

where ßa and Kp are constants depending only on a and p 
respectively. 

1. Introduction. Let W(x) be a measurable function, non-negative 
in R, with all power moments finite, positive on a set of positive 
measure, and let 

pn{W2;x) = 'Ynx
n + -- , 7n > 0 , 

denote the n t h orthonormal polynomial for W2(x) so that, for m,n = 
0 ,1 ,2 , . . . , 

/

oo 
pm(W2;x)pn(W

2;x)W2(x)dx = 6mn. 
-OO 

Recently, Freud's conjecture concerning the asymptotic behaviour of 
7n_i /7 n as n —• oo for the weight exp(—\x\a) was proved in full 
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generality - see [5] and also [3,6,7,8]. In this paper, we derive a 
sufficient condition for asymptotics for 7n as n —• oo. This will be 
applied in a subsequent paper to a subclass of the weights considered 
in [5] 

One characteristic of 7n is the following extremal property: 

(1.1) l / 7 „ = m i n i l a + P(x))W(x)\\L2(R) : deg(P) < n}. 

Here we consider also the Lp analogue of (1.1), namely 

(1.2) Enp(W) := min{||(xn + P(x))W(x)\\Lp{R) : deg(P) < n}, 

when 1 < p < oo. Our main tool is a formula due to Bernstein (see 
[1, pp. 250-254]), which states that if S(x) is a polynomial of degree 
at most 2n, positive in (—1,1) and possibly having simple zeros at ± 1 , 
then for 1 < p < oo, 
(1.3) 

min{||(z" + P(x))(l - x2fl-l>rt>2S{x)-l'2\\Lp[_lA] : deg(P) < n} 

= Kp2-"{G[S(x))}-V2, 

where 

(1.4) Kp := {F(l/2)r((p + l ) /2 ) / r (p /2 + I )} 1 / " , 

and G[S(x)] is the weighted geometric mean of 5(x), 

(1.5) G[S(x)} := exp (n~l f \ogS{x)dx/y/l - x2). 

Our results are stated in §2 and proved in §3. We should especially 
like to thank Paul Nevai for his encouragement, and also wish to 
acknowledge the encouragement of, and discussions with A.L. Levin, 
Al. Magnus, H.N. Mhaskar and V. Totik. 

2. Statement of results. We shall state separately the conditions 
for asymptotic upper and lower bounds for Enp(W). Throughout, Vn 

denotes the class of real polynomials of degree at most n. Further, 
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given a non-negative measurable function f(x) and a > 0, we set, as in 
(1.5), 

PROPOSITION 2.1. Let 1 < p < oo, and let W(x) e LP(R) be a 
non-negative function such that, for all positive a, 

/

i 
\ogW{ax)dx/\/\-x2 > -oo . 

Assume that, for every q € [p, oo), 

xnW(x) E Lq(R), n = 0 ,1 ,2 , . . . . 

Assume further that there exist respectively increasing and decreasing 
sequences {cn}i° and {<$n}ï° of positive numbers such that 

(2.2) lim 6n = 0, 
n—KX) 

and, /or n = 1,2,3, . . . , and each P eVn, 

(2.3) | | P W | | M R ) < (l + Sn)\\PW\\Lp[_Cn,Cn]. 

Finally, assume that, for every q € [p, oo) and eac/i g(x) positive 
and continuous in [—,1,1], there exists P2n-2(x) £ ^2n-2> positive 
in [—1,1], n = 1,2,3, . . . suchthat, 

(2.4) liminf / log{v
/P2n-2(x) H^(cnx)^(x)}dx/V

/1 - x2 > 0, 

and 

(2.5) lim sup\WP2n..2(x)W(cnx)g(x)\\Lql_hl] < 21/". 

Tnen, î//fp is given by (1.4), 

(2.6) l imsup£; n p (^) /{(c n /2 ) n + 1 / p G[^(c n x)]} < 2KP. 
n—•oo 
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Note that (2.3) is an "infinite-finite range" inequality of the type 
investigated in [5] and that (2.4) and (2.5) essentially require that 
\/P2n-2{x) W(cnx)g(x) approximates 1 in a suitable sense. We remark 
that (2.1) is redundant, and included only for clarity. 

PROPOSITION 2.2. Let 1 < p < oo, and let W(x) be a non-negative 
function such that 

xnW(x)£Lp(R), n = 0 ,1 ,2 , . . . , 

such that (2.1) holds for all positive a, and such that, for each q G (p, oo) 
and a > 0, 

(2.7) W(x)-1 eLq[-a,a]. 

Assume further that {dn}i° is an increasing sequence of positive num­
bers with the following property: For every q G (p, oc) and each g(x) 
even, positive and continuous in [—1,1], there exists P2n(x) € ^2n> 
positive m [-1,1], n = 1,2,3, . . . , such that 

(2.8) limsup / \og{y/P2n(x) W(dnx)g(x)}dx/y/l ~ x2 < 0, 
n—>oo J—l 

and 

(2.9) ^sup\\{y/^^W(dnx)9(x)}-1\\Lqhhl] < 21/«. 
TI—+OC 

Then, if Kp is given by (1.4), 

(2.10) \imjniEnp(W)/{(dn/2)n+1/pG[W(dnx)} > 2Kp. 

In applications (see [4]) the sequences {dn}î° and {cn}î° are different, 
but are sufficiently close to deduce asymptotics for Enp(W) from (2.6) 
and (2.10), with the aid of the following lemma: 

LEMMA 2.3. Let W{x) := e-Q(x), where Q(x) is even, continuous in 
R and Q"{x) exists for x > 0, while xQ'{x) is positive and increasing 
in (0, oo), with 

(2.11) lim xQ'(x) = +oo. 
X—• + ( » 

file:///imjni
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Assume further that there exist C\,C2 > 0 such that 

(2.12) x\Q"{x)\/Q\x) < Ci, xe (0,oo), 

and 

(2.13) Q'{2x)/Q\x) < C2, x <E (0,oo). 

Le£ an = an(W) òe £Ae positive root of the equation 

(2.14) n = 27r~l f antQ'{ant)dt/\/\ - t2 , 
Jo 

for n large enough, and let {en}i° be a sequence of positive numbers 
satisfying 

(2.15) lim n1/2{en/an - 1) = 0. 
n—>oo 

T/ien 

(2.16) lim e r 1 / p G[^(ena ; ) ] / {< + 1 /PG[^ (a n x) ]} = 1. 
n—>oo 

Propositions 2.1 and 2.2 will be used in a forthcoming paper [4] to 
show that, for a large class of weights W(x) := e~ Q ( x \ there holds, for 
1 < p < oc, 

(2.17) lim Enp(W)/{(an/2)n^^G[W(anx)}} = 2KP. 
n—>oc 

In particular, the result applies to W(x) := WQ(x) := exp(- |x |Q) , 
a > 0 . 

3. Proofs. Throughout, C, C i ,C2 , . . . denote positive constants 
independent of n and x. 

PROOF OF PROPOSITION 2.1. By the infinite-finite range inequality 
(2.3) and by the definition (1.2) of Enp{W), 

Enp(W) < (l + *n)inf IIK + P(u)}tt^)||Lp[_Cn,Cn] 

= (1 + 6nK
+1/P inf ||{x" + P(x)}W(cnx)\\Lphhl], 
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by the substitution CL — L^f^JL • Next, let g(x) be positive and continuous 
in [—1,1], and let P2n-2(x) € ^2n-2 be positive in [-1,1],n = 
1,2,3,. . . . Further, let 1 < r, s < oo satisfy r"1 + s~l = 1. By 
Holder's inequality, 
(3.2) 

pMnJ{xn + P(x)}W(cnx)\\Lphhl] 

< inf \\{xn + P(x)}(l - x2)(i-i/(Ps))/2 

{ ^ ^ ( ^ ( l - X 2 ) } - 1 / 2 ! ! ^ ^ ! , ! ] 

x ||(1 - x ^ ^ ^ P a n . a ^ ) 1 / 2 ^ ^ ) ! ! ^ . ! , ! , 

< K p s 2^G[P 2 n _ 2 (x ) ( l - x2)]-1 /2 | | ( l - x 2 ) 1 / ^ ) ^ ) - 1 ! ! ^ ! . ! , ! ] 

x l l ^ P a n ^ ^ ) 1 / 2 ^ ^ ) ! ! ^ ^ ! » ! , ! , , 

by Bernstein's formula (1.3) in the Lps norm applied to S(x) := 
^2n-2(^)(l — x2) and by Holder's inequality, with parameters r and 
s. 

Note next that G[l] = 1 and, for any a, 6 G R, 

G[S(x)ûT(x)6] = G[S(x)]aG[T(x)]6. 

Let e > 0, and choose ^(x) positive and continuous in [—1,1] such that 
(1 - x2)l^2ps^g(x)~1 approximates 1 in the sense that 

(3.3) \\{l-*t)1'™g{x)-l\\Lpr.l_1,1]<2l<^'\l + e), 

and 

(3.4) G[(l - x^^gix)-1}-1 < 1 + £• 

Further, let {P2n_2(x)}f> satisfy (2.4) and (2.5) with q = pr2. Then 

G[P2n_2(x)(l - x2))-1'2 

( 3 5 ) = G[VP2 n_2(x) W{cnx)g{x)]-lG[W{cnx)) 

x G[(l - x 2 ) 1 ^ ^ ) ^ ! ) - 1 ] - 1 ^ - X 2 ] - 0 - I / ( J » ) ) / 2 

< (1 + e)G[W(cnx)](l + e)2 1 - 1 / ( p s ) , n large enough, 
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by (2.4), (3.4) and a standard integral [2, p. 243, numbers 864.31 and 
864.32], which shows that 

(3.6) G[\ - x2} = 1/4. 

Combining (3.1), (3.2), (3.3), (3.5) and (2.5), we obtain for n large 
enough, 

Enp(W) <(1 + e)5c^1^Kps2-nG[W(cnx)]2l-l^s 

x 2 l / (prs) 2 l / (P^ 2)> 

Hence, since e > 0 is arbitrary, 

\imsupEnp(W)/{(cn/2)n^^G[W(cnx)}} 
(3.7) 

< K 2 1 " 1 / p s + 1 / p + 1 / ( p r s ) + 1 / ( p r 2 ) . ips 

Letting s —> 1 so that r —• oo, we obtain (2.6), noting that Kq is 
continuous in q for q G [1, oo). D 

LEMMA 3.1. Let 0 < p < oo and 1 < r, s < oo satisfy r~l + s - 1 = 1. 
If J, H are measurable functions such that H~l G Lpr/S[—1,1] and 
J # G L p [ - l , l ] , then 

(3.8) | |J / / | | i p [ - U ] > II^IUpI-Lilll^-1!!!;,.,.!-!.!]-

PROOF. By Holder's inequality, with parameters r, s, 

IWUF/.[-i,i] = l|Jff-H-1IUp/.hi,i] 

D 

PROOF OF PROPOSITION 2.2. Let l < r < s < oo satisfy r_1+s~ l = 
1 and 1 < 5 < p. Let e > 0, and choose ^(x) even, continuous and 
positive in [-1,1] so that (1 — x2)^l~s^p^2g{x) approximates 1 in the 
following sense: 

(3.9) ||(1 - x 2 ) « 1 - / " ) / ^ ) ! ! ^ ! - ! , ! ) < 2 1 / ( p r ) ( l + e) 
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and 

(3.10) G[(l - x2){l-s/p)/2g(x)\ >l-e. 

Further, choose {P2n(x)}f to satisfy (2.8) and (2.9) with q = pr2/s. 
We have 
(3.11) 
Enp(W) > inf U K + P(u)}W(u)\\Lp[_dnÂn] 

= C+1/"pginf_ i U K +P(x)}W(dnx)\\Lpl.1,1] 

> C + 1 / P inf U K + P(x)}(l - xT-s/p)/2P2n(x)-1?2\\LpM-hl] 

x ||{(1 -x2)-^I^P2n{xYI2W{dnx)}-'\\ll/s[_llV 

by Lemma 3.1. Next, using Bernstein's formula (1.3), and Holder's 
inequality again, we obtain 
(3.12) 
Enp(W) > dn

n
+llr-Kph2-n{G[P2n{x)\Y1'7 

x | | ( l - * 2 ) < W P ) / 2 5 ( x ) | | Z i r [ i i ] 

\\{9(x)P2n(x)^2W(dnx)}-1\\-Ll2/A-1,i] 

> dZ+1/PKp/s2-n{G[P2„(x)}}-1/22-l^r)(l + e)-12-s^pr2), 

for n large enough, by (3.9) and (2.9). Here, 

G\P2n{x)\-V2 

(3 13) = G[y/F^ê) W(dnx)g(x))-1G[W(dnx)) 

x G [ ( l - I
2 ) ( 1 - * j ( i ) j G [ l - x 2 ] - , 1 " , / p ) / 2 

> (1 - e)G\W(dnx)](l - e)21-s/p, n large enough, 

by (2.8), (3.6) and (3.10). Combining (3.12) and (3.13), letting e — 0 
and then letting s —• 1 so that r —• oo, we obtain (2.10). D 

PROOF OF LEMMA 2.3. By (2.15), we can write 

en=an(l+T]n), n= 1 ,2 ,3 , . . . , 
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where 

(3.14) lim n1/2rjn = 0. 
n—»oo 

Now, given 0 < t < oo, there exists £ between 1 and 1 + r]n such that 

\ogW(ent) = -Q{ent) 

= -{Q(ant) + CLnTintQ'icint) + (an7?n* )2Q"(£an*)/2}. 

Here, by monotonicity oîtQ'(t), and by (2.12) and (2.13), 

(On*)2 |Q"té«nOI < CxOntQ'teant) 

< Ci2antQ'(2ant) < 2C1C2antQ
,(ant). 

Then, using evenness of W, we see that 

TT"1 / logW{ent)dt/y/l-t2 

= -27T"1 / Q(ant)dt/y/l-t2 

Jo 

- r / ^ T T - 1 / antQ'(ant)dt/Vl ~ t2 (1 + Ofa*)) 
Jo 

= - 2 7 ^ / Q(ant)dt/Vl-t2 -ni7n(l + 0(îM)), 

by (2.14). Hence we see that 

e r 1 / " G [ ^ ( e n x ) ] 

= W ( l + r,n)}
n+i^G[W(anx)} exp(-nife + 0(n i£) ) 

= al+1^G[W(anx)} exp((n + 1 /p)^ - nr,n + 0(nV
2
n)). 

Then (3.14) yields (2.16). o 
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