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ABSTRACT. We propose a modified general technique to 
derive quantitative assertions on lacunary interpolation by 
algebraic polynomials. The inequalities obtained are conse
quences of a smoothing approach. An application to various 
classical cases such as modified and non-modified (0,2) and 
(0,1,3) interpolations yields improvements of earlier results. 

1. Introduction. "Lacunary interpolation" describes a certain sub
set of Hermite-Birkhoff interpolation problems and was first initiated by 
Surânyi and Turân [10] in 1955. They used the term to describe their 
(0,2) interpolation problem; here the values and the second derivatives 
of a function are prescribed on some special given nodes. Historically, 
the paper of Surânyi and Turân was the starting-point for a large num
ber of articles dealing with related questions. Partial surveys of the 
corresponding results are given in a paper by Sharma [9] and in the 
recent book by Lorentz, Jetter, and Riemenschneider [5, Chapters 11 
and 12]. 

The work of the Hungarian school has to be mentioned in partic
ular. In a series of papers they solved several problems concerning 
(i) existence and uniqueness, (ii) explicit representation, (iii) uniform 
convergence, and (iv) applications to Markoff-type inequalities. Their 
work was followed by numerous papers from around the world in which 
similar problems were considered. For instance, as early as 1958 Saxena 
and Sharma started their investigations on (0,1,3) interpolation, and 
in 1961 the first paper on a modified (0,2) problem with roots different 
from those used by Surânyi and Turân was published by Varma and 
Sharma [14]. All papers mentioned focused on problems (i) through 
(iv). 
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From a quantitative point of view, the degree of approximation 
by such interpolation procedures is of interest. However, with the 
exception of Vertesi's papers [15, 16], not very much appears to have 
been done in this direction. In the present paper we shall show that 
the now standard smoothing technique serves this purpose quite well. 

2. Problem description and results. As mentioned in the title, 
we shall deal with the so-called ( 0 , 1 , . . . , R - 2, R) case, R>2, further 
assuming that the interpolation problem is regular. A description 
follows. Let N ' denote an infinite subset of N\{0}, and, for N € N ' , 
let interpolation nodes X^TV be given by 

1 > Xl,N > X2,N > - * > XN-l,N > XN,N > ~ 1 -

This defines a bi-infinite matrix of nodes, and we make the (strong) 
assumption that, for each row of this matrix, there is a uniquely 
determined polynomial p of degree 

R 

degp <R-1+ 5 ^ (uj,N - IJ,N) =: d(N) 
j=o 

satisfying the following d(N) + 1 interpolation conditions of the 

( 0 , l , . . . , # - 2 , Ä ) - t y p e : 

PU)(xi,N) = a $ , , 1 < ljiN < i < uj%N <N, 0<j<R,j^R- 1. 

In the sequel we shall drop the subscript N in #t-,jv, etc., if it is clear 
what N is. The introduction of lj ("lower bound for j - t h derivative") 
and of Uj ( "upper . . . " ) allows us to modify the so-called unmodified 
problem where lj = 1 and Uj = N for 0 < j < R, j j£ R — 1. 
If, for a fixed value of Ar, one thinks of the above problem as being 
described by an incidence matrix E = (eij), then the /j's and the 
Uj's serve the purpose of altering the incidence matrix describing the 
unmodified problem in certain upper and lower rows, respectively. 
Furthermore, we assume UR — IR > 0 so that this describes indeed 
a lacunary interpolation problem. One additional assumption is that 
there should be at least one row of E with at least two non-zero entries 
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in it. This guarantees that d(N) > N. Under the above assumptions 
of existence and unicity, there exist fundamental polynomials Aij 
in Ud(N) (algebraic polynomials of degree < d(N)) satisfying the 
conditions 

with i,i' ,j,j' in the proper ranges. Hence p can be written as 

R Uj R Uj 

P(*)= E E ^ - A ^ x ) , w h e r e a t - £ ^ a ^ - A^x) 

j^R-1 J 3^R-l 

describes a linear mapping. Now let R',0 < R' < R, R' ^ R - 1, be 
fixed and let / G CR [—1,1]. Then we may choose the aj3 s from above 
as 

aU) = / f{j)(xi), for 0 < j < RfJ ÏR-1, and l3 < i < Uj, 
1 \ 0, for Rf + 1 < j < R,j ^ R - 1, and lj < i < ur 

In this case the polynomial p from above is the result of applying a 
linear operator LRI^{N)

 : CR [—1,1] —• Hd(N) to the given function / , 
and can thus be written as 

R' UJ 

p(x) = LR,4{N)(f;x)= ^2 ^f{J\xi)-Ai,Ax)-
JÏR-i 3 

Note that the subscript R' indicates that the derivatives of order 
i l - | - l , . . . , / t — 2 , XL are forced to be equal to zero. In particular, for 
R' = R, there is no "zeroing" of derivatives at all. As mentioned above, 
d(N) > N so that, for the special choice R' = i?, LR^(N){P) = P f° r all 
p e UN, i.e., Lfl,d(jv) 1S idempotent. 

In this note we propose a general method to give upper bounds for 
the distance between LRI^N)!

 a n d / m t n e c a s e that / *s continuously 
difFerentiable of order R'. The main result of §3 is the extension of a 
lemma of Müller which is needed in §4. In that section we describe our 
modified smoothing approach. The applications of §5 show that our 
approach, in combination with earlier estimates for the fundamental 
functions of various ( 0 , . . . , R — 2, R) interpolators, is capable of giving 
quite elegant quantitative assertions concerning these processes, and of 
improving some known inequalities. 
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The constants c figuring in this paper will exclusively depend on 
the variables explicitly indicated (such as an order of differentiability 
r or the order s of a modulus of smoothness), but never on the 
function / , the point x, or the degree of the approximating polynomials. 
Otherwise, the value of c may vary even within the same line. 

3. Smoothing by smooth functions and by polynomials . This 
section contains two assertions concerning the smoothing of functions 
by smoother ones. The first result extends a statement of Müller [6] 
and is a further refinement of the so-called Freud-Popov lemma. It con
stitutes an extension of Müller 's result insofar as our set of inequalities 
contains estimates for all derivatives of the smoothing functions. The 
symbol || • || will always denote the sup norm. Occasionally the norms 
and moduli of smoothness will carry subscripts to indicate the interval 
over which they are taken. 

LEMMA 3.1. Let I = [0,1] and f G Cr(I), r G N 0 . For any h G (0,1] 
and s G N there exists a function fh,r+s £ C2r+s(I) with 

(i) l l / ( j ) - /JS+.II < c • w r + . ( / ü U ) , for 0 < j < r, 

(Ü) II/S+.II <ch-i- Uj(f, h), for 0 < j < r + a, 

0") II/JS+.II < c-/i-<r+s> •w P + . ( /« - '—) ,Ä) , for r + s < j < 2r + s. 

Here, the constant c depends only on r and s. 

PROOF. The functions fh,r+s are the same as in Muller's paper. 
Therefore we skip details and only recall that one has the representation 

(3.1) h,r+.(x) = E I"" t S)(-!) i + 1 (ih)-(r+s) • A[+s(Tr+3;x) 
1 = 1 

for all x e L Here, A£(/;x),fc G N , s > 0, denotes the fc-th 
forward difference of the function / with step size e at the point x. 
Furthermore, T is the linear Whitney extension operator mapping C(I) 
into C(J), J = [0,1 + (r + s)% such that 

(3.2) o; r+,((T/)«>; h)j<c (*+,(/«>; A)7, 0 < j < r, 

for / G Cr(I) (see Johnen [4], Müller [6]), and Tr+S denotes an 



LACUNARY INTERPOLATORS 161 

(r + s)-th primitive to Tf. 

Note that for the proofs of (i) through (iii) it is convenient to consider 
first a sufficiently small h and then to extend the statement to all 
h e (0,1]. 

(i) was already shown in Muller's paper [6]. To obtain (ii), differen
tiation gives 

/$+.(*) = E (r t S)(-l)t+1 W"(r+S) • *T(Tr+S_j;x), 

0 < j < r + s. 

Thus 

| / £ + s ( x ) | < E ( r Î S ) * * " ( r + j ) ' , < W | A ? f c
+ ' ( r r + . - i ; x ) | ' * ** \ 2 / l < t < r + s 

i = l 

< ( 2 r + S - 1) • / l -< r + S > • Ur+siTr+s-f, (r + s)- h)j 

< cr,s • /i-<r+s> • hr+-> • w r + ,_ ( r + ._ j ) (T r
( ; t ! .7 i ) ; fc)j 

= cr,s • ft"-» • Uj{Tf; h)j, for 0 < j < r + s. 

To complete the proof of (ii), we need estimates for Wj(Tf; h)j. To this 
end observe that, for 0 < j < r + s and g € C^(I), one has 

IKT^ll^cil^ll/. 
This is a consequence of the construction of T as given in Johnen's 
paper. Hence in view of the linearity of T and of certain elementary 
properties of u)j we may write 

Wj(T/; h)j < Uj{T{f - g); h)j + Uj(Tg;h)j 

<V-\\T(f-g)\\j + V-\\(Tg)^\\j 

<c- ( | | / -5 | | / + ftJ-||9
(j)l|/). 

This implies 

uj(Tf;h)j < c- inf{ | | / "tfll/ + hj\\gU)\\i : 9 e <?( / )} < c •«,-(/;ft),. 

(We note that the last inequality can be proved without using the 
extension technique, see DeVore [2]). Hence we have, for 0 < j < r + s, 

ll/igjl/< Cr,. •••&-'•«;(/;*)/• 
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For the proof of (iii) let r + s < j < 2r + s. Using (3.1) again it is seen 
that 

/#+.(*) = E (r+
i
S)(-l)t+1(ih)-{r+s) • ^'((Tf)u-r-a);x), 

hence 

< (2r+* - 1) • h~lr+a) • u;r+s((Tf)^-r-s\ (r + s)h) 

< C , . - f t - ( r + ' ) - ü ; r + . ( ( T / ) « - ' — ) , f t ) . 

Because 0 < j — r — s < r , we can use inequality (3.2) again to arrive 
at 

\f{
h%s(x)\ < c • /T<r+'> • u ; r + s ( / ^ - r - ) , f c ) . 

D 

REMARK 3.2. Note that the statement of Lemma 3.1 can be carried 
over to any finite interval [a, b] by using the suitable linear transforma
tion, and that the impact of this transformation will only be on the 
constant c figuring in the lemma. 

We need also the following result concerning the degree of simultane
ous approximation of continuously differentiable functions by polyno
mials in n n . 

THEOREM 3.3. (TRIGUB [11, LEMMA 1]) Let r > 0 and n>r. Then 
there exists a linear operator Qn — Qnr : Cr[— 1,1] —» Iln such that, 
for all f € C r [ -1 ,1] , all \x\ < 1 and 0 < k < r, one has 

KQnf - f)W(x) < Cr • An(x)r-k • H / ^ H l - u ! . 

Here An(x) = \ / l — x2 • n~l + n~2, and the constant cr depends only 
on r. 

4. A general inequality on approximation by lacunary inter
polators. We shall first outline the approach used in earlier investiga
tions concerning the convergence properties of L^^N)- Note that in 
the sequel || • || will always denote the sup norm on [—1,1]. 
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THEOREM 4.1. For any f e CR'{-\,\) and any $ € Ud{N) there 
holds 

R' U • 

\\LWM(N)f-f\\< E \\fli)-*li)\\- E l i c l i 

+ E I I * 0 ) I I - E P * . , I I + I I*- / I I -
j = R' + l i=lj 
JÏR-1 

Note that the second sum may be empty (equal to 0). 

PROOF. The proof is obtained by "polynomial smoothing": 

\LR>,d{N)f{x)-f{x)\ = \LR,,d{N)(f,x) - LRM{N){$,x) + $ ( x ) - / ( x ) | 

+ E EI^Ü)(^)I-I^WI + I^)-/WI. 
j = R' + l i = L 

Passing to the sup norm yields Theorem 4.1. D 

Note that it is essential for the proof of Theorem 4.1 that, for each $ G 
Hd(N)i o n e has LRd(N)® — $• Furthermore the problem of estimating 
\\LR\d(N)f - /Il is reduced to finding polynomials $ with "good" 
derivatives and to giving bounds for the fundamental polynomials Aij. 
While our approach below is similar, it will be different in the sense 
that we shall make essential use of the smoothing functions fh.r+s from 
Lemma 3.1. This allows us to derive an upper bound which involves 
various moduli of smoothness of / (with extra flexibility gained through 
the use of the undetermined value of h). As far as employing Jackson-
type inequalities on simultaneous approximation is concerned, the use 
of the above version of Trigub's result will suffice. 

THEOREM 4.2. Let f e CR [-1,1] and 
LR\d(N) be given as above. 

Then we have, for x G [-1,1],0 < h < l , s > max{fi - i? ' , l} and 
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N > R' + s, that 

\LR<,d(N)(f;x)- f(x)\ 
R' 

< c - [ £{/>*'-'-u;s+J(/<R'U) 
j = 0 

+N-R'-S+I • h-° • us(f(
R,\h)} • jr i ^ t o i 

+ E {N-R'-s+3-h-s-us(f(
R'\h) 

+/-^ J . Ì Ì - ( /" Ì '» ,A)} .5;K J WI 
i = lj 

+ {hR' + N-R'-s -h-s}- ws(f
{R'\/i)]. 

T/ie constant c depends only on R' and s. 

PROOF. For R' > 0, s > 1 and 0 < h < 1 we choose functions 
//i = fh,R'+s £ C f i + s [ - l , 1] according to Lemma 3.1, that is, 

II/ ( J ) - fij)\\ <c-uR,+s{f(i\h) for 0 < j < ft', 

\\f{
h

i]\\<c-h~j- u>j(f, h) for 0 < j < ft' + s. 

As a further tool we use the operators QN — QN,R'+S from Theorem 
3.3 so that 

\(QN9 - g)U)(x)\ < c • N-R'-s+J . | | ^ ( ß , + s ) | | , 0 < j < R! + s, 

for all g G Cß '+S[-1,1] and N > R' + s. Because d(iV) > N > R' + s 
we obtain from Theorem 4.1 with $ = Qnfh = Qnfh,R'+s that 

\LR>4(N){f,x)- f(x)\ 

< E \\f{J)-(QNh)U)\\'J2\\Aij\ 

R Uj 

+ E \\(QNh)U)\\-Y,\\Ai,i\\ + \\QNh-f\\-
j = R' + i i=L 
j^R-i 
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To investigate \\fU) - (QNfh)U)\\, 0<j< R', we write 

\\fU)-(QNfh)U)\\ 

<\\fU)-f{
h

3)\\ + \\fl3i-(QNfh)U)\\ 

< c• u>R.+t{f
(i\h) + c- N-(R'+S-^ • \\fiR'+s)\\ 

< c• wR.+t{fU\h) + c- N-(R'+S-^ • /l-<ß'+s> • uR.+s(f,h) 

<C-hR'-i-L*R. + s-R.+j(fl
R'\h) 

+ c • # - < * ' + . - ; ) . ft-(fl'+.). hR'. UR,+s_R,{fi"'),h) 

< c • {hR'-J • u,a+j(fl
R'\h) + JV-<»'+--» . ft- • u;s(fl

R'\h)}. 

In particular, for j — 0, this reads 

11/ - QsfhW < c • {hR' • ws(f
R'\h) + Ar-(«'+s> • ft- • u ; 8 ( / ( f l ' \ ft)}-

We also need estimates for | | ( Q N / / , ) Ü ) | | , for R' + 1 < j < R < R' + s. 

\\(QNfk)U)\\<\\(QNfh)u)-fiJ)\\ + \\f(
h

3)\\ 

< c • AT-<R'+S-^ - | | /< f i '+ s ) | | + c • h-J • u>j{f, h) 

< c• AT <*'+'-->> • h-(R,+s) • wR.+a(f,h)+c- h~j • Ljj(f,h) 

< c . N-tf+-i) . h-(R'+s). hR' . Wfl,+s_ f l,(/(fl'),ft) 

+ c.h-i-hR'-u;J-R,(f(R'\li) 

< c• {7V- ( f i / + s- j ) • h~s • us(f(
R'\h) 

+ hR'-i-uJ-R,(f(R'Kh)}. 

Note that, in the above, we have made use of the assumption that 
R < R' + s, i.e., R — R' < s. Combining the above observations yields 
the inequality of the theorem. D 

COROLLARY 4.3. Let f E CR [—1,1] and LR>^{N) be given as above. 
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For the choice h = N l the inequality of Theorem 4.2 simplifies to 

\LR'M(N)(f;x)-f(x)\ 

J=0 
jïR-

+ 

- l 

R 

E 
j = R' + l 
JÏR-1 

N--R'+j • V ,(/<*> 

i= 

N-

-h 

M 

+ u>j-R'(fiR'\N-1)}.£\AiJ(x)\ 
1=1, 

+ N~R' •u; s ( / ( ß , ) ,yV- 1 ) ] . 

A critical term in Theorem 4.2 and in Corollary 4.3 is the one 
involving u; J_ jR/(/( / ? /),. . . ), j = R! + 1 , . . . , R; j ^ R-l. However, if 
j — R' > s for all j ' s in question, then this quantity is bounded from 
above by c-ujs(f(

R \ . . . ), and our upper bound is solely given in terms 
of ujs(f(

R \ . . . ). Note further that the critical term is not present at 
all if R' — R. Facts of this type are summarized in 

COROLLARY 4.4. Let f e CR'[-l,l],Lw>d{N) and h be given as in 
Corollary 4.3. 

(i) For R' - R - 2, any s > 2, and all N > R - 2 + s we have 

\LR>,d(N)(f;x)- f(x)\ 

<c[ £ N-R^-u;Af{R-2\N^)-J2\^A-)\ 

+ N2 • K( /< Ä ~ 2 >, AT1) +u;2(/(*-2>, AT1)} . £ \AlM(x)\ 
i=h 

+ ^-Ä + 2 -ü;a ( /^-2>, iV-1 )" 
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(ii) For R! = R, an arbitrary s > 1, and for all N > R + s there holds 

\LRM{N){f;x)- f{x)\ 

<*'[ £ ^•Ä+i-^(/(Ä),^-1)-f;|^(2:)| 

+ 7V"Ä-^(/^),iV-1)]. 

In both cases the constant c depends only on R' and s. 

5. Examples . Here we consider various classical cases which 
have been investigated before; however, mostly from a non-quantitative 
point of view. 

5.1. The case R = 2. This is the most classical one which was 
first investigated by Surânyi and Turân [10] (see, for example, also 
Balâzs and Turân [1]). Choose x^,l < i < N, to be the zeros of 
(1 — x2) • P'n_x(x),n even, where Pn-\ is the Legendre polynomial of 
degree n — 1. Hence N = n and, for the non-modified ("pure"), case 
one has lo = h — l,^o = ^2 = n. Hence, d(N) — 2n—\. The following 
lemma is essential. 

LEMMA 5.1. (BÄZS and TURÄN [1]) For the fundamental polynomials 
Aij of pure (0,2) interpolation at the roots of (1 - x2) • P'n_x{x) one 
has, for n = 4 , 6 , 8 , . . . , 

(> )Er= iP i .o | l<249-7T-n , 

(«) 5Zr=l ll^<.2ll < 38 - TT - W-1. 

For the case R' = 0 the following proposition is an immediate 
consequence of Corollary 4.4 (i) and Lemma 5.1. It is a full quantitative 
version of a result of Freud [3]. Note that the function e(h) figuring 
there can attain at most the value W2{f,h). The theorem below also 
improves a quantitative version of Freud's result due to Vertesi [15, 
16]. Although formally his inequality is the same as ours, he needs the 
somewhat unnatural condition (^2)- That this is superfluous is shown 
in 
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PROPOSITION 5.2. For f e C [ - l , 1] and n - 4 , 6 , 8 , . . . , there holds 

| | £ o , 2 n - i / - / | | < c-n'üü2(f,n~l), 

where the constant c does not depend on n and f. 

PROOF. Corollary 4.4 (i) shows that, for an arbitrary s > 2 and 
all even n > max{4,s}, we obtain an inequality involving u;s(/, •) and 
UÛ2U,'). In view of the relationship uos{f,n~l) < c • U2U1 n~l)is > 2, 
we arrive at the above result. D 

For the choice R! = R = 2 the situation is somewhat different. 

PROPOSITION 5.3. For f G C 2 [ - l , l ] , s > 1 and even n > 
max{4,s + 2}, we have, with a constant c neither depending on n nor 
on f, that 

| | Ì2,2W-i/ - / | | < c • n - 1 - ^ ( Z ^ , n - 1 ) . 

The proof is a consequence of Corollary 4.4 (ii) and of Lemma 5.1. 

REMARK 5.4. Proposition 5.3 implies that, for any / € C 2 [ - l , l ] , 
the polynomials L2 ,2n-i/ c o n v e r ge uniformly to / (cf. Lorentz-Jetter-
Riemenschneider [5, Corollary 12.15]). However, due to the arbitrary 
choice of s > 2, it also expresses the fact that, for any / G Ck[-\, 1], 
k > 2, the degree of uniform convergence is 0(n_ f c + 1) ,n —• 00. 

A modified case of the (0,2) problem was studied by Varma and 
Sharma [12, 13, 14]. Here x{, 1 < i < iV, are the zeros of 
(1 - x2) • Tn(x) (Tn denoting the n-th Cebysev polynomial of the first 
kind), and /0 = 1, h = 2, u0 = n + 2, u2 = n + 1, hence N = n + 2 and 
d(7V) = 2n + 1. Again, for even n E N, the problem is regular, and the 
following holds. 

LEMMA 5.5. (VARMA [12, 13]). The fundamental polynomials of 
modified (0,2) interpolation at the roots of (1 — x2) • Tn(x),n even, 
satisfy the inequalities 
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(i)Er=i2Pi.ol|<140.n3/2, 

(ii)Er=2 Ui.2\\ < 45- n-^. 

For the case Rf = 0, Corollary 4.4 (i) yields the following quantitative 
version of a result of Varma [12, Theorem 3.1]. Note that, for / ' G 
Lipoma > | , one has u>2(f,n~l) < n~l • u\{f ,n~l) = o (n - 3 / 2 ) . 

PROPOSITION 5.6. Let f e C [ - l , l ] , n > 2, be even, and let 
£o,2n+i denote the lacunary interpolation operator corresponding to the 
modified problem described above. Then 

ÏÏLo,2n+if - / | | <c-n2'2-ui2{f,n-1) 

with c independent of n and f. 

For R' — R = 2 we have 

PROPOSITION 5.7. Let s > 2. There is a constant c depending only 
on s such that, for all even n> s and all f G C2[—1,1], one has 

\\L2,2n+if - f\\<c-n^2 -oJsif"^-1). 

As was the case in Proposition 5.3, this assertion shows that for the 
operators Z/2,2n+i n o saturation occurs. 

5.2. The case R = 3. We consider the non-modified ("pure") (0,1,3) 
interpolation at the roots of (1 - x2) • P'n_i{x). Here N = n,l0 = h = 
h = 1 and UQ — u\ — u$ = n so that d(N) = 3n — 1. This problem has 
also a certain tradition: It was already considered in 1958 by Saxena 
and Sharma [7] (see also Saxena and Sharma [8], and Vertesi [15]). 
Estimates for the fundamental polynomials of this interpolation process 
are given in 

LEMMA 5.8. (SAXENA and SHARMA [8]). For the fundamental poly
nomials of pure (0,1,3) interpolation at the roots of (1 — x2)P'n_l(x)J 

one has, for n = 4 , 6 , 8 , . . . , the inequalities 
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(i)£?=i limoli < IO5 -n, 
( i i )Er=i P u l l < 2333, 

( i i i )Er=i 11 .̂311 < 7 l 7 r - n - 2 . 

For the case R! = 0, an application of Corollary 4.3 only yields an 
assertion which implies uniform convergence for constant functions. 

For the case R' = 1, Corollary 4.4 (i) leads to 

PROPOSITION 5.9. Let f e Cl[-l,Ì\. Then, for all even n > 4, 
the (0,1,3) interpolation operator L\3n-\ corresponding to the zeros of 
(1 — x2)P}l_l(x) satisfies the inequality 

i | L i . 3 „ - i / - / | | < c - o J 2 ( / ' , n - 1 ) . 

We note that the latter inequality implies uniform convergence for any 
/ € C1[—1,1] and hence contains the main result in [8]. Furthermore, 
the estimate also improves Vertesi's Theorem 3.2 in [15], where the 
upper bound is of the form 0(n • Lj2(f

f,n~1)) and an extra condition 
for u ; 2 ( / ' , . . . ) is needed. 

Again, if we do not force derivatives to be equal to zero, we obtain, 
for Rf = R = 3: 

PROPOSITION 5.10. There is a constant c depending only on s > 1 
such that, for all f e C 3 [ - l , 1] and all even n > max{4,s + 3}, there 
holds 

l |£3 ,3n-i/ - / | | < c n" 2 • Lj.ifW, n" 1 ) . 
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