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1. Introduction and the statement of the main theorems. It 
is well known that a local CR diffeomorphism of a smooth CR manifold 
of CR codimension 1 with a nondegenerate Levi form is determined 
by a finite number of constants. Moreover, if M and M' are real 
analytic (C°°, respectively) CR manifolds as above and F : M —» M' 
is a CR diffeomorphism of class C7 then F is real analytic (C°°, 
respectively). These are consequences of the existence of the invariant 
Cartan connection on the bundle of pseudo conformai frames over M 
([3], cf. also [9]). If M' is a real hypersurface in C n + 1 the above two 
facts are easier to see: Let r be a local defining function of M' and let 
{L i , . . . , Ln} be an independent set of C^ tangential Cauchy-Riemann 
vector fields on M. Then the components of F = ( / 1 ? . . . , / n+i) satisfy 
an equation 

(1) r - F = 0 

and a system of partial differential equations 

(2) Lifj=0, 2 = l , . . . , n , j = l , . . . , n + l. 

Through a process of repeated differentiation of (1), reduction of 
order of derivatives using (2) and introducing new variables, we can 
construct a C" pfaffian system whose integral manifolds correspond to 
CR diffeomorphisms of M onto M'. The regularity and the uniqueness 
of F follow from the Frobenius theorem (cf. [6]). This method is a 
variant of the so-called 'prolangation' originated by E. Cartan, which 
he used as a basic tool for the equivalence problem (cf. [2]). 

The purpose of this paper is to generalize the above properties of 
CR diffeomorphisms to certain systems of functions annihilated by a 
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768 SYSTEMS OF FUNCTIONS 

formally integrable system of complex vector fields. We restrict our 
interest to the C" category. Our viewpoint is purely local so, for 
instance, a "function" must be understood as a germ of a function 
at the origin. The following definitions are adopted from Treves [8]: 

Let ft be an open subset of R containing the origin and V be a Cu 

subbundle of the complexified tangent bundle CTQ which satisfies the 
formal integrability: 

If L\ and L2 are sections of V, then their commutator [L\, L2] is 
again a section of V. 

V is called a complex structure if CTQ = V 0 V and a CR structure 
if V fi V = {0}. A function (or distribution) / is said to be annihilated 
by Vif 

Lf = 0 for any section L of V. 

To state our assumption on V we define a module Bk, k = 1,2,..., over 
0^(0.) of linear partial differential operators as follows: 

Let n = complex dimension of V and let L\,..., Ln be independent 
Cu sections of V. Let ß = (61 , . . . , bn) be a sequence of nonnegative 
integers. We denote, by L^, a linear partial differential operator 

rbn ]-b2 rbi 

A block of length j is a differential operator of the form 

L ^ - - - L Ä l A L Ä i f j i sodd, 

l A " " . L / Î 3 L A L A if j iseven, 

where /?'s are multiindices as above. Then define B^ as a module 
generated by all the blocks of length < k and BQ = Cu(ft). Bk is well 
defined due to the formal integrability of V. Let B be the algebra of 
all linear partial differential operators on ft with Cu coefficients. Then 

BkCBk+u fc = 0 , l , 2 , . . . , 

and 
U?=1Bk Ç B. 
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First, we consider 

CONDITION 1. There exists a positive integer v such that Bv — B 
when restricted to the distributions annihilated by V. 

REMARKS. If V is a complex structure, Condition 1 holds with v = 1. 
If V is a CR structure of CR codimension 1 with a nondegenerate Levi 
form, Condition 1 holds with v — 2. If the Levi form has a nonzero 
eigenvalue, Condition 1 holds with v — 3 (Prop. 1 of §3). Some CR 
manifolds with degenerate Levi forms satisfy Condition 1. See 3.1 of 
§3 for an example. The author does not know yet how Condition 1 is 
related to the notions of 'finite type' as in [5]. 

THEOREM 1. Let V be a C" formally integrable subbundle of the com
plexified tangent bundle of an open set Q ofHN. Let F = ( / i , . . . , //) be 
a system of complex valued functions on ft annihilated by V. Suppose 
that V satisfies Condition 1 and that each fj can be expressed as 

fj = Fj(x,DnJi:\a\<m,i = l,...,l), 

where Fj is an analytic function, namely a convergent power series of 
the variables in the parenthesis. Let 

v _ j (v -f l)ra, if v is odd 
\ urn, if v is even, where v is as in Condition 1. 

Then F = ( / i , . . . , //) is determined by their partial derivatives at the 
origin of order < A. Furthermore, if F G CA + 1 then F € C". 

If V is a CR structure, Condition 1 may be replaced by a weaker 
condition to get the analyticity of F: Let V be a C" CR struc
ture of the complex dimension n and CR codimension d on an open 
set fi e R2 n - M . ^Choose^C" real vector fields T-,i = l , . . . , d , so 
that {Li , . . . , L n , L i , . . . , L n , T i , . . . ,T^} generates CTO. Let a = 
(ai,. . . ,Od) and ß = (&i,...,6n) D e multiindices. We denote by 
(T a L , . . . ) the set of all linear combinations with C" coefficients of 
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CONDITION 2. For some positive integer z/, Bv has the following 
property: For each i = 1 , . . . , d and each positive integer p there exists 
a linear operator 

A^v e ( T a L ^ : |a | < p - 1, | a | + \ß\ < p) such that 

(Ti)vf + Auvf e Bvf for any CR distribution / , 

where Bvf is the set {Lf : L G B„}. 

THEOREM 2. Let V be aC" CR structure of the complex dimension n 
and CR codimension d on an open setftCTL2n+d. LetF = Uw~Ji) 
be a system of CR functions. Suppose that V satisfies Condition 2 and 
that each fj can be expressed as 

fj = Fj(x, DQ f\ : \a\ < m,i = 1, • • • , / ) , where Fj is analytic. 

T . _ J (y + l)ra, if v is odd, 
\ vm1 if v is even, where v is as in Condition 2, 

and let Xf > X + 1 be an even number. Then F G Cx implies that 
FeC". 

In §3, we give a list of examples of Theorem 1 and 2 in CR structures. 
We find that much of §3 is covered by recent results [1] by Baouendi-
Jacobowitz-Treves. However, we give proofs from our viewpoint. The 
author thanks S. Webster for answering many questions. The author 
also thanks the referee for pointing out several mistakes and for helpful 
suggestions. 

2. P r o o f of T h e o r e m s 1 and 2. Let n be the complex di
mension of V. Let L i , . . . , L n be Cœ linearly independent sections 
of V. Choose C" independent real vector fields Ti,i = 1, . . . d , so 
that {L\,..., L n , L\,..., L n , T\,..., T^} spans the complexified tan
gent space of Q at each point of ft. Note that these vectors may 
not be independent. Let a = ( a i , . . . , a ^ ) , ß = (bi,...,bn) -and 
7 = ( c i , . . . , c n ) be multiindices. Observe that any linear partial dif
ferential operator p(x, D) of order A with Cu coefficients on ft can be 
expressed as a linear combination with C" coefficients of 

{ T ° L V : M + 101 + |7| < A}, 
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and if / is a distribution annihilated by V, then p(x,D)f can be 
expressed as a linear combination with Cu coefficients of { T a L / : 
M + \ß\ < A}. Let F = ( / i , . . . , / z ) be a system of functions 
annihilated by V. For each pair of integers k and k' (k > k') let 
Ck be the set of all analytic functions of the local coordinates x and 
{Talljfj : \a\ + \ß\ < kj = 1 , . . . , /} and Ck.v be the subset of 
Ck which consists of all the analytic functions of a;, let Ck be the 
set of all analytic functions of the local coordinates x and {T°X fj : 
M + \ß\ < k,\a\ < k'J = 1 , . . . , /} and \et_Ck and CkM' be their 
complex conjugates, respectively. Namely, Ck is the set of all the 
analytic functions of x and {T r v L / j / y : H + \ß\ < kj = 1 , . . . , / } , 

etc. We will denote, by L Ck, the set {L u : u G Ck}, etc. 

LEMMA 1. If there exists an integer m > 0 such that each fj G 
Cmj = 1 , . . . , /, then we have: 

1) for any multiindex ß, L fj G Cm,j = 1 , . . . , /, and 

2) /or an;*/ integers k and k' with k > k' > 0, 

Cfc.A:' S C W A > , or equivalently,Ck.k' Q Cm+A-'. 

PROOF. First, we show that if L is a C^ section of V and /i > 0 is 
any integer, then 

LCj, C C ; / . 

Let u G C//p. Since ?x is an analytic function of x and {T°X fj : 

M + |/?| < / ^ J = 1? • • • » '}? by the chain rule Lu is an analytic function 

of x, { ' T ' L ' V , } and {LTnLf*fj}. But L{TaLß)fj = (T«Lß)Lfj 

+ terms arising from commutating L with TfVL . In the right side 
Lfj — 0, and the sum of the terms arising from commutating is a 

linear combination with Cu coefficients of { T " L fj : | a | 4- \ß\ < • / / } . 
Therefore, Lu G Cfl. A repeated application of the above argument 
shows that for any multiindex ß 

&JCm Ç C m , or equivalently, L C m Ç C m . 

Now, since fj G C m , we have 

L ' / j G L C n t C C m , which proves 1). 
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Let a be any multiindex with \a\ < kf. Apply T a to the conclusion 

part of 1) to get TaLßfj G C m + H . 

Since Ck.k' is the set of analytic functions of { x , T ° X fj : \a\ < k'} 

and each T Q L ' f3 G Cm+| f t | Ç C m + f c / , we have Ck.k
f Ç Cm+k'* This 

proves 2). D 

LEMMA 2. Let Bk be as defined in §1. if there exists an integer m > 0 
sitc/i £/ia£ each fj G Cm,j = 1 , . . . , /, £/ien we /lave 

Bfc/j C C{k+i)m ifk is odd 

and 
Bkfj C Ckm tf k is even. 

PROOF. For any multiindices /?,;, i — 1 ,2 , . . . , 

L 1 fj € Cm by 1) of Lemma 1. 

Apply L/J2 to the above to get 

L 2 L V j £ L 2 W J Ç C|02 |+m ,m . 

But C| /j2 |+m>/„ C Cm+m by 2) of Lemma 1. Therefore, L^2L J / j £ 
C m + m . Thus the lemma is proved for k = 1 and k = 2. Then use 
induction on L o 

PROOF OF THEOREM 1. Let v be as in Condition 1 and A be as in the 
statement of Theorem 1. Then, by Lemma 2, Bvfj Ç C\,j — 1 , . . . , / . 
But Condition 1 implies that Bvfj contains all the partial derivatives 
of fj of order A + 1. Thus we have 

Dafj = Ff{x,DßU : \ß\ < A,2 = 1,. . . , /) 

for each a with \a\ — A + 1 and each j = 1 , . . . , / , where Fj* is an 
analytic function. 
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Therefore, F is determined by its partial derivatives at the origin up 
to order A and F e C" if F e Cx+l (see the following Remark), D 

REMARK. Let u = ( i t i , . . . , um) be a system of real valued functions 
on an open set of R n . Suppose that all the partial derivatives of 
Uj, j — 1 , . . . , ra, of order A-f 1 can be expressed as an analytic function 
of the local coordinates x and the derivatives of u of order < A. For 
example, let m = 1, n = 2 and A = 1. Then we have 

uxx = a(x,y,u,ux,Uy) 

uxy = b(x,y,u,ux,uy) 

^yy = C\%<) V-, u^ ux, Uy)i 

where a, b and c are analytic functions. Then we have 

du = uxdx + Uydy 

dux = adz' -\-bdy 

duy = bdx + cdy. 

Introduce the new variables p = ux,q = uy and let 

üü\ = du — pdx — qdy 

u>2 = dp — adx — b dy 

u;3 = dq — bdx — c dy. 

Then the mapping x i—• (xìu(x)ìux(x),uy{x.)) is an integral manifold 
of the Pfaffian system cjj = 0, j — 1,2,3 in R5 . Thus u is determined 
on a neighborhood of the origin by a finite number of constants 
u(0),ux(0) and uy(Q) and u e C" ii u e C2. ü 

PROOF OF THEOREM 2. Let A and A' be as in the statement of 
Theorem 2. Condition 2 implies that, for each i = 1 , . . . , d, there exists 
a differential operator Ai £< T a L^ : |a|(A', |a| + \ß\ < X') so that 

(Tiffj+AJjGBJj. 

But, by Lemma 2, Bufj C C\. Therefore % 

(2.1) (Tif fj + Aifj 6 Cx, j = l , . . . , i , z = l , . . . , d . 

file://-/-bdy
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On the other hand, for each j = 1 , . . . , /, 

(2.2) (LkLk)^fj = 0, fe = l , . . . , n . 

We choose a coordinate system (xi, y i , . . . , x n , y n , t i , . •. ,td) oîÇl such 
that 

and express the associated convectors in the variable (£, r) = 
(£ l> - • • ^ 2 n , n » - • -iTd). 

Consider the equation 

n 

(2.2)' GY,(LkLk)^fj = 0,G » 0. 
fc=i 

The principal symbol at the origin of the system (2.1) with i — 1 , . . . , d 
and (2.2)' is 

( 2 - 3 ) GmH22)^+' ' • + fe2n-l+^22n)^]+r1
V + - • - + T d

A ' + £ O ^ T « ^ , 

where |a| -f |/?| = A' and |a| < A'. 

If we take G sufficiently large, (2.3) > 0, with equality only when 
(£, T) = 0. By the theory of elliptic partial differential equations (cf. 
[7]) FeC" ifFeCx'.ü 

3. Applications. This section deals with applications of Theorems 
1 and 2 to the cases of embedding of abstract CR manifolds into C^ . 
Let V be a Cu CR structure on an open set Q Ç R2 n+d

 0f the complex 
dimension n and CR codimension d. It is well known that there exists a 
C" CR embedding of (f2, V) into C n + d as a generic submanifold. This 
is a consequence of the analytic version of the Frobenius theorem (cf. 
[9]). However, not every CR embedding is Cu even if its image is a C" 
submanifold of Cn+d. The following example shows that if the Levi 
form is identically equal to zero there is much freedom in the choice of 
CR embeddings. 
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EXAMPLE. Let Q = R 3 = {(x,y,t)} and be the CR structure 
generated by the vector field § ( ^ + V^ 7 ! ^ ) - Let </> : R 1 -> R 1 

be any C1 diffeomorphism. Then F : Sì —• C2 , defined by 

F(x,y,t) = {x + srïy,(t){t)) 

is a Cß embedding. However, under certain nondegeneracy assumptions 
of the Levi form, Theorem 1 applies to the component functions of a 
CR embedding F = ( / i , . . . , fn+d) to conclude that F is determined by 
a finite number of constants and F G C" if F € Ck for a sufficiently 
large k. In this section a tangential Cauchy-Riemann vector field will 
be denoted by either Z or V (instead of L). 

PROPOSITION 1. Let (fi, V) be a C" CR manifold of CR codimension 
1. If the Levi form has a nonzero eigenvalue, then Condition 1 holds 
with v = 3. 

PROOF. Since the Levi form has a nonzero eigenvalue, there exists a 
C" section Z of V such that 

[Z,Z] ^O,modV0V. 

Let T = \/^T[Z, Z], then T is a Cœ real vector field on Q. Choose a set 
of generators {Z\ = Z, Z2 , . . . , Zn} of V. Let / be any CR distribution. 
Any partial derivative Daf(\a\ = q) is a linear combination with C^ 
coefficients of {ZßTff : \ß\ + t < q}. We shall show that, for any 
multiindex ß = (61 , . . . , 6n) and any nonnegative integer t, 

(3.1) Z"T7 € £ 3 / . 

Since 

(3.2) Z Z / = ( Z Z - [ Z , Z ] ) / 

Z Z / + v ^ T / = ^ Ï 2 7 , 

we have 
Tf € B2f. 
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By induction on t, it is easy to see that 

(3.3) z'z'f = t\{y/^ÏTYf + Yl ^ -7 Z 7 ^7, 

where i -f h i < t and i < t. We show (3.1) by induction on t. If t — 1, 
apply Zß to (3.2) to get ZßTf E ZßB2f C B3f. Now apply Zß to 
(3.3), to get 

Z^Z'Z*/ = t\ Zß(y/^lTYf + J2 bi-cTFTf 

where 
|ck| + z < \ß\ + t and i < t. 

By induction hypothesis ZaTl f e B3f. But Zß~Zl Zl f e B3f, there
after (3.1) follows. D 

Now we present several examples of applications of the Theorems 1 
and 2. 

3 .1 . Hypersurfaces of C n + 1 w i t h degenerate Levi forms Let 
M be a C^ real hypersurface in C n + 1 . Let F be a local defining 
function of M. By a holomorphic change of coordinates we can get 
local coordinates (z\,..., z n +i) so that 

r ( z i , Z i , . . . , Z n + i , 2 r H _ i ) = Zn+i + 2 n + i — 0 ( ^ 1 , ^ 1 , - - . , 2 n + i , 2 n + i ) , 

where 0(0) = O,d0(O) = 0 and the Taylor series expansion of 4> has 
no pluriharmonic part . Suppose that for each j = 1 , . . . , n there is an 
n-tuple of nonnegative integers ßj = ( ò * , . . . , b1-) such that 

d e t b i ^ U i n-0' 

where ( ^ ) f t = ( ^ ? . . . ( ^ ) 6 j . 

If (0 ,V) is an abstract C " CR manifold and F = (fu..., / n + 1 ) : 
fi —» Af is a CR diffeomorphism, it is proved in [6] that (fì, V) satisfies 
Condition 1 with i/ = 2 and we can express each fj as 

£ - Fj{x, DaJi : M < m,z = 1 , . . . , n + 1), 
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where m = max|/?j|, j — 1 , . . . ,n, and Fj is an analytic function. Thus 
by Theorem 1, F is determined by its partial derivatives at 0 up to 
order A = 2ra and F e C 2 m + 1 implies that F eC". 

3.2. Tube hypersurfaces A tube hypersurface in C n = R n + 
V^ÏR1 1 is a hypersurface M of the form M = S + y ^ R 1 1 , where S 
is a hypersurface of codimension 1 in R n . 

We can prove 

PROPOSITION 2. Let M = 5 H- v^R- 1 1 6e a ta&e hypersurface in C n 

where S does not contain a real line. Let (fi, V) fre a C^ CR'manifold 
and F = ( / i , . - . , / n ) ' fi —• M òe a CR diffeomorphism. Then, for 
each point P € Q, there exists an integer kp so that, on a neighborhood 
of P, F is determined by its partial derivaties of order < kp and F G Cu 

whenever F £ Ckp. 

SKETCH OF THE PROOF. Assume that P and F(P) are the origins of 
R 2 n _ 1 and C n , respectively. Let x+\f^\y be the standard coordinates 
of C n , where x = (xi , . . . ,a ;n) and y — (t/i , . . . ,2/n). By a repeated 
linear change of the coordinates x and using the condition that S 
contains no real line, we get coordinates {t\,..., tn) of R n so that S is 
locally the graph tn — 0(£i , . . . , £n-i) and, for each j — 1 , . . . , n — 1, 
there exists an integer mj > 0 such that the matrix 

[(è)(^r*(o)L=i „-1 
forms an upper triangular matrix with nonzero diagonal entries. 

Let tj = X ^ ^ = i ^ x ^ ' i = 1)---)W- We make the corresponding 
change of the complex coordinates (zi,..., zn), where Zj — Xj + y/^ïyj, 
by 

n 

<,• = £ < # * * • 

Then Re(j = tj. Let 

r = 2tn - 20 (* i , . . . , tn-i) = Cn + Cn + ^ ( C l , Cl, • • • , C n - l , C n - l ) -
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Then 

So, 
ßmj + lr 

\ Ö Zr (0)1 

is an upper triangular matrix with nonzero diagonal entries (therefore, 
nonsingular). Thus this reduces to a case of 3.1. D 

3.3. Holomorphic decomposition of a defining function (cf. 
[4]) Let M be a hypersurface in C n + 1 = {(zi , . . . ,zn,iu)} with a 
defining function of the form 

N 

(3.4) r(z,z~,w,w) = w + w + y ^ SjUj(z, W)UJ {z, w), 
j=i 

where each Sj is either 1 or —1 and each Uj is a holomorphic function 
vanishing at the origin. We can prove 

PROPOSITION 3. Let (fî, V) be a C" CR manifold satisfying Con
dition 1 and let F : Q —• M be a CR diffeomorphism, where M is 
defined by a local defining function (3.4). Suppose that {uj(z,0),j = 
1 , . . . , N} are linearly independent functions of z = (zi,..., zn). Let 
hj — UjoF,j = 1 , . . . , N and /ijv+i = woF. Then there exists an inte
ger X such that each hj e Cu, whenever F e CA + 1 , and (hi,..., /ijv+i) 
is determined by their partial derivatives at the origin of order < A. 

PROOF. Let u3(z,Qi) = E j ^ o 0 ? 2 ^ a: multi-index, j = l , . . . , iV. 
Since {uj(z,0)} is linearly independent, we can choose N multi-indices 
a i , . . . ,a^ so that 

detfafl ^0 . 
L J J i ,7=i , . . . , iv 
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Let m = max{|a?;| : i = 1 , . . . , N}. Now we will express each hj as 

hj = Hj(x,D% : \ß\ < m , z = 1, . . . ,N + 1), 

where each //j is an analytic function of the variables x and D^h{. Let 
^ = £;_- (È-/t)£>J = ! , . . . , « . Since V,r = 0, ^ is tangent to 
M and Vj is a tangential Cauchy-Riemann vector field. Let Zj be a 
Cu section of V belonging to the same class of m-jets as F~1(Vj), (two 
vector fields X = Sa?:^- and Y = £ & i ^ are said to belong to the 
same class of m-jets if all the partial derivatives of ai at the origin up 
to the order m are equal to those of bi). We apply Z *(i = 1 , . . . , N) 
to 

N 

(3.5) r • F = ftjv+i + friv+i + ^Zjhjhj = 0. 

Since /ij's are CR functions, we have 
N 

(3.6) Z ^ Ä N + I + ^ ^ M Z ^ f t j ) = °-

But __ _ _ _ 
Ẑ MO) - (F-^D^W = V%(0) - *<%', 

where c?; is a positive integer. Since det ä?M ^ 0, we can 
L J J?;,i=i N 

solve (3.5) and (3.6) with i = 1,...,JV for Ax,..., hw+i in terms of 
Z */ij, j = 1 , . . . , iV + 1, i — 1 , . . . , A7", which gives 

hj =Hj(x,Dahi : \a\ < ra,z = 1,.. .,JV + 1), 

where ü/j is an analytic function of those variables. The conclusion 
follows from applying Theorem 1 to (h\,..., /ijv+i). 

3.4. CR manifolds of codimension 1 with nondegenerate 
Levi forms. Let V be a CR structure o n O Ç jtfn+d 0f c o m p i e x 

dimension n and CR codimension d. We fix definitions and notations: 
At each point P € ft let Wp = CTp(Q)/Vp®Vp, where Vp is the fibre 
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of V over P. Let Wp = Wp 0 C for a real subspace Wp. A Levi form 
of V is the vector-valued hermitian form 

Cp:VpxVp-^ Wp 

defined by 

Cp{vi,v2) = i[VuV2},(modVp(BVp), 

where Vj(j — 1,2) is any section of V such that Vj(P) = Vj. The Levi 
form is nondegenerate if Cp(v\, v2) = 0 for all v2l implying that v\ = 0. 
The image of Cp is the set {Cp(v,v) G Wp : v eVp}. 

Webster proved in [9], using an analytic disk method, that if M 
is a C^ generic submanifold of C r l + d such that the Levi form is 
nondegenerate at each point and its image contains an open set of 
Wp at each point P G M and if F is a CR diffeomorphism of M onto 
another such submanifold A/', then F e C1 implies that F G Cu. 

Assuming that F G C 4 , wre can weaken Webster's hypothesis on the 
Levi form: 

PROPOSITION 4. Let (fi,V) be a C"CR manifold of the complex 
dimension n and CR codimension d and let F — ( / i , . . . , fn+d) : ^ —* 
Cn+{i be a CR diffeomorphism onto a C* generic submanifold. Suppose 
that the Levi form ofV is nondegenerate and the image of the Levi form 
at P en spans Wr

p. Then F G C4 implies that F G C". 

PROOF. We will show that V and ( / i , . . . , / n +d) satisfy the hypotheses 
of Theorem 2 with m = 1, v — 2, and therefore A' = 4, from which the 
above conclusion follows. Let P be the origin. Let M — F(Q) Ç Cn+d 

be locally defined as 

rtj=1{rj=0}, 

where each r} G C^ and dr\ A • • • A drd ^ 0 on M. By a homomorphic 
change of coordinates we get a coordinate system 

{zi,...,znìwll...ìwd}, 

with respect to which r3 is of the form rj = Wj -f Wj — 4>j{z1~z,w,w), 
where 0,(0) = O,d0y(O) = 0 and the Taylor series expansion of 4>j has 
no pluriharmonic part. 
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Now, for each j = l , . . . , n , there exists a complex vector field Vj 
tangent to M of the form 

v d V* * d 
J dz; dwi 

The coefficients a*-'s are uniquely determined by 

d 
drk 

dzj 

j drk 
1 dwi ^ = ^ - £ ^ = 0, * = i,...,* 

Note that 

that 

&(0) 
i.k-1 d 

is an identity matrix. Furthermore, we see 

aj(0) = 0, 

(ê)U)'-i«»>-* 
for any multi-indices a and /?, and 

da1] d2ri. 

Therefore, at the origin, 

C{Vj,V,) = v ^ ï [ # - -Ta)^-, # - - V sj A | ( o ) 
V J ' VdZj ^ JdWi all *-" 'flïiï.. I w 

i = i 
' dwi 

dâi d da) d 

d2n ^ I Ä ° > ( d d 
^ dzjdzi Vdwj dwi 7 ' 

Now for each i — 1 , . . . , d, we make a linear change of coordinates 

( 2 l , . . . ^ n ) ^ C ' = ( C i , - . . , C ) 

so that 
n-j. 

r, = Wi + Wi + ^jT biCÛk + ^*(C> C> ™,üJ), f o r s o m e n? < n> 
A: = l 
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where 

Ä ( 0 ) = 0, 

for any j , k = 1 , . . . n, and each ò̂  is a nonzero constant. 

Let gì = wloF, fk = zkoF and fk= QoF, i = 1,...,d, k = 1,. . . ,n. 

Then 

ni 

(3.7) rioF = gi+ gt + £ &*/*7l + ^ o F = 0 on fi. 
fc=i 

NOWT, for each i — 1 , . . . , d, and j = 1 , . . . , n, let 

öCj fri1 tot 

Then the coefficients aj1 are uniquely determined by the condition 

Vfrit = 0, A: = 1 , . . . , d. Let Z^ be a (7^ section of V belonging to the 

same class of 4-jets as F~l{V' •). Apply Z • to (3.7) to get 

Tli 

(3.8) zjfc + Yl bif'k&jfi) + Zl0 ° F) = °-

Since the Levi form is nondegenerate and the set {£(v,v)\v G Vp} 
generates W*, we can choose n pairs (i,j), where i G { l , . . . , d} and 
j G { 1 , . . . , n} such that {£]} for those chosen pairs (i, j) are linearly 
independent. Since 

^•7l(o) = v*cl(<)) 
= 6jfc (Kronecker delta), 

we can solve (3.7) with i = l , . . . , d and (3.8) with the chosen pairs 
(i,j) for # i , . . . , Qd and / j . Since each fj is a linear combination of /j 's, 
we get 

9l = Gi(x, DaJ, Dag, \a\ < 1), i = 1 , . . . , d, 

/,- = Fj(a:, Z)Q7, D a 5, \a\ < 1), j = 1,...,n, 
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where Gj and Fj are analytic functions of the variables in the paren
theses. 

Now, to show that V satisfies Condition 2 with v — 2, choose 
Cu sections Vi , . . . , Vd of V so that {Ti = yf-ï[Vi,Vi], i = 1 , . . . , d) 
generates Wp, where P € Q, is the origin. Then, for a CR distribution 

ViVif = (ViVi-\Vl,Vl])f 

so Ti/ G B2/. By induction, we see that, for each p = 1,2,..., 

{VifiViY = p\{sf=iTiyf+ 5 > ^ T * Z " / , 
( 3-9 ) \a\ + \ß\<p 

\a\ < p 

where the coefficients a's are Cu:,T = (T\,... ,Ta) is as above and 
Z = (Zx,... ,Zn) is any C" sections that generates V at each point 
of 0 . If we let Ai,p = p ! ( vcr ) P S a a g T a z f f / . f r o m (3-9) w e h a v e 

(Ti)pf + Ai,pf G B2f. This completes the proof. D 
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