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GROUPS OF ISOMETRIES ON OPERATOR ALGEBRAS II
STEEN PEDERSEN

ABSTRACT. We show that, to each Co-group p of isome-
tries on a C*-algebra A, there corresponds a Cp-group «
of automorphisms on A, and a unitary cocycle u satisfying,
p(t)a = u(t)a(t)a, t € R, a € A. It is shown, that the gener-
ator of p is of the form, a — i{(Ha — aK), where H and K are
(unbounded) self-adjoint operators.

Introduction. We study the polar decomposition of a Co-group p
of isometries on a C*-algebra. It is used to obtain information about
the infinitesimal generator of p, and the implementability of p. The
case, where the algebra contains a unit, is considered in [9].

It is known [5], [7], that a linear isometry, mapping a C*-algebra
onto itself, can be decomposed into a Jordan-automorphism, followed
by multiplication by a unitary. The unitary may be chosen in the
multiplier algebra of A. This decomposition is called the polar decom-
position.

We prove in §1 that, if p is a Cy-group of isometries on a factor M,
and p(t)a = u(t)a(t)e, a in M, is the polar decomposition of each
p(t), then o is a Cg-group of automorphisms on M, and u is a o-
weakly continuous unitary a-cocycle (u(s +t) = u(s)a(t)u(t)) inM.
The corresponding result for a Co-group of isometries on a C*-algebra
is proved in §2. In §3, we give necessary and sufficient conditions for
u to be a representation of the additive group of real numbers. We
prove, in §4, that it is possible to choose a representation of A such
that p(t)a = U(t)aV (t), for a pair of unitary Co-groups U and V. We
study the infinitesimal generator of a group of this form, see also [9,
§4]. In the final section, we consider the case where A is a C*-algebra
of compact operators.

Notation. Let X be a Banach space. A group on X is a homomor-
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754 S. PEDERSEN

phism from the additive group of real numbers R into the multiplicative
group of invertible elements in B(X) = the ring of bounded linear op-
erators on X. Let X* be the Banach dual of X, if x € X and ¢ € X*.
Then we write (x, ) for the value of ¢ at the point z. A group p on X
is a Co-group, if p(t)z is a continuous function of ¢, for each z in X.
The generator 6 is defined by

é(z) = lim (p(t)z — x)/t;

the domain D(§) of é is the set of z in X for which the limit exists.
We say that p is a Cf-group on X*, if there exists a Cpo-group p. on
X such that p(t) is the adjoint of p,(t) for each t. The generator of p
is then the adjoint of the generator of p,.

If H is a Hilbert space and f is a vector in H, then we denote by [f]
the projection onto the one-dimensional subspace of H, spanned by f.

Let A be a C*-algebra, a linear bijection a from A onto A is said to
be a Jordan-automorphism (resp., automorphism) if a(1) = 1,a(a*) =
a(a)* for a in A and a(a?) = a(a)? for all self-adjoint a in A (resp.,
a(a*) = a(a)*, and a(ab) = a(a)a(b), for all @ and b in A). We refer
to (8], [11] for the theory of C*- and von Neumann algebras.

1. von Neumann algebras. Let (M,H) be a von Neumann
algebra and let p be a C}-group of isometries on M. If u, and «,
are determined by

u(t) = p(t)1, and a(t)a = u(t)*p(t)a,

for ¢t in R, and a in M. Then (u, a) is the polar decomposition of p in
the sense of (9], i.e., p(t)a = u(t)a(t)a, t € R,a € M, and each «(t) is
a Jordan-automorphism on M [5, Theorem 7]. It is easy to see that u
is then an a-cocycle, i.e.,

u(s +t) = u(s)a(s)u(t)

for all s and ¢ in R. Our first result concerns the continuity properties
of u and a.

PROPOSITION 1.1. Let (u,c) be the polar decomposition of a Cf-
group. Then a) u is strongly continuous; b) a is pointwise o-weakly
continuous.
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PROOF. Fix ¢ in M,, and choose &,,n, in H, such that }|&,|? <
00, ¥ || < 00 and p(a) = Y (a&,,n,) for all a in M.

(a). By assumption, {(u(t), ) = (p(t)1, ¢) is a continuous function of
t. In particular, u is o-weakly continuous, and therefore,

(u(t) = u(s)* (u(t) — u(s)) = 2 — u(t)"u(s) — u(s) u(t)
converges weakly to zero as t tends to s. Hence u is strongly continuous.
(b). If a is in M, then
(a(t)a — a(s)a, )
=D _(p(t)a = p(s)a)&u, uls)) + D _(p(t)au, (u(t) = u(s))ma)-

The first sum converges to zero (as t tends to s), by assumption, and
the second sum tends to zero by the dominated convergence theorem
and (a).

THEOREM 1.2. Let (M, H) be a von Neumann algebra and let p be
a Cgy-group of isometries on M with polar decomposition (u,a). 1f M
is either abelian or a factor, then a is a Cf-group of automorphisms

on M.

PROOF. If each a(t) is an automorphism, then a short computation
shows that the group property of p and the cocycle property of u implies
that o has the group property. Hence, we must prove that each «f(t)
is an automorphism. Only the case where M is a factor requires a
proof, since a Jordan automorphism of a commutative algebra is an
automorphism. In this case, each a(t) is either an automorphism or an
anti-automorphism by [5, Theorem 10]. Hence, the Theorem follows
from the continuity of o and the connectedness of R.

PROPOSITION 1.3. Let (M,H) be a von Neumann algebra; let a
be a Cl-group of automorphisms on M, and finally let u be a o-
weakly continuous unitary a-cocycle in M. If p(t)a = u(t)a(t)a for
a € M,t € R; then p is a Cf)-group of isometries on M.

PROOF. It is easy to see that p satisfies the algebraic conditions. We
will prove pointwise o-weak continuity. Let a € M, and let ¢ be a
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o-weakly continuous state on M. The Cauchy-Schwartz inequality for
positive functionals vields the estimate.

p(t)a —a.£)|*/2
< [u(t)(a(t)a = a). 2)I* + [{(u(t) = Da, p)|?
<A{a(t)(a"a) — a(t)(a")a —a*a(t)(a) + a*a,¢)
+1((ut) - Da ).

which. in turn. implies the desired continuity of p.

REMARKS 1.4. a) The main results of this paper remain true if R is
replaced by an arbitrary connected topological group.

b) Theorem 1.2 is a partial converse to Proposition 1.3. But it cannot
be extended to a full converse. Specifically, there exists a von Neumann
algebra. which admits a C¥¢,-group a of Jordan-automorphisms such
that a(t) is not an automorphism for some ¢, cf., [2, p. 158].

¢) Our result should be compared with the known fact that a Co-
group of isometries on a von Neumann algebra is automatically norm
continuous. [9. Corollary 1.7].

EXAMPLE 1.5. Let H be a Hilbert space, M = B(H),.and p(t)a =
U(t)a. where U is a given unitary Co-group on H. The polar decom-
position (u.a)of p is then given by u(t) = U(t) and a(t)a = a.

2. (*-algebras. We study groups of isometries on general C*-
algebras. The case where the ("*-algebra contains a unit was considered
earlier in [9].

Let A be a C"*-algebra, and let p be a surjective isometry on A. By [7,
Theorem 1] there exists a Jordan-automorphism « on A, and a unitary
u in the multiplier algebra A(A) of A, such that

pla) = ua(a)

for all @ in A. By [7. Lemma 3], the pair (u, ) is uniquely determined
by the above conditions. The pair (u, ) is called the polar decomposi-
tion of p. By uniqueness, this polar decomposition coincides with the
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one defined in [9]. if A is assumed to have a unit. If p is a Co-group
of isometries on A, then the polar decomposition (u,a) is determined
by the following condition: For each t € R, the pair (u(t),a(t)) is the
polar decomposition of p(t). Our first result states that, in this case, a
is a Co-group of automorphisms on A, and u is a a”’-cocycle when o
is defined by o’'(t) = «a(t)”’. Note that o' (t) is the o-weakly continuous
extension of a(t) to the universal enveloping von Neumann algebra A”
of A.

THEOREM 2.1. Let A be a C*-algebra and let M (A) be the multiplier
algebra of A.

There is a canonical bijection between the set of Co-groups p of
isometries on A, and the set of pairs (u,«). where a is a Co-group
of automorphisms on A, and u is a M(A) valued unitary o' -cocycle.
such that the mapping

(1) F— (u(t). ),

is continuous for each o in A* = (A"). C M(A)*. The bijection is
given by

(2) p(t)a = u(t)a(t)a,

fora in A and t in R. That is. (u,q) is the polar decomposition of p.

PROOF. Let the pair (u, «) be specified as above. Then it follows from
Proposition 1.3 that p is a weakly continuous group of isometries on
A. Hence, p is a C'o-group by general semi-group theory (3, Corollary
3.1.8].

Conversely, assume that p is given. and let (u,a) be the polar
decomposition of p. The listed properties of u follow directly from
the discussions in §1. Moreover, an easy calculation shows that

a(t)a® — a(s)a® =(p(t)a — p(s)a)*(p(t)a + p(s)a)
— (p(t)a = p(s)a)"p(s)a + (p(s)a)* (p(t)a — p(s)a)

for a = a*. Hence ||a(t)a? — a(s)a?|| < 4]|a]|||p(t)a — p(s)a]|. It is well
known that every element a € A decomposes as a linear combination of
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squares, a = Y cja? (7 =1,2,3,4), where each c; is a complex number
of modulus one, and a; = a} € A,||a;||* < ||a]|. It follows that

4
®3) lla(t)a — a(s)all < 4llall'’? D [lp(t)a; — p(s)ayl].

j=1

That is, « is strongly continuous. An argument in [9] shows that
strong continuity of a implies that each «(t) is an automorphism.
See also [3, proof of Corollary 3.2.12]. Therefore, each a(t)" = o (t)
is an automorphism. Now, the cocycle property of u, and a simple
computation, shows that o’ is a group. Then, of course, « is a group
as well.

COROLLARY 2.2. Theorem 2.1 is also true if we replace the continuity
condition (1) on u by the condition that t — u(t)a is continuous for
each a in A.

PROOF. If p is given, then the stated continuity of u follows from (2)
and the strong continuity of a.

COROLLARY 2.3. Let a be a Co-group of automorphisms on a C*-
algebra A. Let u be a M(A) valued unitary o'’ -cocycle. The following
two conditions are equivalent:

(i) The mapping t — (u(t),p) is continuous for each p in A*;

(ii) The mapping t — u(t)a is continuous for each a in A. If it is
further assumed that A has a unit, then (i) and (it) are equivalent to
(iii) below:

(iii) The mapping t — u(t) is continuous in the norm of A.

We give an example below of a C*-algebra A (necessarily without
unit) and a Cp-group p of isometries on A such that the unitary part
of the polar decomposition of p is not norm continuous (relative to the
norm of M(A)).
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EXAMPLE 2.4. Let A be the C*-algebra of compact operators on an
infinite dimensional Hilbert space H, and let.U be a Co-group (with
unbounded generator) of unitaries on H. If we determine a Cp-group
p of isometries on A by p(t)a = U(t)a, then the polar decomposition
(u, ) of p is given by u(t) = U(¢t) and a(t)a =a for t € R and a € A.

3. The unitary part. Let (u,a) be the polar decomposition of a
continuous group p of isometries on an operator algebra. We show that
the unitary part u is a group if the pair (u(t), a(t)) satisfies a certain
algebraic relation for each t.

THEOREM 3.1. Let M be a von Neumann algebra, let o be a CF,-group
of automorphisms on M, and let u be a M-valued o-weakly continuous
unitary a-cocycle. The conditions (1) and (2) below are equivalent:

(1) u(s +t) = u(s)u(t) for all s and t in R.
(2) u(t)a(t)a = a(t)(u(t)a) for all a in M, and t in R.

PROOF. Condition (1) is equivalent to the following:
(3) u(t) = a(s)(u(t)); s,t,€R,

since u is an a-cocycle. Moreover, (3) implies (2), since each «(t) is
an endomorphism. Finally, we will argue that condition (2) implies
(3). Since p and a are groups, (2) and a computation shows that
u(nt) = u(t)” for ¢t in R and n = 1,2,3,...; therefore

4) u(s)u(t) = u(s +1)

if s and ¢ are rational numbers with the same sign. By continuity (4)
holds whenever s and t are real numbers and sign (s) = sign (t). Hence
u(t) = a(s)(u(t)), if s,t > 0, by the cocycle property of u. Applying
a(—s) to both sides of the last equality yields

u(t) = a(s)(u(t)); seR, t>0.

Similarly we have u(t) = a(s)(u(t)) for s € R and ¢t < 0. Condition (3)
follows from this.
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COROLLARY 3.2. Let A = M be a C*-algebra and let p be a Cy-
group of isometries on A. The polar decomposition (u,a)of p satisfies
the conclusion of Theorem 3.1.

PROOF. The polar decomposition (u,a’’) of p” satisfies the assump-
tions in Theorem 3.1, and the corollary follows.

COROLLARY 3.3. Let (u,a) be as in Theorem 3.1 (or as in Corollary
3.2). For each t in R, define an operator L(u(t)) on M by the
assignments L(u(t))a = u(t)a for all a in M. If p(t) = L(u(t))a(t),
then the following five conditions are equivalent:

(1) p(t)a(t) = a(t)p(t) for all t in R;
(i1) L(u(t))a(t) = a(t)L(u(t)) for all t in R;
(iil) u(s +t) = u(s)u(t) for all s and t in R;
(iv) L(u(s))a(t) = a(t)L(u(s)) for all s and t in R;
(v) p(s)a(t) = a(t)p(s) for all s and t in R.

4. Implemented groups. The generator of a Cp-group of isome-
tries on a C*-algebra is shown to be of the form a — i(Ha—aK), where
H and K are (unbounded) self-adjoint operators. The only restriction,
which we may impose on H and K in general, is that the mapping
a — exp(itH)aexp(—itK) leaves the algebra invariant for each ¢.

LEMMA 4.1. Let A be a C*-algebra. 1If a is in M(A), then ||a|| =
sup ||ab||, where the supremum is over all b in A with norm less than
or equal to one.

PROOF. Let ||al|o = sup{||ab]||b € A,||b]] < 1}. We will show that
lI-llo is a C*-norm on M(A). Define a linear map L from M (A) into the
Banach algebra of all bounded linear maps on A by L(a)b = ab, b € A.
Clearly, ||allo = ||L(a)||- Since the kernel, ker L, of L is an ideal in
M(A) and the intersection A Nker L = {0}, the known thickness of A
in M(A) [11, p. 169] implies that L is injective, i.e., ||a||o is a Banach
algebra norm on M(A). Let a € M(A) and € > 0 be given and choose
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b € A such that ||b]| < 1, and ||ab]| > (1 — £)|]a||o. Then
lla*allo = [|(ab)*abl| = (1 = &)*[|al[?,.

It follows that ||a||?, < |la*a||o, which in turn implies that ||al|o is a
C*-norm on M(A).

THEOREM 4.2. Let p be a norm continuous group of isometries on a
C*-algebra A. There exist norm continuous unitary groups U and V
in A" such that p(t)a = U(t)aV(—t) for a in A and t in R.

PROOF. By eq. (3) of §3, ||a(t) — a(s)|| < 16]|p(t) — p(s)]|- There
exists, by a result in [8, Theorem 8.5.2], a norm continuous unitary
group V in A”, such that a(t)a = V(t)aV(—t). If we take the
supremum over all a in A with ||a|| < 1, then

[lu(t) — u(s)|| = sup||(u(t) = u(s))a (S’+f(1||
< sup[[(p(t) = p(s))a(s)al| + sup|[|(a(s) —a(t))al|
< 17|p(t) = p(s)l]-

Now let U(t) = u(t)V(—t), and the Theorem follows.

REMARK 4.3. Alternatively. one might prove Theorem 1.2 by first
extending p to a norm-continuous group. p’ say. of isometries on A”.
and then apply [9, Theorem 1.1] to p".

DEFINITION 4.4. Let B(H) be the algebra of all bounded linear
operators on a Hilbert space H. Let S and T be densely defined
(unbounded) linear operators on H. Let D(és.7) denote the elements
a in B(H) which satisfy conditions (1) and (2) helow:

(1) The operator a maps D(T) = the domain of T into D(S).

(2) There exists b in B(H) such that bf = i{(Sa — «T)f for all f in
D(T).

Now define a lincar map g on B(H). by bs.1(a) = b for a in D(bs.7)

where b is specified as above.
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THEOREM 4.5. Let p be a Co-group of isometries on a C*-algebra A.
The following hold:

(i) There ezist a faithful representation (7w, H) of A and two self-
adjoint operators H and K on 'H, such that the infinitesimal generator
of (Adm)p is On i, restricted to elements a in T(A)ND(6y, k) such that
6u. K (a) is in w(A). Here (Adm)p is the Co-group on m(A) determined
by ((Adm)p)(t)w(a) = w(p(t)a), for a in A and t in R.

(ii) If A has a unit, then there exists a bounded self-adjoint operator
P on H and a unitary operator W on H such that H = W(K + P)W™.

(iii) If p is assumed to be norm continuous, then we may choose H
and K in A".

PROOF. Part (i) follows from Theorem 2.1 and [6, Theorem Al]. Part
(i1) is a consequence of (i) and [4, Theorem 4.3]. (iii) is a corollary to
Theorem 4.2.

REMARK 4.6. (i) Note that, if A is the C*-algebra of all compact
operators on a Hilbert space H, and if H, K is any pair of self-adjoint
operators on H, then the formula p(t)a = exp(itH)aexp(—itK), a € A,
t € R, determines a Co-group p of isometries on A, by Theorem 2.1.
Hence, in general, there is not a relation between the H and K in
Theorem 4.5.

(ii) If we are in case (ii) of Theorem 4.5, then
61.1,1(((1) = W(SK‘K(W*O,) + WPW*a.

Part (i) of Theorem 4.5 may therefore be regarded as an extension of
[9, Theorem 3.1].

(iii) Let u be the unitary part of the polar decomposition of a given
group p. Assume further that u is a group. Extend p to a C-group p”
of isometries on A”, and let " be the infinitesimal generator of p”. If
the unit 1 € D(§"), then it is easy to see that §”(1) is the infinitesimal
generator of u. It follows that u is norm continuous. If A has a unit,
then automatically 1 € D(6") cf., [9, Theorem 3.8]. This is not true in
general, however, by Example 2.4.

(iv) Let (u,a) be the polar decomposition of the Co-group p from
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strongly continuous unitary a-cocycles v with v(0) = 1 and the set of
all unitary Co-groups V on ‘H. The correspondence is determined by
v(t) = V(t) exp(—ith).

Let T be a densely defined linear operator on the Hilbert space H.
Define 67 = b7.7». We studied ér earlier in [9]. Here we will show that
some of the results in [9] have converses when the following assumption
is added: D(T') € D(T*). Specifically:

PROPOSITION 4.7. Let T be a densely defined operator on a Hilbert
space H. If D(T) is contained in D(T™), then we have:

(a) D(T) = {f € H|[f] € D(67)}
(b) If 61 is assumed norm-norm closed, it follows that T is closed.

(¢) If S and T are both symmetric and densely defined. and further.
bs C b, then it follows that S C T + ¢ for some complex scalar c.

PROOF. (a). The inclusion C follows from [9. Proposition 4.7]. The
other inclusion is immediate from the definition of the domain of ép
and the density of D(T*) in H.

(b). Let f,, € D(T) and f,g € H. Assume that f, — fand Tf, — g.
as n — co. We may assume that |f,| = |f| = 1, where |f| denotes the
norm of f € H. Then [|[f.] = [f]|| — 0. Since

“iéT([.fn])h = (h, f)Tfu — (R.Tf)f,

for all h in H, we get

[|=ibr([fa]) = (fOg—gO )l = 0.
(Recall (f ©® g)h := (h,f)g for h in H.) Hence [f] € D(ér) and
—ibr([f]) = f ©g—g® f, which in turn gives f € D(T) and T'f = g.

(¢). By (a), D(S) € D(T). If fis in D(S), then és([f])f = ér([f])f-
and it follows that (S —T)f = [f](S — T)f. Hence, we may define a
scalar valued function A" on D(S) by (S—=T)f = K(f)f for f in D(S).
If f and g are in D(S) and ¢ is a scalar, then

K(cf+g)(cf+9g)=cK(f)f+ K(g)g,
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so A must be a constant.

COROLLARY 4.8. The following three conditions are equivalent:
(1) T is closed and symmetric.
(ii) 67 is a closed derivation.

(iii) 61 is a closed x-dertvation.
PROOF. Apply part (b) of Proposition 4.7 and [9, Theorem 4.8].

PROBLEM 1.9. Is the space of all finite rank operators in D(ér) a
core for 677 This is true if T is assumed maximal symmetric.

5. An application. Using the main theorem of [10] and Theorem
2.1 above. we now determine the class of Co-groups of isometries on a
(*-algebras of compact operators.

THEOREM 5.1. Let A be a C"™-algebra of compact operators on a
Hilbert space H. If p is a C'o-group of isometries on A. then there exist
unitary Co-groups U and V on 'H such that

p(t)a =U(t)aV(t). foralltin R and a in A.

PROOF. Let (u.a) be the polar decomposition of p, by Theorem
2.1 and [10]. there exists a unitary Co-group V on H. such that
a(t)a = V(=t)aV'(t). The existence of V can also be deduced by
adapting the method of [3. Example 3.2.35]. If U(¢) = u(t)V(-t),
it follows that U and V satisfy the desired conditions.

REMARK 5.2. Theorem 5.1 is related to the Theorem in [1].

ADDED IN PROOF. A Banach algebra version of Theorem 4.2 ap-
peared in: A.M. Sinclair, Jordan Homomorphisms and Derivations on
Semisimple Banach Algebras, Proc. Amer. Math. Soc., 24 (1970),
209-215.
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