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GROUPS OF ISOMETRIES ON OPERATOR ALGEBRAS II 

STEEN PEDERSEN 

ABSTRACT. We show that, to each Co-group p of isome
tries on a C*-algebra A, there corresponds a Co-group a 
of automorphisms on A, and a unitary cocycle u satisfying, 
p(t)a — u(t)a(t)a, t G R, a G A. It is shown, that the gener
ator of p is of the form, a —*• i(Ha — aK), where H and K are 
(unbounded) self-adjoint operators. 

Introduction. We study the polar decomposition of a Co-group p 
of isometries on a C*-algebra. It is used to obtain information about 
the infinitesimal generator of p, and the implement ability of p. The 
case, where the algebra contains a unit, is considered in [9]. 

It is known [5], [7], that a linear isometry, mapping a C*-algebra 
onto itself, can be decomposed into a Jordan-automorphism, followed 
by multiplication by a unitary. The unitary may be chosen in the 
multiplier algebra of A. This decomposition is called the polar decom
position. 

We prove in §1 that, if p is a Co-group of isometries on a factor M, 
and p(t)a = u(t)a(t)a, a in M, is the polar decomposition of each 
p(£), then a is a C^-group of automorphisms on M, and u is a a-
weakly continuous unitary a-cocycle (u(s + t) — u(s)a(t)u(t)) inM. 
The corresponding result for a Co-group of isometries on a C*-algebra 
is proved in §2. In §3, we give necessary and sufficient conditions for 
it to be a representation of the additive group of real numbers. We 
prove, in §4, that it is possible to choose a representation of A such 
that p(t)a = U(t)aV(t), for a pair of unitary Co-groups U and V. We 
study the infinitesimal generator of a group of this form, see also [9, 
§4]. In the final section, we consider the case where A is a C*-algebra 
of compact operators. 

Notation. Let X be a Banach space. A group on X is a homomor-
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phism from the additive group of real numbers R into the multiplicative 
group of invertible elements in B(X) = the ring of bounded linear op
erators on X. Let X* be the Banach dual of X, if x G X and <p G X*. 
Then we write (x, ip) for the value of <p at the point x. A group p on X 
is a Co-group, if p{t)x is a continuous function of t, for each x in X. 
The generator 6 is defined by 

6(x) = lim (p(t)x — x)/t\ 

the domain P(6) of 6 is the set of x in X for which the limit exists. 
We say that p is a C£-group on X*, if there exists a Co-group p* on 
X such that p(t) is the adjoint of p*(t) for each t. The generator of p 
is then the adjoint of the generator of p*. 

If H is a Hilbert space and / is a vector in H, then we denote by [/] 
the projection onto the one-dimensional subspace of W, spanned by / . 

Let A be a C*-algebra, a linear bijection a from A onto A is said to 
be a Jordan-automorphism (resp., automorphism) if a( l ) = l,a(a*) = 
a(a)* for a in A and a(a2) = a(a)2 for all self-adjoint a in A (resp., 
a(a*) = a(a)*, and a(ab) = a(a)a(6), for all a and ò in A). We refer 
to [8], [11] for the theory of C*- and von Neumann algebras. 

1. von Neumann algebras. Let (M,H) be a von Neumann 
algebra and let p be a C^-group of isometries on Al. If u, and a, 
are determined by 

u(t) = p(t)l, and a(t)a = u(t)*p(t)a, 

for t in R, and a in Al. Then (u, a) is the polar decomposition of p in 
the sense of [9], i.e., p(t)a = u{t)a(t)a, t G R,a G AI, and each a(t) is 
a Jordan-automorphism on .M [5, Theorem 7]. It is easy to see that u 
is then an a-cocycle, i.e., 

u(s + t) = u(s)a(s)u(t) 

for all s and t in R. Our first result concerns the continuity properties 
of u and a. 

PROPOSITION 1.1. Let (u,a) be the polar decomposition of a CQ-
group. Then a) u is strongly continuous; b) a is pointwise cr-weakly 
continuous. 
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PROOF. Fix <p in A4*, and choose £n,rjn in H, such that Yl l£n|2 < 
°°?!C lr?n|2 < oo and ip(a) = X^(a£n,T7n) for all a in M. 

(a). By assumption, (u(t),(p) — (p(t)l,<p) is a continuous function of 
t. In particular, u is cr-weakly continuous, and therefore, 

{u{t) - u{s)*(u(t) - u(s)) = 2- u{t)*u{s) - u(s)*u(t) 

converges weakly to zero as t tends to s. Hence u is strongly continuous. 

(b). If a is in M, then 

(a(t)a - a(s)a,ip) 

= ] T ^ W a ~ p(s)a)itnu{s)î]n) + ]T(p(£)a£n, (ix(t) - u(s))r?n). 

The first sum converges to zero (as t tends to s), by assumption, and 
the second sum tends to zero by the dominated convergence theorem 
and (a). 

THEOREM 1.2. Let (M,H) be a von Neumann algebra and let p be 
a CQ-group of isometries on A4 with polar decomposition (w, a). If M 
is either abelian or a factor, then a is a C^-group of automorphisms 
on M. 

PROOF. If each a(t) is an automorphism, then a short computation 
shows that the group property of p and the cocycle property of u implies 
that a has the group property. Hence, we must prove that each a(t) 
is an automorphism. Only the case where M. is a factor requires a 
proof, since a Jordan automorphism of a commutative algebra is an 
automorphism. In this case, each a(t) is either an automorphism or an 
anti-automorphism by [5, Theorem 10]. Hence, the Theorem follows 
from the continuity of a and the connectedness of R. 

PROPOSITION 1.3. Let (M,H) be a von Neumann algebra; let a 
be a CQ-group of automorphisms on M, and finally let u be a a-
weakly continuous unitary a-cocycle in M. If p(t)a = u(t)a(t)a for 
a e M,t G R; then p is a C^-group of isometries on M. 

PROOF. It is easy to see that p satisfies the algebraic conditions. We 
will prove pointwise a-weak continuity. Let a G M, and let ip be a 
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a-weakly continuous state on M. The Cauchy-Schwartz inequality for 
positive functionals yields the estimate, 

\(p{t)a-a.ç)\2/2 

<\(u(t)(a(t)a-a),s)\2 + \((u(t)-l)a,s)\2 

< (a(t)(a*a) - a{t)(a*)a - a*a{t)(a) + a*a, ç) 

+ \((u(t)-l)a,ç)\2, 

which, in turn, implies the desired continuity of p. 

REMARKS 1.4. a) The main results of this paper remain true if R is 
replaced by an arbitrary connected topological group. 

b) Theorem 1.2 is a partial converse to Proposition 1.3. But it cannot 
be extended to a full converse. Specifically, there exists a von Neumann 
algebra, which admits a C^-group a of Jordan-automorphisms such 
that a(t) is not an automorphism for some £, cf., [2, p. 158]. 

c) Our result should be compared with the known fact that a Co-
group of isonietries on a von Neumann algebra is automatically norm 
continuous. [9, Corollary 1.7]. 

EXAMPLE 1.5. Let H be a Hilbert space, M = B(H)^a,nd p(t)a = 
U(t)a. where U is a given unitary Co-group on 7i. The polar decom
position (u .a)of p is then given by u(t) = U(t) and a(t)a = a. 

2. C*-algebras. We study groups of isonietries on general C*-
algebras. The case where the C*-algebra contains a unit was considered 
earlier in [9]. 

Let A be a C*-algebra, and let p be a surjective isometry on A. By [7, 
Theorem 1] there exists a Jordan-automorphism a on A, and a unitary 
u in the multiplier algebra M (A) of A, such that 

p(a) = ua(a) 

for all a in A. By [7, Lemma 3], the pair (u , a ) is uniquely determined 
by the above conditions. The pair ( u , a ) is called the polar decomposi
tion of p. By uniqueness, this polar decomposition coincides with the 
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one defined in [9], if A is assumed to have a unit. If p is a Co-group 
of isometries on A, then the polar decomposition (u,a) is determined 
by the following condition: For each t e R, the pair (u(t),a(t)) is the 
polar decomposition of p(t). Our first result states that, in this case, a 
is a Co-group of automorphisms on A, and u is a a"-cocycle when a" 
is defined by a"(t) = fv(f)". Note that a"(f) is the a-weakly continuous 
extension of a(t) to the universal enveloping von Neumann algebra A" 
of A 

THEOREM 2.1. Let A be a C*-algebra and let M (A) be the multiplier 
algebra of A. 

There is a canonical bijection between the set of CQ-groups p of 
isometries on A, and the set of pairs (u, a) , where a is a Co-group 
of automorphisms on A, and a is a M (A) valued unitary a" -cocycle, 
such that the mapping 

(1) t-+(u(t),<>), 

is continuous for each ç in A* — (A")* C M (A)*. The bijection is 
given by 

(2) p(t)a = u(t)a(t)a, 

for a in A and t in R. That is, (u,a) is the polar decomposition of p. 

PROOF. Let the pair (u, cv) be specified as above. Then it follows from 
Proposition 1.3 that p is a weakly continuous group of isometries on 
A. Hence, p is a Co-group by general semi-group theory [3, Corollary 
3.1.8]. 

Conversely, assume that p is given, and let (•*/, a) be the polar 
decomposition of p. The listed properties of u follow directly from 
the discussions in §1. Moreover, an easy calculation shows that 

a(t)a2 - a(s)a2 =(p(t)a - p(a)a)*(p{t)a + p(s)a) 

- (p(t)a - p(s)a)*p(S)a + (p(s)a)* (p(t)a - p(s)a) 

for a = a*. Hence \\a(t)a2 - a{s)a2\\ < 4||o|| \\p(t)a - p(s)a\\. It is well 
known that every element a € A decomposes as a linear combination of 
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squares, a = Ylcja] Ü ~ 1? 2,3,4) , where each Cj is a complex number 

of modulus one, and aj = a* e A, \\aj\\2 < \\a\\. It follows that 

4 

(3) \\a(t)a - a(s)a\\ < A\\a\\^2 £ ) \\p(t)a3 - p(s)aJ\\. 

i= i 

That is, a is strongly continuous. An argument in [9] shows that 
strong continuity of a implies that each a(t) is an automorphism. 
See also [3, proof of Corollary 3.2.12]. Therefore, each a(t),f = a"(t) 
is an automorphism. Now, the cocycle property of ix, and a simple 
computation, shows that a" is a group. Then, of course, a is a group 
as well. 

COROLLARY 2.2. Theorem 2.1 is also true if we replace the continuity 
condition (1) on u by the condition that t —>• u(t)a is continuous for 
each a in A. 

PROOF. If p is given, then the stated continuity of u follows from (2) 
and the strong continuity of a. 

COROLLARY 2.3. Let a be a Co-group of automorphisms on a C*-

algebra A. Let u be a M (A) valued unitary a"-cocycle. The following 

two conditions are equivalent: 

(i) The mapping t —> (M(£), if) is continuous for each if in A* ; 

(ii) The mapping t —* u{t)a is continuous for each a in A. If it is 
further assumed that A has a unit, then (i) and (ii) are equivalent to 
(iii) below: 

(iii) The mapping t —> u(t) is continuous in the norm of A. 

We give an example below of a C*-algebra A (necessarily without 
unit) and a Co-group p of isometries on A such that the unitary part 
of the polar decomposition of p is not norm continuous (relative to the 
norm of M (A)). 
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EXAMPLE 2.4. Let A be the C*-algebra of compact operators on an 
infinite dimensional Hilbert space W, and let. U be a Co-group (with 
unbounded generator) of unitaries on H. If we determine a Co-group 
p of isometries on A by p(t)a = U(t)a, then the polar decomposition 
(u, a) of p is given by u(t) = U(t) and a(t)a = a for t G R and a G A. 

3. The unitary part. Let (u, a) be the polar decomposition of a 
continuous group p of isometries on an operator algebra. We show that 
the unitary part u is a group if the pair (n(t),a(t)) satisfies a certain 
algebraic relation for each t. 

THEOREM 3.1. Let M be a von Neumann algebra, let a be a CQ-group 
of automorphisms on M, and let u be a M-valued a-weakly continuous 
unitary a-cocycle. The conditions (1) and (2) below are equivalent: 

(1) u(s + t) = u(s)u(t) for all s and t in R. 

(2) u(t)a(t)a = a(t)(u(t)a) for all a in M., and t inH. 

PROOF. Condition (1) is equivalent to the following: 

(3) u(t) = a(s)(u(t)); s ,* ,eR, 

since u is an a-cocycle. Moreover, (3) implies (2), since each a(t) is 
an endomorphism. Finally, we will argue that condition (2) implies 
(3). Since p and a are groups, (2) and a computation shows that 
u(nt) = u(t)n for t in R and n = 1,2,3,. . . ; therefore 

(4) u(s)u(t) = u(s + i) 

if s and t are rational numbers with the same sign. By continuity (4) 
holds whenever s and t are real numbers and sign (s) = sign (t). Hence 
u(t) = a(s)(w(£)), if s,£ > 0, by the cocycle property of u. Applying 
a(—s) to both sides of the last equality yields 

u(t) = a(s)(u(t)); s G R, t > 0. 

Similarly we have u(t) = a(s)(u(t)) for s G R and t < 0. Condition (3) 
follows from this. 
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COROLLARY 3.2. Let A = M be a C*-algebra and let p be a Co-
group of isometries on A. The polar decomposition (u,a)of p satisfies 
the conclusion of Theorem 3.1. 

PROOF. The polar decomposition (w, a") of p" satisfies the assump
tions in Theorem 3.1, and the corollary follows. 

COROLLARY 3.3. Let (u,a) be as in Theorem 3.1 (or as in Corollary 
3.2). For each t in R7 define an operator L(u(t)) on A4 by the 
assignments L(u(t))a = u(t)a for all a in A4. If p(t) = L(u(t))a(t), 
then the following five conditions are equivalent: 

(i) p{t)a{t) = ct(t)p(t) for all t in R , 

(ii) L(u(t))a(t) = a(t)L(u{t)) for all t in R; 

(iii) u(s + t) — u(s)u(t) for all s and t in R; 

(iv) L(u(s))a(t) — a(t)L(u(s)) for all s and t in R; 

(v) p(s)a(t) = a(t)p(s) for all s and t in R . 

4. I m p l e m e n t e d groups . The generator of a Co-group of isome
tries on a C*-algebra is shown to be of the form a —• i(Ha-aK), where 
H and K are (unbounded) self-adjoint operators. The only restriction, 
which we may impose on H and K in general, is tha t the mapping 
a —> exp(itH)aexp(—itK) leaves the algebra invariant for each t. 

LEMMA 4.1. Let A be a C*-algebra. If a is in M(A), then \\a\\ = 
sup | |aò||, where the supremum is over all b in A with norm less than 
or equal to one. 

PROOF. Let | | a | | 0 = sup{||a6| | \b e A, \\b\\ < 1}. We will show that 
11 • | \o is a C*-norm on M (A). Define a linear map L from M (A) into the 
Banach algebra of all bounded linear maps on A by L(a)b = ab, be A. 
Clearly, \\a\\o = | |L(a) | | . Since the kernel, kerL, of L is an ideal in 
M (A) and the intersection A fl kerL = {0}, the known thickness of A 
in M(A) [11, p. 169] implies that L is injective, i.e., \\a\\o is a Banach 
algebra norm on M (A). Let a £ M (A) and e > 0 be given and choose 
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be A such that \\b\\ < 1, and ||aò|| > (1 - s)\\a\\0. Then 

| | « * « | | o > | | ( a ò ) * a ò | | > ( l - c ) 2 | | a | | à . 

It follows that ||a||£> < | |«*a| |o ? which in turn implies that \\a\\o is a 
C*-norm on M (A). 

THEOREM 4.2. Let p be a norm continuous group of isometries on a 
C*-algebra A. There exist norm continuous unitary groups U and V 
in A" such that p(t)a = U(t)aV(—t) for a in A and t in R . 

PROOF. By eq. (3) of §3, ||or(f) - a{s)\\ < 16||p(f) - p(s)\\. There 
exists, by a result in [8, Theorem 8.5.2], a norm continuous unitary 
group V in A", such that a(t)a = V(t)aV(-t). If we take the 
supremum over all a in A with | |a| | < 1, then 

| | W ( 0 - ^ ) | | = s i i p | | ( W ( f ) - W ( S ) ) a ( S + f) f l | | 

< sup \\(p(t) - p(s))a(s)a\\ + sup | | (o(s) - a(t))a\\ 

<l7\\p(t)-p(s)\\. 

Now let U(t) = u{t)V(-t), and the Theorem follows. 

REMARK 4.3. Alternatively, one might prove Theorem 1.2 by first 
extending p to a norm-continuous group, p" say, of isometries on A", 
and then apply [9, Theorem 4.1] to p". 

DEFINITION 4.4. Let B(H) be the algebra of all bounded linear 
operators on a Hilbert space H. Let S and T be densely defined 
(unbounded) linear operators on 7i. Let V(6S.T) denote the elements 
a in B(7i) which satisfy conditions (1) and (2) below: 

(1) The operator a maps V(T) — the domain of T into V(S). 

(2) There exists 6 in B(H) such that bf = i(Sa - aT)f for all / in 
P ( T ) . 

Now define a linear map òs.r o n B{Ti). by òs.r(a) = b for a in T>(ós.r) 
where b is specified as above. 
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THEOREM 4.5. Let p be a Co-group of isometries on a C*-algebra A. 
The following hold: 

(i) There exist a faithful representation (7r, H) of A and two self-
adjoint operators H and K on 7i, such that the infinitesimal generator 
of (Adir)p is SH,K, restricted to elements a in 7r(A)r\'D(ÓH,K) such that 
ÔH,K{O) is in ir(A). Here (Adir)p is the Co-group on TT(A) determined 
by ((Ad7r)p)(t)ir(a) = 7r(p(t)a), for a in A and t in R. 

(ii) If A has a unit, then there exists a bounded self-adjoint operator 
P on H and a unitary operator W on H such that H = W(K + P)W*. 

(iii) If p is assumed to be norm continuous, then we may choose H 
and K in A"'. 

PROOF. Part (i) follows from Theorem 2.1 and [6, Theorem Al]. Part 
(ii) is a consequence of (i) and [4, Theorem 4.3]. (iii) is a corollary to 
Theorem 4.2. 

REMARK 4.6. (i) Note that, if A is the C*-algebra of all compact 
operators on a Hilbert space H, and if H, K is any pair of self-adjoint 
operators on H, then the formula p(t)a — exp(itH)aexp(—UK), a G A, 
t G R, determines a Co-group p of isometries on A, by Theorem 2.1. 
Hence, in general, there is not a relation between the H and K in 
Theorem 4.5. 

(ii) If we are in case (ii) of Theorem 4.5, then 

6HÌK{°) = W6KMw*a) + iWPW*a. 

Part (i) of Theorem 4.5 may therefore be regarded as an extension of 
[9, Theorem 3.1]. 

(iii) Let u be the unitary part of the polar decomposition of a given 
group p. Assume further that u is a group. Extend p to a C^-group p" 
of isometries on A", and let 6" be the infinitesimal generator of p". If 
the unit 1 G V(6"), then it is easy to see that <5;/(l) is the infinitesimal 
generator of u. It follows that u is norm continuous. If A has a unit, 
then automatically 1 G V(6") cf., [9, Theorem 3.8]. This is not true in 
general, however, by Example 2.4. 

(iv) Let (n, a) be the polar decomposition of the Co-group p from 
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strongly continuous unitary a-cocycles v with v(0) = 1 and the set of 
all unitary Co-groups V on H. The correspondence is determined by 
v(t) = V(t)exp(-itK). 

Let T be a densely defined linear operator on the Hilbert space H. 
Define ST = Ó'T.T* . We studied ST earlier in [9]. Here we will show that 
some of the results in [9] have converses when the following assumption 
is added: V(T) C D(T*). Specifically: 

PROPOSITION 4.7. Let T be a densely defined operator on a Hilbert 
space H. lfV(T) is contained in V(T*), then we have: 

(a)2>(T) = { / € W | [ / ] € P ( « r ) } . 
(b) If 6T is assumed norm-norm closed, it follows that T is closed. 

(c) If S and T are both symmetric and densely defined, and further, 

6s C ST, then it follows that S C T + c for some complex scalar c. 

PROOF, (a). The inclusion C follows from [9, Proposition 4.7]. The 
other inclusion is immediate from the definition of the domain of ST 
and the density of V(T*) in H. 

(b). Let /„ e V(T) and f,g G H. Assume that /„ -+ / and Tfn - • g, 
as n —> oo. We may assume that |//f | = | / | = 1, where | / | denotes the 
norm of / G H. Then ||[/„] - [/]|| -> 0. Since 

-iST([fn})h = (hJn)Tfn-(h.Tfn)fn 

for all h in H, we get 

\\-iMlfn})-(f®g-g®f)\\^o. 

(Recall (/ Q g)h := {h,f)g for h in H.) Hence [/] G V(ST) and 
—iôrdf]) — f O 9 - 9 ® / , which in turn gives / G V(T) and Tf = g. 

(c). By (a), V(S) C V(T). If / is in V(S), then Ss([f})f = 6T([f])f< 
and it follows that (S — T)f — [f](S — T)f. Hence, we may define a 
scalar valued function A' on V(S) by (S - T)f = K(f)f for / in T>(S). 
If / and g are in T>(S) and c is a scalar, then 

K(cf + g)(cf + g) = ch'(f)f + K{g)g, 
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so A" must be a constant. 

COROLLARY 4.8. The following three conditions are equivalent: 

(i) T is closed and symmetric, 

(ii) ST is a closed derivation, 

(iii) b'T is a closed ^-derivation. 

PROOF. Apply part (b) of Proposition 4.7 and [9, Theorem 4.8]. 

PROBLEM 4.9. Is the space of all finite rank operators in T>(6T) a 
core for 6T'- This is true if T is assumed maximal symmetric. 

5. A n appl icat ion. Using the main theorem of [10] and Theorem 
2.1 above, we now determine the class of Co-groups of isometries on a 
C*-algebras of compact operators. 

THEOREM 5.1. Let A be a C* -algebra of compact operators on a 
Hilbert space H. If p is a CQ-group of isometries on A. then there exist 
unitary CQ-groups U and V on Ti such that 

p(t)a = U{t)aV(t). for all t in R and a in A. 

PROOF. Let (t/ .o) be the polar decomposition of p, by Theorem 
2.1 and [10]. there exists a unitary Co-group V on 7i, such that 
a(t)a — V(—t)aV(t). The existence of V can also be deduced by 
adapting the method of [3, Example 3.2.35]. If U(t) = u{t)V(-t), 
it follows that U and V satisfy the desired conditions. 

REMARK 5.2. Theorem 5.1 is related to the Theorem in [1]. 

ADDED IN PROOF. A Banach algebra version of Theorem 4.2 ap
peared in: A.M. Sinclair, Jordan Homomorphisms and Derivations on 
Semisimple Banach Algebras, Proc. Amer. Math. Soc , 24 (1970), 
209-215. 
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