GROUPS OF ISOMETRIES ON OPERATOR ALGEBRAS II

STEEN PEDERSEN

ABSTRACT. We show that, to each C_0 -group ρ of isometries on a C^* -algebra A, there corresponds a C_0 -group α of automorphisms on A, and a unitary cocycle u satisfying, $\rho(t)a = u(t)\alpha(t)a, t \in \mathbf{R}, a \in A$. It is shown, that the generator of ρ is of the form, $a \to i(Ha - aK)$, where H and K are (unbounded) self-adjoint operators.

Introduction. We study the polar decomposition of a C_O -group ρ of isometries on a C^* -algebra. It is used to obtain information about the infinitesimal generator of ρ , and the implementability of ρ . The case, where the algebra contains a unit, is considered in [9].

It is known [5], [7], that a linear isometry, mapping a C^* -algebra onto itself, can be decomposed into a Jordan-automorphism, followed by multiplication by a unitary. The unitary may be chosen in the multiplier algebra of A. This decomposition is called the *polar decomposition*.

We prove in §1 that, if ρ is a C_0 -group of isometries on a factor \mathcal{M} , and $\rho(t)a = u(t)\alpha(t)a$, a in \mathcal{M} , is the polar decomposition of each $\rho(t)$, then α is a C_0^* -group of automorphisms on \mathcal{M} , and u is a σ weakly continuous unitary α -cocycle $(u(s + t) = u(s)\alpha(t)u(t))$ in \mathcal{M} . The corresponding result for a C_0 -group of isometries on a C^* -algebra is proved in §2. In §3, we give necessary and sufficient conditions for u to be a representation of the additive group of real numbers. We prove, in §4, that it is possible to choose a representation of A such that $\rho(t)a = U(t)aV(t)$, for a pair of unitary C_0 -groups U and V. We study the infinitesimal generator of a group of this form, see also [9, §4]. In the final section, we consider the case where A is a C^* -algebra of compact operators.

Notation. Let X be a Banach space. A group on X is a homomor-

Research supported by the Danish Natural Science Research Council

Received by the editors on March 12, 1986, and in revised form on September

^{15, 1986.}

Copyright @1988 Rocky Mountain Mathematics Consortium

S. PEDERSEN

phism from the additive group of real numbers **R** into the multiplicative group of invertible elements in B(X) = the ring of bounded linear operators on X. Let X^* be the Banach dual of X, if $x \in X$ and $\varphi \in X^*$. Then we write $\langle x, \varphi \rangle$ for the value of φ at the point x. A group ρ on X is a C_O -group, if $\rho(t)x$ is a continuous function of t, for each x in X. The generator δ is defined by

$$\delta(x) = \lim_{t \to O} (\rho(t)x - x)/t;$$

the domain $\mathcal{D}(\delta)$ of δ is the set of x in X for which the limit exists. We say that ρ is a C_O^* -group on X^* , if there exists a C_O -group ρ_* on X such that $\rho(t)$ is the adjoint of $\rho_*(t)$ for each t. The generator of ρ is then the adjoint of the generator of ρ_* .

If \mathcal{H} is a Hilbert space and f is a vector in \mathcal{H} , then we denote by [f] the projection onto the one-dimensional subspace of \mathcal{H} , spanned by f.

Let A be a C^* -algebra, a linear bijection α from A onto A is said to be a Jordan-automorphism (resp., automorphism) if $\alpha(1) = 1, \alpha(a^*) = \alpha(a)^*$ for a in A and $\alpha(a^2) = \alpha(a)^2$ for all self-adjoint a in A (resp., $\alpha(a^*) = \alpha(a)^*$, and $\alpha(ab) = \alpha(a)\alpha(b)$, for all a and b in A). We refer to [8], [11] for the theory of C^* - and von Neumann algebras.

1. von Neumann algebras. Let $(\mathcal{M}, \mathcal{H})$ be a von Neumann algebra and let ρ be a C_O^* -group of isometries on \mathcal{M} . If u, and α , are determined by

$$u(t) = \rho(t)1$$
, and $\alpha(t)a = u(t)^*\rho(t)a$,

for t in **R**, and a in \mathcal{M} . Then (u, α) is the polar decomposition of ρ in the sense of [9], i.e., $\rho(t)a = u(t)\alpha(t)a$, $t \in \mathbf{R}$, $a \in \mathcal{M}$, and each $\alpha(t)$ is a Jordan-automorphism on \mathcal{M} [5, Theorem 7]. It is easy to see that u is then an α -cocycle, i.e.,

$$u(s+t) = u(s)\alpha(s)u(t)$$

for all s and t in **R**. Our first result concerns the continuity properties of u and α .

PROPOSITION 1.1. Let (u, α) be the polar decomposition of a C_O^* -group. Then a) u is strongly continuous; b) α is pointwise σ -weakly continuous.

PROOF. Fix φ in \mathcal{M}_* , and choose ξ_n, η_n in \mathcal{H} , such that $\sum |\xi_n|^2 < \infty$, $\sum |\eta_n|^2 < \infty$ and $\varphi(a) = \sum (a\xi_n, \eta_n)$ for all a in \mathcal{M} .

(a). By assumption, $\langle u(t), \varphi \rangle = \langle \rho(t)1, \varphi \rangle$ is a continuous function of t. In particular, u is σ -weakly continuous, and therefore,

$$(u(t) - u(s)^*(u(t) - u(s)) = 2 - u(t)^*u(s) - u(s)^*u(t)$$

converges weakly to zero as t tends to s. Hence u is strongly continuous.

(b). If a is in \mathcal{M} , then

$$\begin{aligned} \langle \alpha(t)a - \alpha(s)a, \varphi \rangle \\ &= \sum (\rho(t)a - \rho(s)a)\xi_n, u(s)\eta_n) + \sum (\rho(t)a\xi_n, (u(t) - u(s))\eta_n). \end{aligned}$$

The first sum converges to zero (as t tends to s), by assumption, and the second sum tends to zero by the dominated convergence theorem and (a).

THEOREM 1.2. Let $(\mathcal{M}, \mathcal{H})$ be a von Neumann algebra and let ρ be a C_O^* -group of isometries on \mathcal{M} with polar decomposition (u, α) . If \mathcal{M} is either abelian or a factor, then α is a C_O^* -group of automorphisms on \mathcal{M} .

PROOF. If each $\alpha(t)$ is an automorphism, then a short computation shows that the group property of ρ and the cocycle property of u implies that α has the group property. Hence, we must prove that each $\alpha(t)$ is an automorphism. Only the case where \mathcal{M} is a factor requires a proof, since a Jordan automorphism of a commutative algebra is an automorphism. In this case, each $\alpha(t)$ is either an automorphism or an anti-automorphism by [5, Theorem 10]. Hence, the Theorem follows from the continuity of α and the connectedness of **R**.

PROPOSITION 1.3. Let $(\mathcal{M}, \mathcal{H})$ be a von Neumann algebra; let α be a C_O^* -group of automorphisms on \mathcal{M} , and finally let u be a σ weakly continuous unitary α -cocycle in \mathcal{M} . If $\rho(t)a = u(t)\alpha(t)a$ for $a \in \mathcal{M}, t \in \mathbf{R}$; then ρ is a C_O^* -group of isometries on \mathcal{M} .

PROOF. It is easy to see that ρ satisfies the algebraic conditions. We will prove pointwise σ -weak continuity. Let $a \in \mathcal{M}$, and let φ be a

 σ -weakly continuous state on \mathcal{M} . The Cauchy-Schwartz inequality for positive functionals yields the estimate,

$$\begin{aligned} |\langle \rho(t)a - a, \varphi \rangle|^2 / 2 \\ &\leq |\langle u(t)(\alpha(t)a - a), \varphi \rangle|^2 + |\langle (u(t) - 1)a, \varphi \rangle|^2 \\ &\leq \langle \alpha(t)(a^*a) - \alpha(t)(a^*)a - a^*\alpha(t)(a) + a^*a, \varphi \rangle \\ &+ |\langle (u(t) - 1)a, \varphi \rangle|^2, \end{aligned}$$

which, in turn, implies the desired continuity of ρ .

REMARKS 1.4. a) The main results of this paper remain true if \mathbf{R} is replaced by an arbitrary connected topological group.

b) Theorem 1.2 is a partial converse to Proposition 1.3. But it cannot be extended to a full converse. Specifically, there exists a von Neumann algebra, which admits a C_O^* -group α of Jordan-automorphisms such that $\alpha(t)$ is not an automorphism for some t, cf., [2, p. 158].

c) Our result should be compared with the known fact that $a C_O$ group of isometries on a von Neumann algebra is automatically norm continuous. [9, Corollary 1.7].

EXAMPLE 1.5. Let \mathcal{H} be a Hilbert space, $\mathcal{M} = B(\mathcal{H})_{\star}$ and $\rho(t)a = U(t)a$, where U is a given unitary C_O -group on \mathcal{H} . The polar decomposition (u, α) of ρ is then given by u(t) = U(t) and $\alpha(t)a = a$.

2. C^* -algebras. We study groups of isometries on general C^* -algebras. The case where the C^* -algebra contains a unit was considered earlier in [**9**].

Let A be a C^* -algebra, and let ρ be a surjective isometry on A. By [7, Theorem 1] there exists a Jordan-automorphism α on A, and a unitary u in the multiplier algebra M(A) of A, such that

$$\rho(a) = u\alpha(a)$$

for all a in A. By [7, Lemma 3], the pair (u, α) is uniquely determined by the above conditions. The pair (u, α) is called the *polar decomposition* of ρ . By uniqueness, this polar decomposition coincides with the one defined in [9], if A is assumed to have a unit. If ρ is a C_O -group of isometries on A, then the polar decomposition (u, α) is determined by the following condition: For each $t \in \mathbf{R}$, the pair $(u(t), \alpha(t))$ is the polar decomposition of $\rho(t)$. Our first result states that, in this case, α is a C_O -group of automorphisms on A, and u is a α'' -cocycle when α'' is defined by $\alpha''(t) = \alpha(t)''$. Note that $\alpha''(t)$ is the σ -weakly continuous extension of $\alpha(t)$ to the universal enveloping von Neumann algebra A''of A.

THEOREM 2.1. Let A be a C^* -algebra and let M(A) be the multiplier algebra of A.

There is a canonical bijection between the set of C_O -groups ρ of isometries on A, and the set of pairs (u, α) , where α is a C_O -group of automorphisms on A, and u is a M(A) valued unitary α'' -cocycle, such that the mapping

(1)
$$t \to \langle u(t), \varphi \rangle,$$

is continuous for each φ in $A^* = (A'')_* \subset M(A)^*$. The bijection is given by

(2)
$$\rho(t)a = u(t)\alpha(t)a,$$

for a in A and t in **R**. That is, (u, α) is the polar decomposition of ρ .

PROOF. Let the pair (u, α) be specified as above. Then it follows from Proposition 1.3 that ρ is a weakly continuous group of isometries on *A*. Hence, ρ is a C_O -group by general semi-group theory [**3**, Corollary 3.1.8].

Conversely, assume that ρ is given, and let (u, α) be the polar decomposition of ρ . The listed properties of u follow directly from the discussions in §1. Moreover, an easy calculation shows that

$$\alpha(t)a^{2} - \alpha(s)a^{2} = (\rho(t)a - \rho(s)a)^{*}(\rho(t)a + \rho(s)a) - (\rho(t)a - \rho(s)a)^{*}\rho(s)a + (\rho(s)a)^{*}(\rho(t)a - \rho(s)a)$$

for $a = a^*$. Hence $||\alpha(t)a^2 - \alpha(s)a^2|| \le 4||a|| ||\rho(t)a - \rho(s)a||$. It is well known that every element $a \in A$ decomposes as a linear combination of

squares, $a = \sum c_j a_j^2$ (j = 1, 2, 3, 4), where each c_j is a complex number of modulus one, and $a_j = a_j^* \in A$, $||a_j||^2 \le ||a||$. It follows that

(3)
$$||\alpha(t)a - \alpha(s)a|| \le 4||a||^{1/2} \sum_{j=1}^{4} ||\rho(t)a_j - \rho(s)a_j||.$$

That is, α is strongly continuous. An argument in [9] shows that strong continuity of α implies that each $\alpha(t)$ is an automorphism. See also [3, proof of Corollary 3.2.12]. Therefore, each $\alpha(t)'' = \alpha''(t)$ is an automorphism. Now, the cocycle property of u, and a simple computation, shows that α'' is a group. Then, of course, α is a group as well.

COROLLARY 2.2. Theorem 2.1 is also true if we replace the continuity condition (1) on u by the condition that $t \to u(t)a$ is continuous for each a in A.

PROOF. If ρ is given, then the stated continuity of u follows from (2) and the strong continuity of α .

COROLLARY 2.3. Let α be a C_O -group of automorphisms on a C^* algebra A. Let u be a M(A) valued unitary α'' -cocycle. The following two conditions are equivalent:

(i) The mapping $t \to \langle u(t), \varphi \rangle$ is continuous for each φ in A^* ;

(ii) The mapping $t \to u(t)a$ is continuous for each a in A. If it is further assumed that A has a unit, then (i) and (ii) are equivalent to (iii) below:

(iii) The mapping $t \to u(t)$ is continuous in the norm of A.

We give an example below of a C^* -algebra A (necessarily without unit) and a C_O -group ρ of isometries on A such that the unitary part of the polar decomposition of ρ is not norm continuous (relative to the norm of M(A)). EXAMPLE 2.4. Let A be the C^{*}-algebra of compact operators on an infinite dimensional Hilbert space \mathcal{H} , and let U be a C_O -group (with unbounded generator) of unitaries on \mathcal{H} . If we determine a C_O -group ρ of isometries on A by $\rho(t)a = U(t)a$, then the polar decomposition (u, α) of ρ is given by u(t) = U(t) and $\alpha(t)a = a$ for $t \in \mathbf{R}$ and $a \in A$.

3. The unitary part. Let (u, α) be the polar decomposition of a continuous group ρ of isometries on an operator algebra. We show that the unitary part u is a group if the pair $(u(t), \alpha(t))$ satisfies a certain algebraic relation for each t.

THEOREM 3.1. Let \mathcal{M} be a von Neumann algebra, let α be a C_O^* -group of automorphisms on \mathcal{M} , and let u be a \mathcal{M} -valued σ -weakly continuous unitary α -cocycle. The conditions (1) and (2) below are equivalent:

- (1) u(s+t) = u(s)u(t) for all s and t in **R**.
- (2) $u(t)\alpha(t)a = \alpha(t)(u(t)a)$ for all a in \mathcal{M} , and t in \mathbf{R} .

PROOF. Condition (1) is equivalent to the following:

(3)
$$u(t) = \alpha(s)(u(t)); \ s, t, \in \mathbf{R},$$

since u is an α -cocycle. Moreover, (3) implies (2), since each $\alpha(t)$ is an endomorphism. Finally, we will argue that condition (2) implies (3). Since ρ and α are groups, (2) and a computation shows that $u(nt) = u(t)^n$ for t in **R** and $n = 1, 2, 3, \ldots$; therefore

(4)
$$u(s)u(t) = u(s+t)$$

if s and t are rational numbers with the same sign. By continuity (4) holds whenever s and t are real numbers and sign (s) = sign(t). Hence $u(t) = \alpha(s)(u(t))$, if $s, t \ge 0$, by the cocycle property of u. Applying $\alpha(-s)$ to both sides of the last equality yields

$$u(t) = lpha(s)(u(t)); \ s \in \mathbf{R}, \ t \ge 0.$$

Similarly we have $u(t) = \alpha(s)(u(t))$ for $s \in \mathbf{R}$ and $t \leq 0$. Condition (3) follows from this.

COROLLARY 3.2. Let $A = \mathcal{M}$ be a C^* -algebra and let ρ be a C_0 group of isometries on A. The polar decomposition (u, α) of ρ satisfies the conclusion of Theorem 3.1.

PROOF. The polar decomposition (u, α'') of ρ'' satisfies the assumptions in Theorem 3.1, and the corollary follows.

COROLLARY 3.3. Let (u, α) be as in Theorem 3.1 (or as in Corollary 3.2). For each t in **R**, define an operator L(u(t)) on \mathcal{M} by the assignments L(u(t))a = u(t)a for all a in \mathcal{M} . If $\rho(t) = L(u(t))\alpha(t)$, then the following five conditions are equivalent:

(i) $\rho(t)\alpha(t) = \alpha(t)\rho(t)$ for all t in **R**;

(ii) $L(u(t))\alpha(t) = \alpha(t)L(u(t))$ for all t in **R**;

- (iii) u(s+t) = u(s)u(t) for all s and t in **R**;
- (iv) $L(u(s))\alpha(t) = \alpha(t)L(u(s))$ for all s and t in **R**;
- (v) $\rho(s)\alpha(t) = \alpha(t)\rho(s)$ for all s and t in **R**.

4. Implemented groups. The generator of a C_O -group of isometries on a C^* -algebra is shown to be of the form $a \to i(Ha-aK)$, where H and K are (unbounded) self-adjoint operators. The only restriction, which we may impose on H and K in general, is that the mapping $a \to \exp(itH)a \exp(-itK)$ leaves the algebra invariant for each t.

LEMMA 4.1. Let A be a C^* -algebra. If a is in M(A), then $||a|| = \sup ||ab||$, where the supremum is over all b in A with norm less than or equal to one.

PROOF. Let $||a||_O = \sup\{||ab|| | b \in A, ||b|| \le 1\}$. We will show that $||\cdot||_O$ is a C^* -norm on M(A). Define a linear map L from M(A) into the Banach algebra of all bounded linear maps on A by L(a)b = ab, $b \in A$. Clearly, $||a||_O = ||L(a)||$. Since the kernel, ker L, of L is an ideal in M(A) and the intersection $A \cap \ker L = \{0\}$, the known thickness of A in M(A) [11, p. 169] implies that L is injective, i.e., $||a||_O$ is a Banach algebra norm on M(A). Let $a \in M(A)$ and $\varepsilon > 0$ be given and choose

 $b \in A$ such that $||b|| \leq 1$, and $||ab|| \geq (1 - \varepsilon)||a||_O$. Then

$$||a^*a||_O \ge ||(ab)^*ab|| \ge (1-\varepsilon)^2 ||a||_O^2.$$

It follows that $||a||_O^2 \leq ||a^*a||_O$, which in turn implies that $||a||_O$ is a C^* -norm on M(A).

THEOREM 4.2. Let ρ be a norm continuous group of isometries on a C^* -algebra A. There exist norm continuous unitary groups U and V in A" such that $\rho(t)a = U(t)aV(-t)$ for a in A and t in **R**.

PROOF. By eq. (3) of §3, $||\alpha(t) - \alpha(s)|| \le 16||\rho(t) - \rho(s)||$. There exists, by a result in [8, Theorem 8.5.2], a norm continuous unitary group V in A", such that $\alpha(t)a = V(t)aV(-t)$. If we take the supremum over all a in A with $||a|| \le 1$, then

$$\begin{aligned} ||u(t) - u(s)|| &= \sup ||(u(t) - u(s))\alpha(s + t)a|| \\ &\leq \sup ||(\rho(t) - \rho(s))\alpha(s)a|| + \sup ||(\alpha(s) - \alpha(t))a|| \\ &\leq 17 ||\rho(t) - \rho(s)||. \end{aligned}$$

Now let U(t) = u(t)V(-t), and the Theorem follows.

REMARK 4.3. Alternatively, one might prove Theorem 4.2 by first extending ρ to a norm-continuous group, ρ'' say, of isometries on A'', and then apply [9, Theorem 4.1] to ρ'' .

DEFINITION 4.4. Let $B(\mathcal{H})$ be the algebra of all bounded linear operators on a Hilbert space \mathcal{H} . Let S and T be densely defined (unbounded) linear operators on \mathcal{H} . Let $\mathcal{D}(\delta_{S,T})$ denote the elements a in $B(\mathcal{H})$ which satisfy conditions (1) and (2) below:

(1) The operator a maps $\mathcal{D}(T)$ = the domain of T into $\mathcal{D}(S)$.

(2) There exists b in $B(\mathcal{H})$ such that bf = i(Sa - aT)f for all f in $\mathcal{D}(T)$.

Now define a linear map $\delta_{S,T}$ on $B(\mathcal{H})$, by $\delta_{S,T}(a) = b$ for a in $\mathcal{D}(\delta_{S,T})$ where b is specified as above.

S. PEDERSEN

THEOREM 4.5. Let ρ be a C_O -group of isometries on a C^* -algebra A. The following hold:

(i) There exist a faithful representation (π, \mathcal{H}) of A and two selfadjoint operators H and K on \mathcal{H} , such that the infinitesimal generator of $(Ad\pi)\rho$ is $\delta_{H,K}$, restricted to elements a in $\pi(A) \cap \mathcal{D}(\delta_{H,K})$ such that $\delta_{H,K}(a)$ is in $\pi(A)$. Here $(Ad\pi)\rho$ is the C_O -group on $\pi(A)$ determined by $((Ad\pi)\rho)(t)\pi(a) = \pi(\rho(t)a)$, for a in A and t in \mathbf{R} .

(ii) If A has a unit, then there exists a bounded self-adjoint operator P on H and a unitary operator W on H such that $H = W(K+P)W^*$.

(iii) If ρ is assumed to be norm continuous, then we may choose H and K in A".

PROOF. Part (i) follows from Theorem 2.1 and [6, Theorem A1]. Part (ii) is a consequence of (i) and [4, Theorem 4.3]. (iii) is a corollary to Theorem 4.2.

REMARK 4.6. (i) Note that, if A is the C^* -algebra of all compact operators on a Hilbert space \mathcal{H} , and if H, K is any pair of self-adjoint operators on \mathcal{H} , then the formula $\rho(t)a = \exp(itH)a\exp(-itK), a \in A,$ $t \in \mathbf{R}$, determines a C_O -group ρ of isometries on A, by Theorem 2.1. Hence, in general, there is not a relation between the H and K in Theorem 4.5.

(ii) If we are in case (ii) of Theorem 4.5, then

$$\delta_{H,K}(a) = W \delta_{K,K}(W^*a) + iWPW^*a.$$

Part (i) of Theorem 4.5 may therefore be regarded as an extension of [9, Theorem 3.1].

(iii) Let u be the unitary part of the polar decomposition of a given group ρ . Assume further that u is a group. Extend ρ to a C_O^* -group ρ'' of isometries on A'', and let δ'' be the infinitesimal generator of ρ'' . If the unit $1 \in \mathcal{D}(\delta'')$, then it is easy to see that $\delta''(1)$ is the infinitesimal generator of u. It follows that u is norm continuous. If A has a unit, then automatically $1 \in \mathcal{D}(\delta'')$ cf., [9, Theorem 3.8]. This is not true in general, however, by Example 2.4.

(iv) Let (u, α) be the polar decomposition of the C_O -group ρ from

strongly continuous unitary α -cocycles v with v(0) = 1 and the set of all unitary C_O -groups V on \mathcal{H} . The correspondence is determined by $v(t) = V(t) \exp(-itK)$.

Let T be a densely defined linear operator on the Hilbert space \mathcal{H} . Define $\delta_T = \delta_{T,T^*}$. We studied δ_T earlier in [9]. Here we will show that some of the results in [9] have converses when the following assumption is added: $\mathcal{D}(T) \subset \mathcal{D}(T^*)$. Specifically:

PROPOSITION 4.7. Let T be a densely defined operator on a Hilbert space \mathcal{H} . If $\mathcal{D}(T)$ is contained in $\mathcal{D}(T^*)$, then we have:

(a) $\mathcal{D}(T) = \{ f \in \mathcal{H} | [f] \in \mathcal{D}(\delta_T) \}.$

(b) If δ_T is assumed norm-norm closed, it follows that T is closed.

(c) If S and T are both symmetric and densely defined, and further, $\delta_S \subset \delta_T$, then it follows that $S \subset T + c$ for some complex scalar c.

PROOF. (a). The inclusion \subset follows from [9, Proposition 4.7]. The other inclusion is immediate from the definition of the domain of δ_T and the density of $\mathcal{D}(T^*)$ in \mathcal{H} .

(b). Let $f_n \in \mathcal{D}(T)$ and $f, g \in \mathcal{H}$. Assume that $f_n \to f$ and $Tf_n \to g$, as $n \to \infty$. We may assume that $|f_n| = |f| = 1$, where |f| denotes the norm of $f \in \mathcal{H}$. Then $||[f_n] - [f]|| \to 0$. Since

$$-i\delta_T([f_n])h = (h, f_n)Tf_n - (h, Tf_n)f_n$$

for all h in \mathcal{H} , we get

$$||-i\delta_T([f_n])-(f\otimes g-g\otimes f)||\to 0.$$

(Recall $(f \otimes g)h := (h, f)g$ for h in \mathcal{H} .) Hence $[f] \in \mathcal{D}(\delta_T)$ and $-i\delta_T([f]) = f \odot g - g \odot f$, which in turn gives $f \in \mathcal{D}(T)$ and Tf = g.

(c). By (a), $\mathcal{D}(S) \subset \mathcal{D}(T)$. If f is in $\mathcal{D}(S)$, then $\delta_S([f])f = \delta_T([f])f$, and it follows that (S - T)f = [f](S - T)f. Hence, we may define a scalar valued function K on $\mathcal{D}(S)$ by (S - T)f = K(f)f for f in $\mathcal{D}(S)$. If f and g are in $\mathcal{D}(S)$ and c is a scalar, then

$$K(cf + g)(cf + g) = cK(f)f + K(g)g,$$

S. PEDERSEN

so K must be a constant.

COROLLARY 4.8. The following three conditions are equivalent:

(i) T is closed and symmetric.

(ii) δ_T is a closed derivation.

(iii) δ_T is a closed *-derivation.

PROOF. Apply part (b) of Proposition 4.7 and [9, Theorem 4.8].

PROBLEM 4.9. Is the space of all finite rank operators in $\mathcal{D}(\delta_T)$ a core for δ_T ? This is true if T is assumed maximal symmetric.

5. An application. Using the main theorem of [10] and Theorem 2.1 above, we now determine the class of C_O -groups of isometries on a C^* -algebras of compact operators.

THEOREM 5.1. Let A be a C^* -algebra of compact operators on a Hilbert space \mathcal{H} . If ρ is a C_O -group of isometries on A, then there exist unitary C_O -groups U and V on \mathcal{H} such that

 $\rho(t)a = U(t)aV(t)$, for all t in **R** and a in A.

PROOF. Let (u, α) be the polar decomposition of ρ , by Theorem 2.1 and [10]. there exists a unitary C_O -group V on \mathcal{H} , such that $\alpha(t)a = V(-t)aV(t)$. The existence of V can also be deduced by adapting the method of [3. Example 3.2.35]. If U(t) = u(t)V(-t), it follows that U and V satisfy the desired conditions.

REMARK 5.2. Theorem 5.1 is related to the Theorem in [1].

ADDED IN PROOF. A Banach algebra version of Theorem 4.2 appeared in: A.M. Sinclair, Jordan Homomorphisms and Derivations on Semisimple Banach Algebras, Proc. Amer. Math. Soc., **24** (1970), 209-215.

REFERENCES

1. E. Berkson, R.I. Flemming, J.A. Goldstein and J. Jamison, *One-parameter groups of isometries on* C_p , Rev. Roum. Math. Pures Appl. **24** (1979), 863-868.

2. O. Bratteli and D.W. Robinson, Unbounded derivations of von Neumann algebras, Ann. Inst. H. Poincaré 25 (A) (1976), 139-164.

3. O. Brattelli and D.W. Robinson, *Operator algebras and quantum statistical mechanics*, vol. 1, Springer-Verlag, New York, 1979.

4. D. Buchholtz and J.E. Roberts, *Bounded perturbations of dynamics*, Commun. Math. Phys. 49 (1976), 161-177.

5. R.V. Kadison, *Isometries of operator algebras*, Ann. of Math. 54 (1951), 325-338.

6. A. Kishimoto and D.W. Robinson, On unbounded derivations commuting with a compact group of *-automorphisms, Publ. RIMS, Kyoto Univ. **18** (1982), 1121-1126.

7. A. Paterson and A. Sinclair, Characterization of isometries between C^* -algebras, J. London Math. Soc. (5) **2** (1972), 755-761.

8. G.K. Pedersen, C^{*}-algebras and their automorphism groups, Academic Press, New York-London, 1979.

9. S. Pedersen, *Groups of isometries on operator algebras*, Studia Math., **90** (1988) 17-30.

10. S. Pedersen. On the implementability of semigroups of *-homomorphisms on certain operator algebras, preprint, Aarhus (1984).

11. M. Takesaki, *Theory of operator algebras*, I. Springer-Verlag, New York-Heidelberg-Berlin, 1979.

DEPARTMENT OF MATHEMATICS, IUPUI, INDIANAPOLIS IN 46223