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GROUPS OF ISOMETRIES ON OPERATOR ALGEBRAS II 

STEEN PEDERSEN 

ABSTRACT. We show that, to each Co-group p of isome­
tries on a C*-algebra A, there corresponds a Co-group a 
of automorphisms on A, and a unitary cocycle u satisfying, 
p(t)a — u(t)a(t)a, t G R, a G A. It is shown, that the gener­
ator of p is of the form, a —*• i(Ha — aK), where H and K are 
(unbounded) self-adjoint operators. 

Introduction. We study the polar decomposition of a Co-group p 
of isometries on a C*-algebra. It is used to obtain information about 
the infinitesimal generator of p, and the implement ability of p. The 
case, where the algebra contains a unit, is considered in [9]. 

It is known [5], [7], that a linear isometry, mapping a C*-algebra 
onto itself, can be decomposed into a Jordan-automorphism, followed 
by multiplication by a unitary. The unitary may be chosen in the 
multiplier algebra of A. This decomposition is called the polar decom­
position. 

We prove in §1 that, if p is a Co-group of isometries on a factor M, 
and p(t)a = u(t)a(t)a, a in M, is the polar decomposition of each 
p(£), then a is a C^-group of automorphisms on M, and u is a a-
weakly continuous unitary a-cocycle (u(s + t) — u(s)a(t)u(t)) inM. 
The corresponding result for a Co-group of isometries on a C*-algebra 
is proved in §2. In §3, we give necessary and sufficient conditions for 
it to be a representation of the additive group of real numbers. We 
prove, in §4, that it is possible to choose a representation of A such 
that p(t)a = U(t)aV(t), for a pair of unitary Co-groups U and V. We 
study the infinitesimal generator of a group of this form, see also [9, 
§4]. In the final section, we consider the case where A is a C*-algebra 
of compact operators. 

Notation. Let X be a Banach space. A group on X is a homomor-
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phism from the additive group of real numbers R into the multiplicative 
group of invertible elements in B(X) = the ring of bounded linear op­
erators on X. Let X* be the Banach dual of X, if x G X and <p G X*. 
Then we write (x, ip) for the value of <p at the point x. A group p on X 
is a Co-group, if p{t)x is a continuous function of t, for each x in X. 
The generator 6 is defined by 

6(x) = lim (p(t)x — x)/t\ 

the domain P(6) of 6 is the set of x in X for which the limit exists. 
We say that p is a C£-group on X*, if there exists a Co-group p* on 
X such that p(t) is the adjoint of p*(t) for each t. The generator of p 
is then the adjoint of the generator of p*. 

If H is a Hilbert space and / is a vector in H, then we denote by [/] 
the projection onto the one-dimensional subspace of W, spanned by / . 

Let A be a C*-algebra, a linear bijection a from A onto A is said to 
be a Jordan-automorphism (resp., automorphism) if a( l ) = l,a(a*) = 
a(a)* for a in A and a(a2) = a(a)2 for all self-adjoint a in A (resp., 
a(a*) = a(a)*, and a(ab) = a(a)a(6), for all a and ò in A). We refer 
to [8], [11] for the theory of C*- and von Neumann algebras. 

1. von Neumann algebras. Let (M,H) be a von Neumann 
algebra and let p be a C^-group of isometries on Al. If u, and a, 
are determined by 

u(t) = p(t)l, and a(t)a = u(t)*p(t)a, 

for t in R, and a in Al. Then (u, a) is the polar decomposition of p in 
the sense of [9], i.e., p(t)a = u{t)a(t)a, t G R,a G AI, and each a(t) is 
a Jordan-automorphism on .M [5, Theorem 7]. It is easy to see that u 
is then an a-cocycle, i.e., 

u(s + t) = u(s)a(s)u(t) 

for all s and t in R. Our first result concerns the continuity properties 
of u and a. 

PROPOSITION 1.1. Let (u,a) be the polar decomposition of a CQ-
group. Then a) u is strongly continuous; b) a is pointwise cr-weakly 
continuous. 
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PROOF. Fix <p in A4*, and choose £n,rjn in H, such that Yl l£n|2 < 
°°?!C lr?n|2 < oo and ip(a) = X^(a£n,T7n) for all a in M. 

(a). By assumption, (u(t),(p) — (p(t)l,<p) is a continuous function of 
t. In particular, u is cr-weakly continuous, and therefore, 

{u{t) - u{s)*(u(t) - u(s)) = 2- u{t)*u{s) - u(s)*u(t) 

converges weakly to zero as t tends to s. Hence u is strongly continuous. 

(b). If a is in M, then 

(a(t)a - a(s)a,ip) 

= ] T ^ W a ~ p(s)a)itnu{s)î]n) + ]T(p(£)a£n, (ix(t) - u(s))r?n). 

The first sum converges to zero (as t tends to s), by assumption, and 
the second sum tends to zero by the dominated convergence theorem 
and (a). 

THEOREM 1.2. Let (M,H) be a von Neumann algebra and let p be 
a CQ-group of isometries on A4 with polar decomposition (w, a). If M 
is either abelian or a factor, then a is a C^-group of automorphisms 
on M. 

PROOF. If each a(t) is an automorphism, then a short computation 
shows that the group property of p and the cocycle property of u implies 
that a has the group property. Hence, we must prove that each a(t) 
is an automorphism. Only the case where M. is a factor requires a 
proof, since a Jordan automorphism of a commutative algebra is an 
automorphism. In this case, each a(t) is either an automorphism or an 
anti-automorphism by [5, Theorem 10]. Hence, the Theorem follows 
from the continuity of a and the connectedness of R. 

PROPOSITION 1.3. Let (M,H) be a von Neumann algebra; let a 
be a CQ-group of automorphisms on M, and finally let u be a a-
weakly continuous unitary a-cocycle in M. If p(t)a = u(t)a(t)a for 
a e M,t G R; then p is a C^-group of isometries on M. 

PROOF. It is easy to see that p satisfies the algebraic conditions. We 
will prove pointwise a-weak continuity. Let a G M, and let ip be a 
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a-weakly continuous state on M. The Cauchy-Schwartz inequality for 
positive functionals yields the estimate, 

\(p{t)a-a.ç)\2/2 

<\(u(t)(a(t)a-a),s)\2 + \((u(t)-l)a,s)\2 

< (a(t)(a*a) - a{t)(a*)a - a*a{t)(a) + a*a, ç) 

+ \((u(t)-l)a,ç)\2, 

which, in turn, implies the desired continuity of p. 

REMARKS 1.4. a) The main results of this paper remain true if R is 
replaced by an arbitrary connected topological group. 

b) Theorem 1.2 is a partial converse to Proposition 1.3. But it cannot 
be extended to a full converse. Specifically, there exists a von Neumann 
algebra, which admits a C^-group a of Jordan-automorphisms such 
that a(t) is not an automorphism for some £, cf., [2, p. 158]. 

c) Our result should be compared with the known fact that a Co-
group of isonietries on a von Neumann algebra is automatically norm 
continuous. [9, Corollary 1.7]. 

EXAMPLE 1.5. Let H be a Hilbert space, M = B(H)^a,nd p(t)a = 
U(t)a. where U is a given unitary Co-group on 7i. The polar decom­
position (u .a)of p is then given by u(t) = U(t) and a(t)a = a. 

2. C*-algebras. We study groups of isonietries on general C*-
algebras. The case where the C*-algebra contains a unit was considered 
earlier in [9]. 

Let A be a C*-algebra, and let p be a surjective isometry on A. By [7, 
Theorem 1] there exists a Jordan-automorphism a on A, and a unitary 
u in the multiplier algebra M (A) of A, such that 

p(a) = ua(a) 

for all a in A. By [7, Lemma 3], the pair (u , a ) is uniquely determined 
by the above conditions. The pair ( u , a ) is called the polar decomposi­
tion of p. By uniqueness, this polar decomposition coincides with the 
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one defined in [9], if A is assumed to have a unit. If p is a Co-group 
of isometries on A, then the polar decomposition (u,a) is determined 
by the following condition: For each t e R, the pair (u(t),a(t)) is the 
polar decomposition of p(t). Our first result states that, in this case, a 
is a Co-group of automorphisms on A, and u is a a"-cocycle when a" 
is defined by a"(t) = fv(f)". Note that a"(f) is the a-weakly continuous 
extension of a(t) to the universal enveloping von Neumann algebra A" 
of A 

THEOREM 2.1. Let A be a C*-algebra and let M (A) be the multiplier 
algebra of A. 

There is a canonical bijection between the set of CQ-groups p of 
isometries on A, and the set of pairs (u, a) , where a is a Co-group 
of automorphisms on A, and a is a M (A) valued unitary a" -cocycle, 
such that the mapping 

(1) t-+(u(t),<>), 

is continuous for each ç in A* — (A")* C M (A)*. The bijection is 
given by 

(2) p(t)a = u(t)a(t)a, 

for a in A and t in R. That is, (u,a) is the polar decomposition of p. 

PROOF. Let the pair (u, cv) be specified as above. Then it follows from 
Proposition 1.3 that p is a weakly continuous group of isometries on 
A. Hence, p is a Co-group by general semi-group theory [3, Corollary 
3.1.8]. 

Conversely, assume that p is given, and let (•*/, a) be the polar 
decomposition of p. The listed properties of u follow directly from 
the discussions in §1. Moreover, an easy calculation shows that 

a(t)a2 - a(s)a2 =(p(t)a - p(a)a)*(p{t)a + p(s)a) 

- (p(t)a - p(s)a)*p(S)a + (p(s)a)* (p(t)a - p(s)a) 

for a = a*. Hence \\a(t)a2 - a{s)a2\\ < 4||o|| \\p(t)a - p(s)a\\. It is well 
known that every element a € A decomposes as a linear combination of 
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squares, a = Ylcja] Ü ~ 1? 2,3,4) , where each Cj is a complex number 

of modulus one, and aj = a* e A, \\aj\\2 < \\a\\. It follows that 

4 

(3) \\a(t)a - a(s)a\\ < A\\a\\^2 £ ) \\p(t)a3 - p(s)aJ\\. 

i= i 

That is, a is strongly continuous. An argument in [9] shows that 
strong continuity of a implies that each a(t) is an automorphism. 
See also [3, proof of Corollary 3.2.12]. Therefore, each a(t),f = a"(t) 
is an automorphism. Now, the cocycle property of ix, and a simple 
computation, shows that a" is a group. Then, of course, a is a group 
as well. 

COROLLARY 2.2. Theorem 2.1 is also true if we replace the continuity 
condition (1) on u by the condition that t —>• u(t)a is continuous for 
each a in A. 

PROOF. If p is given, then the stated continuity of u follows from (2) 
and the strong continuity of a. 

COROLLARY 2.3. Let a be a Co-group of automorphisms on a C*-

algebra A. Let u be a M (A) valued unitary a"-cocycle. The following 

two conditions are equivalent: 

(i) The mapping t —> (M(£), if) is continuous for each if in A* ; 

(ii) The mapping t —* u{t)a is continuous for each a in A. If it is 
further assumed that A has a unit, then (i) and (ii) are equivalent to 
(iii) below: 

(iii) The mapping t —> u(t) is continuous in the norm of A. 

We give an example below of a C*-algebra A (necessarily without 
unit) and a Co-group p of isometries on A such that the unitary part 
of the polar decomposition of p is not norm continuous (relative to the 
norm of M (A)). 
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EXAMPLE 2.4. Let A be the C*-algebra of compact operators on an 
infinite dimensional Hilbert space W, and let. U be a Co-group (with 
unbounded generator) of unitaries on H. If we determine a Co-group 
p of isometries on A by p(t)a = U(t)a, then the polar decomposition 
(u, a) of p is given by u(t) = U(t) and a(t)a = a for t G R and a G A. 

3. The unitary part. Let (u, a) be the polar decomposition of a 
continuous group p of isometries on an operator algebra. We show that 
the unitary part u is a group if the pair (n(t),a(t)) satisfies a certain 
algebraic relation for each t. 

THEOREM 3.1. Let M be a von Neumann algebra, let a be a CQ-group 
of automorphisms on M, and let u be a M-valued a-weakly continuous 
unitary a-cocycle. The conditions (1) and (2) below are equivalent: 

(1) u(s + t) = u(s)u(t) for all s and t in R. 

(2) u(t)a(t)a = a(t)(u(t)a) for all a in M., and t inH. 

PROOF. Condition (1) is equivalent to the following: 

(3) u(t) = a(s)(u(t)); s ,* ,eR, 

since u is an a-cocycle. Moreover, (3) implies (2), since each a(t) is 
an endomorphism. Finally, we will argue that condition (2) implies 
(3). Since p and a are groups, (2) and a computation shows that 
u(nt) = u(t)n for t in R and n = 1,2,3,. . . ; therefore 

(4) u(s)u(t) = u(s + i) 

if s and t are rational numbers with the same sign. By continuity (4) 
holds whenever s and t are real numbers and sign (s) = sign (t). Hence 
u(t) = a(s)(w(£)), if s,£ > 0, by the cocycle property of u. Applying 
a(—s) to both sides of the last equality yields 

u(t) = a(s)(u(t)); s G R, t > 0. 

Similarly we have u(t) = a(s)(u(t)) for s G R and t < 0. Condition (3) 
follows from this. 
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COROLLARY 3.2. Let A = M be a C*-algebra and let p be a Co-
group of isometries on A. The polar decomposition (u,a)of p satisfies 
the conclusion of Theorem 3.1. 

PROOF. The polar decomposition (w, a") of p" satisfies the assump­
tions in Theorem 3.1, and the corollary follows. 

COROLLARY 3.3. Let (u,a) be as in Theorem 3.1 (or as in Corollary 
3.2). For each t in R7 define an operator L(u(t)) on A4 by the 
assignments L(u(t))a = u(t)a for all a in A4. If p(t) = L(u(t))a(t), 
then the following five conditions are equivalent: 

(i) p{t)a{t) = ct(t)p(t) for all t in R , 

(ii) L(u(t))a(t) = a(t)L(u{t)) for all t in R; 

(iii) u(s + t) — u(s)u(t) for all s and t in R; 

(iv) L(u(s))a(t) — a(t)L(u(s)) for all s and t in R; 

(v) p(s)a(t) = a(t)p(s) for all s and t in R . 

4. I m p l e m e n t e d groups . The generator of a Co-group of isome­
tries on a C*-algebra is shown to be of the form a —• i(Ha-aK), where 
H and K are (unbounded) self-adjoint operators. The only restriction, 
which we may impose on H and K in general, is tha t the mapping 
a —> exp(itH)aexp(—itK) leaves the algebra invariant for each t. 

LEMMA 4.1. Let A be a C*-algebra. If a is in M(A), then \\a\\ = 
sup | |aò||, where the supremum is over all b in A with norm less than 
or equal to one. 

PROOF. Let | | a | | 0 = sup{||a6| | \b e A, \\b\\ < 1}. We will show that 
11 • | \o is a C*-norm on M (A). Define a linear map L from M (A) into the 
Banach algebra of all bounded linear maps on A by L(a)b = ab, be A. 
Clearly, \\a\\o = | |L(a) | | . Since the kernel, kerL, of L is an ideal in 
M (A) and the intersection A fl kerL = {0}, the known thickness of A 
in M(A) [11, p. 169] implies that L is injective, i.e., \\a\\o is a Banach 
algebra norm on M (A). Let a £ M (A) and e > 0 be given and choose 
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be A such that \\b\\ < 1, and ||aò|| > (1 - s)\\a\\0. Then 

| | « * « | | o > | | ( a ò ) * a ò | | > ( l - c ) 2 | | a | | à . 

It follows that ||a||£> < | |«*a| |o ? which in turn implies that \\a\\o is a 
C*-norm on M (A). 

THEOREM 4.2. Let p be a norm continuous group of isometries on a 
C*-algebra A. There exist norm continuous unitary groups U and V 
in A" such that p(t)a = U(t)aV(—t) for a in A and t in R . 

PROOF. By eq. (3) of §3, ||or(f) - a{s)\\ < 16||p(f) - p(s)\\. There 
exists, by a result in [8, Theorem 8.5.2], a norm continuous unitary 
group V in A", such that a(t)a = V(t)aV(-t). If we take the 
supremum over all a in A with | |a| | < 1, then 

| | W ( 0 - ^ ) | | = s i i p | | ( W ( f ) - W ( S ) ) a ( S + f) f l | | 

< sup \\(p(t) - p(s))a(s)a\\ + sup | | (o(s) - a(t))a\\ 

<l7\\p(t)-p(s)\\. 

Now let U(t) = u{t)V(-t), and the Theorem follows. 

REMARK 4.3. Alternatively, one might prove Theorem 1.2 by first 
extending p to a norm-continuous group, p" say, of isometries on A", 
and then apply [9, Theorem 4.1] to p". 

DEFINITION 4.4. Let B(H) be the algebra of all bounded linear 
operators on a Hilbert space H. Let S and T be densely defined 
(unbounded) linear operators on 7i. Let V(6S.T) denote the elements 
a in B(7i) which satisfy conditions (1) and (2) below: 

(1) The operator a maps V(T) — the domain of T into V(S). 

(2) There exists 6 in B(H) such that bf = i(Sa - aT)f for all / in 
P ( T ) . 

Now define a linear map òs.r o n B{Ti). by òs.r(a) = b for a in T>(ós.r) 
where b is specified as above. 
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THEOREM 4.5. Let p be a Co-group of isometries on a C*-algebra A. 
The following hold: 

(i) There exist a faithful representation (7r, H) of A and two self-
adjoint operators H and K on 7i, such that the infinitesimal generator 
of (Adir)p is SH,K, restricted to elements a in 7r(A)r\'D(ÓH,K) such that 
ÔH,K{O) is in ir(A). Here (Adir)p is the Co-group on TT(A) determined 
by ((Ad7r)p)(t)ir(a) = 7r(p(t)a), for a in A and t in R. 

(ii) If A has a unit, then there exists a bounded self-adjoint operator 
P on H and a unitary operator W on H such that H = W(K + P)W*. 

(iii) If p is assumed to be norm continuous, then we may choose H 
and K in A"'. 

PROOF. Part (i) follows from Theorem 2.1 and [6, Theorem Al]. Part 
(ii) is a consequence of (i) and [4, Theorem 4.3]. (iii) is a corollary to 
Theorem 4.2. 

REMARK 4.6. (i) Note that, if A is the C*-algebra of all compact 
operators on a Hilbert space H, and if H, K is any pair of self-adjoint 
operators on H, then the formula p(t)a — exp(itH)aexp(—UK), a G A, 
t G R, determines a Co-group p of isometries on A, by Theorem 2.1. 
Hence, in general, there is not a relation between the H and K in 
Theorem 4.5. 

(ii) If we are in case (ii) of Theorem 4.5, then 

6HÌK{°) = W6KMw*a) + iWPW*a. 

Part (i) of Theorem 4.5 may therefore be regarded as an extension of 
[9, Theorem 3.1]. 

(iii) Let u be the unitary part of the polar decomposition of a given 
group p. Assume further that u is a group. Extend p to a C^-group p" 
of isometries on A", and let 6" be the infinitesimal generator of p". If 
the unit 1 G V(6"), then it is easy to see that <5;/(l) is the infinitesimal 
generator of u. It follows that u is norm continuous. If A has a unit, 
then automatically 1 G V(6") cf., [9, Theorem 3.8]. This is not true in 
general, however, by Example 2.4. 

(iv) Let (n, a) be the polar decomposition of the Co-group p from 
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strongly continuous unitary a-cocycles v with v(0) = 1 and the set of 
all unitary Co-groups V on H. The correspondence is determined by 
v(t) = V(t)exp(-itK). 

Let T be a densely defined linear operator on the Hilbert space H. 
Define ST = Ó'T.T* . We studied ST earlier in [9]. Here we will show that 
some of the results in [9] have converses when the following assumption 
is added: V(T) C D(T*). Specifically: 

PROPOSITION 4.7. Let T be a densely defined operator on a Hilbert 
space H. lfV(T) is contained in V(T*), then we have: 

(a)2>(T) = { / € W | [ / ] € P ( « r ) } . 
(b) If 6T is assumed norm-norm closed, it follows that T is closed. 

(c) If S and T are both symmetric and densely defined, and further, 

6s C ST, then it follows that S C T + c for some complex scalar c. 

PROOF, (a). The inclusion C follows from [9, Proposition 4.7]. The 
other inclusion is immediate from the definition of the domain of ST 
and the density of V(T*) in H. 

(b). Let /„ e V(T) and f,g G H. Assume that /„ -+ / and Tfn - • g, 
as n —> oo. We may assume that |//f | = | / | = 1, where | / | denotes the 
norm of / G H. Then ||[/„] - [/]|| -> 0. Since 

-iST([fn})h = (hJn)Tfn-(h.Tfn)fn 

for all h in H, we get 

\\-iMlfn})-(f®g-g®f)\\^o. 

(Recall (/ Q g)h := {h,f)g for h in H.) Hence [/] G V(ST) and 
—iôrdf]) — f O 9 - 9 ® / , which in turn gives / G V(T) and Tf = g. 

(c). By (a), V(S) C V(T). If / is in V(S), then Ss([f})f = 6T([f])f< 
and it follows that (S — T)f — [f](S — T)f. Hence, we may define a 
scalar valued function A' on V(S) by (S - T)f = K(f)f for / in T>(S). 
If / and g are in T>(S) and c is a scalar, then 

K(cf + g)(cf + g) = ch'(f)f + K{g)g, 
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so A" must be a constant. 

COROLLARY 4.8. The following three conditions are equivalent: 

(i) T is closed and symmetric, 

(ii) ST is a closed derivation, 

(iii) b'T is a closed ^-derivation. 

PROOF. Apply part (b) of Proposition 4.7 and [9, Theorem 4.8]. 

PROBLEM 4.9. Is the space of all finite rank operators in T>(6T) a 
core for 6T'- This is true if T is assumed maximal symmetric. 

5. A n appl icat ion. Using the main theorem of [10] and Theorem 
2.1 above, we now determine the class of Co-groups of isometries on a 
C*-algebras of compact operators. 

THEOREM 5.1. Let A be a C* -algebra of compact operators on a 
Hilbert space H. If p is a CQ-group of isometries on A. then there exist 
unitary CQ-groups U and V on Ti such that 

p(t)a = U{t)aV(t). for all t in R and a in A. 

PROOF. Let (t/ .o) be the polar decomposition of p, by Theorem 
2.1 and [10]. there exists a unitary Co-group V on 7i, such that 
a(t)a — V(—t)aV(t). The existence of V can also be deduced by 
adapting the method of [3, Example 3.2.35]. If U(t) = u{t)V(-t), 
it follows that U and V satisfy the desired conditions. 

REMARK 5.2. Theorem 5.1 is related to the Theorem in [1]. 

ADDED IN PROOF. A Banach algebra version of Theorem 4.2 ap­
peared in: A.M. Sinclair, Jordan Homomorphisms and Derivations on 
Semisimple Banach Algebras, Proc. Amer. Math. Soc , 24 (1970), 
209-215. 
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