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NONSCATTERED ZERO-DIMENSION REMAINDERS 

JAMES HATZENBUHLER AND DON A. MATTSON 

ABSTRACT. If a completely regular Hausdorff space X 
is locally compact, then the maximal compactification <f>X of 
X having zero-dimensional remainder has the property that 
<j>X — X is non-scattered if and only if every compact metric 
space is a remainder of X. In this paper characterization of 
when <j)X — X is nonscattered are presented for the case when 
X is not locally compact. The results are related to conditions 
on R(X), the set of points in X which do not possess compact 
neighborhoods, and they apply in case X is rimcompact so 
that <f>X is the Freudenthal compactification of X. 

1. Int roduct ion. Substantial attention (for example, see [2, 
3, 6, 7, 13], etc.) has been devoted to the question of existence 
and properties of the compactification (/>X of a non-locally compact, 
completely regular Hausdorff space Xx, where the remainder <\>X — X is 
zero-dimensional and <f)X is maximum with respect to this property. In 
case X is locally compact, <f>X always exists and it follows from [5] that 
(j)X — X is non-scattered if and only if all compact metric spaces are 
remainders of X. The results of [5] are extended by Unlii in [12]. The 
purpose of this paper is to characterize when (j)X — X is non-scattered 
in case X is not locally compact. If R(X), the set of points in X which 
do not possess compact neighborhoods (in X), is compact, we show 
that </)X — X is non-scattered if and only if each compact metric space 
M is an open subset of the remainder of some compactification Û M I , 
where aMX < <ßX in the lattice of compactifications of X. If R(X) is 
locally compact, then <\>X — X is non-scattered whenever each compact 
metric space M is a subset of some Ö M I — X, where ŒMX < <f>X. 
In both cases (j)X — X is non-scattered whenever each compact metric 
space M is a subset of some % ! — X, where (*MX < cßX. In both 
cases (j)X—X is non-scattered if and only if <\>X — X contains a compact, 
non-scattered subset. Also, conditions internal to X are provided which 
characterize these properties in each case. 
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Examples show that, without restrictions on R{X),(j>X — X can be 
non-scattered without containing a compact, non-scattered subset and 
that R(X) can have a compact, zero-dimensional, non-scattered re
mainder when (j)X — X is scattered. 

2. Preliminaries. Herein all spaces X are completely regular 
Hausdorff spaces and compactifications are always Hausdorff. If aX 
and jX are compactifications of X, we say that ^X < aX if and only 
if there is a continuous mapping / of aX onto jX, where the restriction 
of / to X is the identity homeomorphism. The mapping / will be called 
the natural mapping. Recall that Cla(aX - X) = (aX - X) U R(X) 
[6], for any compactification aX. If the remainder aX — X is zero-
dimensional, we say that aX is a zero-dimension compactification of 
X. Scattered subsets of any space are defined and studied in [11]. It 
is well known that if S is compact and totally disconnected, then the 
following are equivalent: 

(i) S is non-scattered. 

(ii) The Cantor set C is a continuous image of S. 

(iii) Each compact metric space is a continuous image of S. 

PROPOSITION 2.1. If X is locally compact and non-scattered, then X 
contains a compact, non-scattered subset. 

PROOF. It follows from the definition of a non-scattered set that X 
must contain a closed, non-scattered subset S with no isolated points. 
Let p 6 5. Choose N to be an open neighborhood of p in X having 
compact closure. Since S has no isolated points, neither does N fi S. 
But then the closure of N fi S in X is compact and has no isolated 
points, thus the proof is complete. 

The next result follows from a theorem of Magill [9] and 1.2 of [7]. 

PROPOSITION 2.2. Let X be locally compact and suppose aX is a 
compactification of X. If f is a continuous mapping of aX — X onto 
a Hausdorff space K, then there is a compactification ofjX of X with 
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yX — X homeomorphic to K and ̂ X < aX. 

Following Magill [8] we say that a family {Gi , . . . , Gn; Kn} of subsets 
of X is an n-star of X provided: 

(i) Each Gi is open. 

(ii) GÌ fi Gj = </>, for all i / j . 

(iii) Kn = X — U{Gi : i = 1 , . . . , n} is compact. 

(iv) Kn U Gi is non-compact, for each i = 1 , . . . , n. 

We reserve the notation (j)X for a maximum zero-dimensional com-

pactification of X (when it exists, cf. [1, 2, 7], for example). The 

following results, due to McCartney [7], will be utilized in what follows. 

PROPOSITION 2.3. / / </>X exists and {Gi , . . . , Gn; Kn} is any n-star 
ofX, then (<f>X -X)D CI4A fi Cl^Gj = (f>, for all i^j. 

PROPOSITION 2.4. / / 4>X exists and G is an open subset of X with 
compact boundary, then Cl<f>G is a maximum zero-dimensional com-
pactification of CI xG. 

3. Characterization of non-scattered remainders. During the 
remainder of this paper we study spaces X for which (j)X exists and, 
for these spaces, present characterizations of when (f>X — X is non-
scattered. If A is a subspace of X, we denote the boundary of A in X 
by FrxA. 

THEOREM 3.1. Suppose (j)X exists. Then the following are equivalent. 

(1) ((ßX -X)- Cl^Ä(X) is non-scattered. 

(2) (<fiX — X) — C1«£Ì2(X) contains a compact non-scattered subspace. 

(3) Each compact metric space M is an open subspace of some 
remainder C*MX — X of X with CXM < (ßX. 

(4) Each compact metric space M is an open subspace of some 
remainder OLMX — X of X. 
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(5) There is a 2-star {U,V,F} of X with R(X) Ç V and the Cantor 
set is a remainder of X — V. 

PROOF. (1) implies (2). This is immediate from 2.1. 

(2) implies (3). Let K denote a compact non-scattered subset of 
(<f>X — X) — CI <pR(X). Since (j>X — X is zero-dimensional, each point of 
K possesses a compact C l ^ ^ X — X)-open neighborhood which misses 
C\<f>R(X). Thus there exists a partition {A, B} of C\<p((t)X — X) into 
compact C1^(0X — X)-open sets with K Ç A and Cl(f)R(X) Ç B. 
Let M be any compact metric space. Since A is compact, zero-
dimensional and non-scattered there exists a continuous surjection p 
from A onto M. Let Y = <pX — A. Then Y is locally compact and 
(j)X = aY is a compactification of Y, so by Proposition 2.2, there exists 
a compact ificat ion 77 of 7 such that 7 Y < aY and 7 Y — Y~M. Note 
that 7Y is a compactification 7X of X and 7X < <j>X. Finally, if / 
is the natural map from aY to 7Y, f(A) = 7Y — Y and f(B) = B is 
compact, s o M ^ 7Y — Y = (7X — X) — B is open in 7X - X. 

(3) implies (4). This is obvious. 

(4) implies (5). Since the Cantor set C is a compact metric space, 
there exists an aX with C an open subset of aX — X. But then 
aX - (XU C) is closed in aX - X, so B = C l a ( a X - (X U C)) = 
(aX - (X U C)) U #(X) . Thus C and £ par t i t ioned a (aX - X) into 
compact CIa(aX — X)-open sets. Choose U and V to be disjoint aX 
open sets with C ÇÛ tmdB ÇV, and let U = ÛDX, V = VOX. Then 
C\a(X-V)CaX-V,C\a{V)nC = <t>soth&tC\a(X-V)-(X-V) = 
C. Thus {17, V\ X - (U n F)} is the desired 2-star of X. 

(5) implies (1). Let {U, V;F} be a 2-star of X with the properties 
in (5). Then Proposition 2.3 shows that A = CI <f,(U U F) fl (</>X - X) 
and C l ^ V U F) fi (0X - X) partition 0X - X into {<j>X - X)-open 
and closed sets. Since 17 U F is closed in X and misses -R(X) it is now 
also evident that A fl Cl^R(X) = <f>. Also, F r x ( ^ U F) Ç F , and 
so F r x ( ^ U F)is compact. It now follows from Proposition 2.4 that 
Cl ̂ (l/ U F) is the maximal zero-dimensional compactification of the 
locally compact U U F . Since the Cantor set is a remainder of U U F it 
follows that A can be mapped continuously onto the Cantorset. Thus 
A is non-scattered and hence (4>X — X) — Cl^-R(X) is non-scattered, 
as desired. D 
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REMARK 3.2. In light of Theorem 2.1 in [5], we observe that the 
statement X — V has the Cantor set as a remainder can be characterized 
internally in X — V, so that (5)is really a characterization internal to 
X. 

In case R(X) is compact, Theorem 3.1 immediately yields the follow
ing result. 

COROLLARY 3.3. Suppose <\>X exists and R(X) is compact. Then the 
following are equivalent. 

(1) (ßX — X is non-scattered. 

(2) <j>X — X contains a compact non-scattered subspace. 

(3) Each compact metric space M is an open subspace of some 
remainder OLMX — X of X, with OLMX < <f>X. 

(4) Each compact metric space M is an open subspace of some 
remainder aj^X — X of X. 

(5) There is a 2-star {U, V; F} in X with R(X) Ç V and the Cantor 
set is a remainder of Xy. 

In the case of the above corollary, if <f)X — X is non-scattered, then 
the Cantor set of a remainder of some locally compact closed subspace 
of X which has empty intersection with R(X). We now consider the 
case when R(X) is locally compact. 

THEOREM 3.4. Suppose <\>X exists andR(X) is locally compact. Then 
the following are equivalent. 

(1) <j>X — X is non-scattered. 

(2) (f)X — X contains a compact non-scattered subset. 

(3) Each compact metric space M is contained in some remainder 
(XMX — X of X with C*MX < </>X. 

PROOF. If (<f>X - X) - CI <t>R(X) is non-scattered, then the proof 
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follows immediately from Theorem 3.1. We thus assume (cj)X — X) — 
CI <f,R(X) is scattered and now prove the result for this case. 

(1) implies (2). Assume (j)X — X is non-scattered. Then, since 
(<j)X - X - C\R(X) is scattered, Cl^Äpf) - R(X) is nonscattered 
and hence is the desired compact subspace. 

(2) implies (3). Let M be a compact metric space. Since Cl^-R(X) — 
R(X) is compact, non-scattered and zero-dimensional, there exists 
a continuous surjection p from C\(f,R(X) — R{X) onto M. Now 
Y = <j)X — (CI <pR(X) — R{X)) is locally compact, and since </>X is 
also a compactification of Y, we apply Proposition 2.2 to obtain a 
compactification jY of Y such that ^Y — Y~M and jY < <j>X. It is 
now evident that ^jY = 7X is the desired compactification of X. 

(3) implies (1). Let aX be a compactification of X such that aX — X 
contains a copy of the Cantor set C and aX < <j>X. If p is the 
natural mapping from </>X onto aX, p—1(C) is a compact non-scattered 
subspace of <f)X — X. D 

We observe that Theorem 3.4 does not contain a condition analagous 
to condition (4) of Theorem 3.1 and Corollary 3.3. The following ex
ample demonstrates that cf>X — X can be scattered even when R(X) 
is compact and each compact metric space M is contained in some re
mainder OLMX — X of X. 

EXAMPLE 3.5. Let J denote the closed unit interval and N denote 
the positive integers. Choose spaces Y and Z such that ßY — Y — I 
and ßZ - Z = N. Let X be the free union of Y and Z. Then 
ßX is the free union of ßY and ßZ,R(X) is compact and (j)X — X 
is countable. However, since the Cantor set is contained in J it follows 
from Proposition 2.2 that every compact metric space is contained 
in some remainder OLMY — Yoi Y, and hence is contained in some 
remainder of X. 

In case X is almost rimcompact and R(X) is locally compact, we now 
obtain an internal characterization of when (j)X — X is non-scattered. 
Now <t>X — X is non-scattered if and only if <f>X — Cl^i^X) is non-
scattered or Cl<pR(X) — R{X) is non-scattered. The first possibility is 
resolved by Theorem 3.1, while the second will be discussed in The
orem 3.9. However, before stating that result we present an example 
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which demonstrates that it is possible for R(X) to be locally compact, 
(<f>X - X) - C\<j>R{X) to be scattered, and CI 4>R(X) - R(X) to be 
non-scattered. 

EXAMPLE 3.6. Choose Y so that ßY - Y = ßN, and take a 
copy ßNx of ßN with ßNx C ßN - N (see 6.10 A of [4]). Let 
X = Y U [ßN - N - (ßNi - iVi)]. Now ßX = ßY = 0X and 
ßX - X = N U (ßNx - Ni). Thus C l ^ X - X) = ßN so that 
R(X) = ßN fi X = (ßN - N) - {ßNx - iVi)is locally compact. Also, 
TVi Ç R(X) implies ßNx - Nx C Cl^Ä(X), so that Cl^Ä(X) - R(X) 
is non-scattered and (<f)X — X) — CÌR(X) = N is scattered. 

Recall that X is almost rimcompact if and only if (f>X — X has a base 
of neighborhoods (in (j)X) whose boundaries are contained in X. (See 
[2]). Since rimcompact spaces are almost rimcompact, the following 
results apply when <j)X is the Freudenthal compactification of X. It is 
easily seen that the space X in Example 3.6 is rimcompact. 

LEMMA 3.7. Suppose X is almost rimcompact and A and B are 
disjoint, non-empty compact subsets of (j)X — X. Then there are 
disjoint open sets U and V in (ßX such that A Ç [7, B Ç V and 
{UnX,VDX;X-{UU V)} is a 2-star ofX. 

PROOF. Since X is almost rimcompact, each point of A is contained in 
a (ßX-open neighborhood Na with boundary in X such that NaHB = 0. 
Hence A can be contained in an open set U which misses B and whose 
boundary is in X. Let V = <$>X — CI <j>U. Evidently, B Ç V, and 
Uf)X and VDX are disjoint. Also, (j>X - (17U V) = Fr^U is compact. 
Since A C C l ^ t / H X ) and B C C10(F D X), (C7 n X) U Fr0C7 and 
(V H X) U Fr fU are noncompact. Thus {(U n X, V D X; X - (U U V)} 
is a 2-star of X. a 

DEFINITION 3.8. If A Ç X and { d , . . . , Gn; Fn} is an n-star of X, 
then we say {Gi , . . . , Gn; Fn} hereditarily determines an n-star of A if 
{Gì fi Ai..., Gn H A; Fn H ^4} is an n-star of A. 
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THEOREM 3.9. Suppose X is almost rimcompact and R(X) is locally 
compact Then Cl<pR(X) — R(X) is non-scattered if and only if there 
exists a sequence {Gn : neN} such that, for each positive integer n: 

(i) gn = {Gn,...,Gn
n',F2n} is a2n-star ofX. 

(ii) Gn hereditarily determines a 2n-star of R(X). 

(m)G5, t 1
1 UG5i f l ÇG?, t = l , . . . , 2» . 

PROOF. If Cl<pR(X) — R(X) is compact, zero dimensional and non-
scattered, it can be mapped continuously onto the Cantor set. For each 
n e N, let An = {An : i = 1 , . . . , 2n} be a partition of CI <f>R(X)-R(X) 
into compact sets satisfying A ^ i u A2i~* = An,i = 1,... ,2n. 

By Lemma 3.7, there is a 2-star G\ = \G\,G\\F2} of X such that 
A\ C CI <f,G}, i = 1,2. We note that R(X) D F2 is compact and 
G\ H R(X) ^ <(>, 2 = 1,2, so that G\ hereditarily determines a 2-star of 
R(X). 

For n = 2, let {U, V;X- (UöC)} be 2-star of X such that AluAjC 
Cl+U and A2

2\JA\Q C1*V\ NOW set G\ = G\f\U,G2
2 = G\ r\V,G\ = 

G\r\U and G\ = G\ n V. Then F4 = X - U{G? : i = 1,2,3,4} = 
F2U(X-(UU V)) is compact. Clearly G2 = {G?, G|, G§, Gj; F4} is a 
4-star of X which hereditarily determines a 4-star of R(X) and satisfies 
(iii) of Theorem 3.9. The proof of necessity can now be completed by 
induction. 

Conversely, assume the Gn$ exist. Then, for each positive integer n, 
{Cl^G? H (<f>X - X) : i = 1 , . . . ,2n} is a partition of 4>X - X into 
(<f>X - X)-open sets. Thus, for each n, {Cl^G? n (CI<f,R(X) - R(X)) : 
i = 1 , . . . , 2n} is a partition of C\(f>R(X)-R(X) into C l ^ R p O - Ä p Q -
open sets. Also, for each n e N, G £ t \ UGJf1 Ç Gf, i = 1 , . . . 2n; hence 

(Cl^G^ 1 ! U C l ^ G ^ 1 ) n (Cl^Ä(X) - B(X)) 

= C10G? n (C1Ä(X) - R{X)). 

Finally, each Gn hereditarily determines a 2n-star of R(X) so that each 
CI 0G? H (CI +R(X) - R{X) so that each CI ̂ G? n (CI ̂ Ä(X) - Ä(X)) £ 
0. Thus Cl^Ä(A') — R(X) has a dyadic decomposition, and so can be 
mapped continuously onto the Cantor set. (See 8.4.4 of [11].) D 
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4. Examples and further results. The following example shows 
that, for arbitrary i£(X), a non-scattered remainder <\>X — X of a rim-
compact space X need not contain a compact non-scattered subset. 
Thus, without restrictions on Ä(X), we cannot obtain results analo
gous to Theorems 3.3 and 3.4. 

EXAMPLE 4.1. Let W* be the compact first uncountable ordinal 
space and oj\ be the first uncountable ordinal. Take Y = W* x / , 
and let X = Y — {(u;i,r) : r e I and r is irrational). Then 
ßX = (j)X = Y and R(X) = {(a>i,r) : r e I and r is irrational}. 
Let a be any ordinal satisfying a < u\ and let a be an irrational 
in J. Now set d = X - ((W* x [0,a/22]] U ([0,a] x /)) and G2 = 
X-(W* x [a/2,1])U([0, a] x J)). Then { d , G2; JT-(GiUG2)} is a 2-star 
of X which hereditarily determines a 2-star of R(X). Similarly, using 
the points a/4, a/2,3a/4 of 7, a 4-star of X can be constructed which 
satisfies the conditions of Theorem 3.9. Now proceeding inductively, a 
sequence of 2n-stars of X can be constructed so that the conditions of 
Theorem 3.9 hold, (j)X — Xis non-scattered yet (fiX — X contains no 
compact non-scattered subset. 

By removing the set ({wi} x C) U {(cji,r) : r € I and r is rational} 
from y , we obtain a space X which satisfies the 2n-star condition of 
Theorem 3.9 and where <\>X — X does contain a compact non-scattered 
subset. 

The following result affords a characterization of when (j)X — X con
tains a compact non-scattered subset. The proof is similar to that of 
Theorem 3.4 and is therefore omitted. 

THEOREM 4.2. Assume (j)X exists. The following are then equivalent: 

1) (j)X — X contains a compact, non-scattered subset. 

2) Each compact metric space M is a subset of OLMX — X, for some 

compactification Û M ^ of X, where aj^X < <j>X. 

The next example shows that C can be a remainder of R(X) 
when (j)X — X is scattered and R(X) is locally compact. Clearly, 
C l ^ x ^ ( ^ ) 7̂  (j>R{X) in this case, and (j)R(X) — R(X) non-scattered 
does not insure that cj)X — X is non-scattered. 
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EXAMPLE 4.3. Let X be the plane R2 with the sequences {(n, Ik) : 
k £ N} deleted, for each n E N. Then R(X) = {(n,0) : n € N}. And 
(f)X ist he one-point compact ificat ion of R2 by 3.10 of [7]. Since R(X) 
is a copy of N, C is a remainder of R(X) (see [13, p. 143], for example) 
but (j)X — X is scattered. 

The authors wish to thank the referee for several helpful suggestions. 
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