WEIGHTED INEQUALITIES FOR A VECTORVALUED STRONG MAXIMAL FUNCTION

OSVALDO N. CAPRI AND CRISTIAN E. GUTIÉRREZ

Abstract

We show weighted weak type and strong type norm inequalities for a vector analogue of the strong maximal function.

1. Let f be a locally integrable function on \mathbf{R}^{n}, the strong maximal function $M_{s} f$ is defined by

$$
M_{s} f(x)=\sup _{x \in R} \frac{1}{|R|} \int_{R}|f(y)| d y
$$

where the supremum is taken over all rectangles R in \mathbf{R}^{n}, with edges parallel to the coordinate axes. We shall denote this class of rectangles by \mathcal{R}.
If $1<q<\infty$ and $f=\left(f_{1}, \ldots, f_{k}, \ldots\right)$ is a sequence of functions defined on \mathbf{R}^{n}, we say that f is ℓ^{q}-valued if $f(x) \in \ell^{q}$, that is

$$
|f(x)|_{q}=\left\{\sum_{k=1}^{\infty}\left|f_{k}(x)\right|^{q}\right\}^{1 / q}<\infty
$$

For such f we define $M_{s} f=\left(M_{s} f_{1}, \ldots, M_{s} f_{k}, \ldots\right)$.
A weight function w will be a non-negative, locally integrable function on \mathbf{R}^{n} and for measurable $E \subset \mathbf{R}^{n}$ we write $w(E)=\int_{E} w(x) d x$. We say $w \in A_{p}(\mathcal{R}), 1 \leq p<\infty$, if there is a constant C such that

$$
\left(\frac{1}{|R|} \int_{R} w(x) d x\right)\left(\frac{1}{|R|} \int_{R} w(x)^{-1 /(p-1)} d x\right)^{p-1} \leq C
$$

for all $R \in \mathcal{R}$. For $p=1$ the second factor on the left is understood to be ess $\sup _{x \in R} w(x)^{-1}$.
In this note we shall prove the following:

THEOREM. Let $1<q<\infty$.
i) If $w \in A_{1}(\mathcal{R})$ then there is a constant C_{1} such that

$$
\begin{aligned}
& w\left\{x \in \mathbf{R}^{n}:\left|M_{s} f(x)\right|_{q}>\lambda\right\} \\
\leq & C_{1} \int_{\mathbf{R}^{n}} \frac{|f(x)|_{q}}{\lambda}\left(1+\log ^{+} \frac{|f(x)|_{q}}{\lambda}\right)^{n-1} w(x) d x
\end{aligned}
$$

for all $\lambda>0$.
ii) If $1<p<\infty$, there is a constant C_{2} such that

$$
\int_{\mathbf{R}^{n}}\left|M_{s} f(x)\right|_{q}^{p} w(x) d x \leq C_{2} \int_{\mathbf{R}^{n}}|f(x)|_{q}^{p} w(x) d x
$$

if and only if $w \in A_{p}(\mathcal{R})$.

For real valued functions this theorem has been proved in [2]. Also a particular case of the inequality in ii) has been considered in [3]. If instead of M_{s} we have the Hardy-Littlewood maximal operator then similar results have been proved by K.F. Andersen and R.T. John in [1].
The proof is based on the fact that M_{s} can be dominated by the composition of n one-dimensional operators and then it will follow by applying lemma 2.1 below.
As usual the letter C will denote a constant, not necessarily the same at each occurrence.
2. Let $1 \leq p \leq \infty, 1<q<\infty$ and let w be a weight function. By $L_{w}^{p}\left(\ell^{q}\right)$ we denote the class of w-measurable functions f defined on R^{n}, ℓ^{q}-valued, such that

$$
\|f\|_{L_{w}^{p}\left(\ell^{q}\right)}=\left(\int_{\mathbf{R}^{n}}|f(x)|_{q}^{p} w(x) d x\right)^{1 / p}<\infty
$$

When $p=\infty$, we make the obvious modifications.

Lemma 2.1. Let $1<p \leq \infty, 1<q<\infty$ and let k be a positive integer. Suppose that T_{1}, T_{2} are sublinear operators and there are constants C_{1}, C_{2}, M_{1} and M_{2} such that
(a) $\left\|T_{i} f\right\|_{L_{w}^{p}\left(\ell^{q}\right)} \leq\|f\|_{L_{w}^{p}\left(\ell^{q}\right)}, i=1,2$.
(b) $w\left\{x:\left|T_{1} f(x)\right|_{q}>t\right\}$

$$
\leq M_{1} \int_{\mathbf{R}^{n}} \frac{|f(x)|_{q}}{t}\left(1+\log +\frac{|f(x)|_{q}}{t}\right)^{k-1} w(x) d x
$$

for all $t>0$.
(c) $\left\{x:\left|T_{2} f(x)\right|_{q}>t\right\} \leq \frac{M_{2}}{t}\|f\|_{L_{w}^{1}\left(\ell^{q}\right)}$, for all $t>0$.

Then
$T f=T_{2} T_{1} f$ satisfies

$$
w\left\{x:|T f(x)|_{q}>t\right\} \leq C \int_{\mathbf{R}^{n}} \frac{|f(x)|_{q}}{t}\left(1+\log ^{+} \frac{|f(x)|_{q}}{t}\right)^{k} w(x) d x
$$

for all $t>0$, where C is a constant independent of f.

PROOF. For each $t>0$ write $f(x)=f_{1}(x)+f_{2}(x)$, where $f_{1}(x)=f(x)$ whenever $|f(x)|_{q}>t / 2$, and $f_{1}(x)=0$ otherwise. We assume $p<\infty$, for $p=\infty$ the proof is similar. To simplify the notation we put $|\cdot|_{q}=|\cdot|$. Then (a) and (b) imply that

$$
\begin{align*}
& w\left\{x:\left|T_{1} f(x)\right|>t\right\} \\
& \leq C t^{-1} \int_{|f(x)|>t / 2}|f(x)|\left(1+\log ^{+} \frac{2|f(x)|}{t}\right)^{k-1} w(x) d x \tag{2.2}\\
&+C t^{-p} \int_{|f(x)| \leq t / 2}|f(x)|^{p} w(x) d x
\end{align*}
$$

We shall show that

$$
\begin{align*}
& \int_{\left|T_{1} f(x)\right|>t / 2}\left|T_{1} f(x)\right| w(x) d x \tag{2.3}\\
& \quad \leq C \int_{\mathbf{R}^{n}}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{t}\right)^{k} w(x) d x
\end{align*}
$$

and

$$
\begin{align*}
& \int_{\left|T_{1} f(x)\right|<t / 2}\left|T_{1} f(x)\right|^{p} w(x) d x \tag{2.4}\\
& <C t^{p-1} \int_{\mathbf{R}^{n}}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{t}\right)^{k} w(x) d x
\end{align*}
$$

for each $t>0$.
To prove (2.3) write

$$
\begin{aligned}
& \int_{\left|T_{1} f(x)\right|>t / 2}\left|T_{1} f(x)\right| w(x) d x \\
& =\frac{t}{2} w\left\{x:\left|T_{1} f(x)\right|>t / 2\right\}+\int_{t / 2}^{\infty} w\left\{x:\left|T_{1} f(x)\right|>\lambda\right\} d \lambda \\
& =I_{1}+I_{2}
\end{aligned}
$$

An application of (2.2) shows that

$$
\begin{aligned}
I_{2} \leq & C \int_{|f(x)|>t / 4}|f(x)| \int_{t / 2}^{2|f(x)|} \lambda^{-1}\left(1+\log \frac{2|f(x)|}{\lambda}\right)^{k-1} d \lambda w(x) d x \\
& +C \int_{\mathbf{R}^{n}}|f(x)|^{p} \int_{2|f(x)|}^{\infty} \lambda^{-p} d \lambda w(x) d x
\end{aligned}
$$

Now (2.3) follows by performing the integration

Since

$$
\int_{\left|T_{1} f(x)\right| \leq t / 2}\left|T_{1} f(x)\right|^{p} w(x) d x=p \int_{0}^{t / 2} \lambda^{p-1} w\left\{x:\left|T_{1} f(x)\right|>\lambda\right\} d \lambda
$$

and $\left(1+\log ^{+} \frac{|f(x)|}{\lambda}\right)<\left(1+\log ^{+} \frac{|f(x)|}{t}\right)\left(1+\log ^{+} \frac{t}{\lambda}\right)$, from (b) we obtain

$$
\begin{aligned}
& \int_{\left|T_{1} f(x)\right| \leq / t / 2}\left|T_{1} f(x)\right|^{p} w(x) d x \\
& \quad \leq C\left[\int_{0}^{t / 2} \lambda^{p-2}\left(1+\log ^{+} \frac{t}{\lambda}\right)^{k-1} d \lambda\right] \\
& \quad \times \int_{\mathbf{R}^{n}}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{t}\right)^{k-1} w(x) d x
\end{aligned}
$$

Hence (2.4) follows.
Now (a) and (c) imply that

$$
\begin{aligned}
& w\left\{x:\left|T_{2} T_{1} f(x)\right|>t\right\} \\
& \leq C t^{-1} \int_{\left|T_{1} f(x)\right|>t / 2}\left|T_{1} f(x)\right| w(x) d x+C t^{-p} \int_{\left|T_{1} f(x)\right| \leq t / 2}\left|T_{1} f(x)\right|^{p} w(x) d x
\end{aligned}
$$

Then, from (2.3) and (2.4) the lemma follows.
3. Proof of the Theorem. We recall the following result from [2].

LEmma 3.1. Let $1 \leq p<\infty$. Then $w \in A_{p}(\mathcal{R})$ if and only if there is a constant C, such that for almost every fixed $(n-1)$-tuple $\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right), w\left(x_{1}, \ldots, x_{j-1}, \cdot, x_{j+1}, \ldots \ldots, x_{n}\right) \in A_{p}$ on \mathbf{R} with constant bounded by C.

For $1 \leq j \leq n$ and g a real-valued function defined on \mathbf{R}^{n}, the partial maximal operator M_{j} is defined by

$$
M_{j} g(x)=\sup _{h, k>0} \frac{1}{h+k} \int_{x_{j}-h}^{x_{j}+k}\left|g\left(x_{1}, \ldots, x_{j-1}, t, x_{j+1}, \ldots, x_{n}\right)\right| d t .
$$

For $f=\left(f_{1}, \ldots, f_{k}, \ldots\right)$ we write $M_{j} f=\left(M_{j} f_{1}, \ldots, M_{j} f_{k}, \ldots\right)$.
Since the inequality in ii) holds for the Hardy-Littlewood maximal operator (see Theorem 3.1 of [1]) then from lemma 3.1 we get

$$
\int_{-\infty}^{\infty}\left|M_{j} f(x)\right|_{q}^{p} w(x) d x_{j} \leq C \int_{-\infty}^{\infty}|f(x)|_{q}^{p} w(x) d x_{j}
$$

for almost every $(n-1)$-tuple $\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)$, where $1<$ $p, q<\infty, w \in A_{p}(\mathcal{R})$ and C is a constant depending only on p, q and the constant that appears in the definition of A_{p}. Analogously, when $w \in A_{1}(\mathcal{R})$ we have

$$
\int_{\left\{x_{j}:\left|M_{j} f(x)\right|_{q}>\lambda\right\}} w(x) d x_{j} \leq \frac{C}{\lambda} \int_{-\infty}^{\infty}|f(x)|_{q} w(x) d x_{j}
$$

Integrating both sides with respect to $x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}$, we get

$$
\begin{equation*}
\left\|M_{j} f\right\|_{L_{w}^{p}\left(\ell^{q}\right)} \leq C\|f\|_{L_{w}^{p}\left(\ell^{q}\right)} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
w\left\{x:\left|M_{j} f(x)\right|_{q}>\lambda\right\} \leq \frac{C}{\lambda}\|f\|_{L_{w}^{1}\left(\ell^{q}\right)} \tag{3.3}
\end{equation*}
$$

On the other hand, it is well known that

$$
\begin{equation*}
M_{s} f_{k}(x) \leq M_{n} M_{n-1} \ldots M_{1} f_{k}(x), k=1,2, \ldots \tag{3.4}
\end{equation*}
$$

Therefore sufficiency in part ii) follows from (3.2) and (3.4). The necessity is a consequence of the fact that if the inequality in ii) is valid for real valued functions then $w \in A_{p}(\mathcal{R})$ (see [2] for a proof).

It follows from (3.2) and (3.3) that $T_{1}=M_{n-1} \ldots M_{1}, T_{2}=M_{n}$ and k_{n-1} satisfy the hypothesis of lemma 2.1 . Hence, from (3.4), we get i).

REFERENCES

1. K.F. Andersen and R.T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980), 19-31.
2. R.J. Bagby and D.S. Kurtz, $L(\log L)$ spaces and weights for the strong maximal functions, Journal D'Analyse Mathématique, vol. XLIV (1984/85), 21-31.
3. R. Fefferman and E.M. Stein, SIngular Integrals on Product Spaces, Advances in Math. 45 (1982), 117-143.

Universidad De Buenos Aires, Buenos Aires, Argentina
Currently: Department of Mathematics, Temple Univeristy, Philadelphia, PA 19122

