NEWTON FLOWS FOR REAL EQUATIONS

HEINZ-OTTO PEITGEN, MICHAEL PRÜFER
AND KLAUS SCHMITT

1. Introduction. Let $G: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a smooth mapping with Jacobian matrix $D G(x)$. In this paper we shall discuss the dynamical system

$$
\begin{equation*}
N(x)=x-D G(x)^{-1} G(x) \tag{1}
\end{equation*}
$$

provided by Newton's method for the system of equations

$$
\begin{equation*}
G(x)=0 . \tag{2}
\end{equation*}
$$

If $n=2$ and G is a rational mapping R of the complex plane \mathbf{C}, then the dynamics of (1), though possibly very complicated and delicate, is understood in terms of the classical and recent theory of Julia sets [$\mathbf{3}$, 4, 1]. In particular, since ∞ is typically a repelling fixed point of N one has that

$$
\begin{equation*}
J_{N}=\text { closure }\left\{x \in \overline{\mathbf{C}}: N^{k}(x)=\infty, \text { for some } k \in \mathbf{N}\right\} \tag{3}
\end{equation*}
$$

is the Julia set of $N(x)=x-R(x) / R^{\prime}(x)$ (here $\overline{\mathbf{C}}=\mathbf{C} \cup\{\infty\}$ and $N^{k}=N \circ \cdots \circ N k$-times). Moreover, if $\bar{x} \in \mathbf{C}$ is a simple zero of R, i.e., $R^{\prime}(\bar{x}) \neq 0$, then \bar{x} is an attractive fixed point of N; if

$$
\begin{equation*}
A(\bar{x})=\left\{x \in \mathbf{C}: N^{k}(x) \rightarrow \bar{x} \text { as } k \rightarrow \infty\right\}, \tag{4}
\end{equation*}
$$

is its basin of attraction, then

$$
\begin{equation*}
\partial A(\bar{x})=J_{N} . \tag{5}
\end{equation*}
$$

Since (5) is true for any attractive fixed point of N (or even cycles), J_{N} is typically a fractal set which in addition has the interesting property that Newton's method clearly will diverge for initial values in J_{N}. On the other hand, if n is not restricted to be 1 or 2 and G is simply

[^0]smooth, the dynamics of (2) is much more delicate and far from being understood. For example:
(a) N may allow strange attractors (see [5]) which is not possible in the complex case.
(b) What is the appropriate analogue to a Julia set? Is there a result similar to (5)?

Associated with the dynamical system (1) there is the system of ordinary differential equations

$$
\begin{equation*}
\dot{x}(t)=-D G(x(t))^{-1} G(x(t)) \tag{6}
\end{equation*}
$$

Knowledge of the flow defined by this system contributes much to the understanding of the orbit structure of (1). We observe that (1) is simply a particular case $(h=1)$ of an Euler method

$$
\begin{equation*}
N_{h}(x)=x-h D G(x)^{-1} G(x) \tag{7}
\end{equation*}
$$

for (6).
The boundary of the domain of definition of (6) is the singular set

$$
\begin{equation*}
S=\left\{x \in \mathbf{R}^{n}: \operatorname{det} D G(x)=0\right\} \tag{8}
\end{equation*}
$$

(typically (i.e., if 0 is a regular value of $\operatorname{det} D G: \mathbf{R}^{n} \rightarrow \mathbf{R}$) a collection of smooth $n-1$ manifolds); this set plays an important role in relating the systems (6) and (7) (see [5] for details).

Our objective here is to give some evidence for an interesting conjecture (which is true for Newton's method for rational mappings of C) for the mapping N.

Define the Julia-like set of N by

$$
\begin{equation*}
J_{N}=\text { closure }\left\{x \in \mathbf{R}^{n}: N^{k}(x) \in S, \text { some } k \in \mathbf{N} \cup\{0\}\right\} \tag{9}
\end{equation*}
$$

generated by the preimages of S. Define the exploding set of N by

$$
\begin{equation*}
E_{N}=\text { closure }\left\{x \in \mathbf{R}^{n}:\left\|N^{k}(x)\right\| \rightarrow \infty \text { as } k \rightarrow \infty\right\} \tag{10}
\end{equation*}
$$

(where $\|\cdot\|$ is some norm for \mathbf{R}^{n}). While it is apparent that $J_{N} \neq \emptyset$, it is by no means clear or obvious that $E_{N} \neq \emptyset$. We then have the following conjecture.

Figure 1. Bifurcation diagrams for (11) and (12).

Conjecture. $J_{N}=E_{N}$.
(Observe that in the complex case ∞ typically has a dense inverse orbit in $J_{N}($ see (3)).)
2. A special case. In this section we shall discuss the above conjecture for a particular model problem in \mathbf{R}^{2}.

Figure 2(a). Phase Portrait of (6) with G as in (11), $\mu=2.1$, two sinks.

Let

$$
\begin{equation*}
G(x)=A x-\mu F(x) \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \\
F(x) & =\binom{f\left(x_{1}\right)}{f\left(x_{2}\right)}
\end{aligned}
$$

and

$$
f(s)=s-s^{2}
$$

Figure 2(b). Phase Portrait of (6) with G as in (11), $\mu=3.2$, four sinks.

We note that (11) is a standard two point difference approximation for the boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda f(u)=0 \tag{12}\\
u(0)=0=u(\pi)
\end{array}\right.
$$

where $\mu=\lambda \delta^{2}$ and $\delta=\pi / 3$. The bifurcation diagrams for (11) and (12) are given by Figure 1, and Figure 2 shows the continuous time flow of (6) for two choices of μ and G as in (11).
In this example the singular set S is given by a pair of hyperbolas S^{+} and S^{-}. One can easily show that S^{+}behaves like a global repeller in both cases and S^{-}like a global attractor for $\mu<3$. For $\mu>3$, however, S^{-}has passed through a bifurcation state (at $\mu=3$) and as a result decomposes into repelling and attracting components.
Figure 3 and 4 show plots of delicate computer experiments displaying J_{N} for various choices of h and $\mu=2.1$ and $\mu=3.2$.
Apparent from these experiments is the crucial role of the singular set S which generates Cantor sets of curves. In addition, Figure 3 demonstrates the importance of the straight line

$$
\begin{equation*}
\mathbf{G}_{\mu}=\left\{x=\left(x_{1}, x_{2}\right): x_{1}+x_{2}+(3-\mu) / \mu=0\right\} . \tag{13}
\end{equation*}
$$

One of the results from [5] is the following theorem.

Theorem. Let $0<\mu<3$ and $0<h<2$.
(a) $\mathbf{G}_{\mu} \subset J_{N}$ and

$$
J_{N}=\text { closure }\left\{x \in \mathbf{R}^{2}: N^{k}(x)=P_{\mu}, \text { some } k \in \mathbf{N}\right\}
$$

where

$$
\left\{P_{\mu}\right\}=S^{-} \cap \mathbf{G}_{\mu} .
$$

(b) $\left.N\right|_{\mathbf{G}_{\mu}}$ is equivalent to a Newton method on the real line

$$
r(s)=s-h k(s) / k^{\prime}(s),
$$

where $k(s)=\mu s^{2}-(\mu+1)(\mu-3) / 4 \mu$.

$h=0.3$

$h=1.4$

$h=1.0$

$h=1.6$

$h=1.7$

Figure 3. The Julia like set J_{N} for (7), G as in (11) and $\mu=2.1$.
(c) $\left.N\right|_{\mathbf{G}_{\mu}}$ is chaotic, i.e., N restricted to \mathbf{G}_{μ} is equivalent to $z \rightarrow z^{2}$ on the unit circle.

With these observations we are now in a position to discuss the main point of this paper.
3. Theorem and conjecture. Let G be as in (11) and $0<\mu<$ $3,0<h<2$.
(a) There is a dense set $\mathbf{H}_{\mu} \subset \mathbf{G}_{\mu}$ such that each $Q \in \mathbf{H}_{\mu}$ is a periodic repeller of N (see (7)).
(b) Each $Q \in \mathbf{H}_{\mu}$ distinguishes a smooth 1 -manifold M_{Q} which is

- diffeomorphic to $[0, \infty)$
- invariant under N^{p}, where Q has period p.
(c) For each $x \in M_{Q}-\{Q\},\left\|N^{k p}(x)\right\| \rightarrow \infty$ as $k \rightarrow \infty$.

REMARK.

(i) Note that (c) means that E_{N} is not empty. Computer experiments based on (c) have provided strong evidence that, in the above case, indeed

$$
J_{N}=E_{N}
$$

$h=0.3$

$h=1.4$

$h=1.7$

$h=1.0$

$h=1.6$

$h=1.8$

Figure 4. The Julia like set J_{N} for (7), G as in (11), $\mu=3.2$.
(ii) The 1-manifolds above are similar to the "hairs" as discussed in [2] on Julia sets for the exponential family

$$
E_{\lambda}(x)=\lambda \exp x
$$

in \mathbf{C}.
(iii) It is not difficult to show that the continuous time flow (6) remains bounded for all time. In that regard Euler's method is surprisingly different for all $h>0$ (see [5])!

We shall now give a sketch of a proof of our main result:
Step 1. On shows that the dynamics of N restricted to \mathbf{G}_{μ} is equivalent to the dynamics

$$
\begin{aligned}
& \alpha \rightarrow 2 \alpha(\bmod 1) \\
& \alpha \in[0,1] .
\end{aligned}
$$

Figure 5.
In this equivalence the point $\left\{P_{\mu}\right\}=S^{-} \cap \mathbf{G}_{\mu}$ corresponds to $1 / 2$. As a consequence one obtains the dense subset $\mathbf{H}_{\mu} \subset \mathbf{G}_{\mu}$ as asserted in (a).

Step 2. Let $Q \in \mathbf{H}_{\mu}$ be a point of period p. Using binary operations from step 1 , one can find sequences $\left\{Q_{n}\right\}_{n=1}^{\infty}$ and $\left\{Q^{n}\right\}_{n=1}^{\infty}$ in \mathbf{G}_{μ} such that
$-\lim Q_{n}=Q=\lim Q^{n}$
$-N^{p}\left(Q_{n}\right)=Q_{n-1}, N^{p}\left(Q^{n}\right)=Q^{n-1}$

$$
\bullet\left\{Q_{n}\right\},\left\{Q^{n}\right\} \subset\left\{x: N^{k}(x)=P_{\mu}, \text { some } k \in N\right\}
$$

Step 3. Each of the points Q_{n} and Q^{n} is a touch point of a component of the iterated inverse images of S^{-}. The latter is the set

$$
\cup_{k \geq 0} N^{-k}\left(S^{-}\right)
$$

where $N^{-k}(X)=\left\{x: N^{k}(x) \in X\right\}$. Using these components one may construct sets M_{n} as given in Figure 5, and show that $N^{p}\left(M_{n}\right) \subset$ M_{n-1}. Now one defines

$$
M_{Q}=\cap_{n \geq 1} M_{n}
$$

so that $N^{p}\left(M_{Q}\right) \subset M_{Q}$ will follow by construction.

Step 4. On finally must show that

$$
\left\|N^{k p}(x)\right\| \rightarrow \infty \text { as } k \rightarrow \infty
$$

whenever $x \in M_{Q}$. This part of the proof is supported by experimental evidence, except for special choices of h and μ, e.g., this step is not too difficult to establish in case $\mu=2, h=1$ and $p=2$.

REFERENCES

1. J. Curry, L. Garnett and D. Sullican, On the iteration of rational functions: Computer experiments with Newton's method, Comm. Phys. 91 (1983), 267-277.
2. R. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. M (1984), 167-171.
3. H.O. Peitgen, F.V. Haeseler and D. Saupe, Cayley's problem and Julia sets, Math. Intelligencer 6 (1984), 11-20.
4.,$- \quad —$, Newton's method and Julia sets, GMD-Studien, Nr. 197, 1985.
4. -, M. Prüfer and K. Schmitt, Global aspects of the continuous and discrete Newton method: A case study, to appear.
Fachbereich Mathematik Universität Bremen, D-2800 Bremen, West Germany
Department of Mathematics, University of California, Santa Cruz, Santa Cruz, CA 95064
Fachbereich Mathematik, Universität Bremen, D-2800 Bremen, West Germany
Department of Mathematics, University of Utah, Salt Lake City, UT 84112

[^0]: Supported by Stiftung Volkswagenwerk and by NSF grant DMS-8501311.
 Received by the editors on May 14, 1986.

