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N E W T O N FLOWS FOR REAL EQUATIONS 

HEINZ-OTTO PEITGEN, MICHAEL PRÜFER 
AND KLAUS SCHMITT 

1. Introduction. Let G : Rn —• Rn be a smooth mapping with 
Jacobian matrix DG(x). In this paper we shall discuss the dynamical 
system 

(1) N{x) = x-DG(x)-1G(x) 

provided by Newton's method for the system of equations 

(2) G(x) = 0. 

If n = 2 and G is a rational mapping R of the complex plane C, then 
the dynamics of (1), though possibly very complicated and delicate, is 
understood in terms of the classical and recent theory of Julia sets [3, 
4, 1]. In particular, since oo is typically a repelling fixed point of N 
one has that 

(3) JN = closure {x eC : Nk(x) = oo, for some k G N} 

is the Julia set of N(x) = x — R{x)/R'(x) (here C = C U {oo} and 
Nk = N o - • • o N fc-times). Moreover, if x G C is a simple zero of R, 
i.e., R'(x) ^ 0, then x is an attractive fixed point of TV; if 

(4) A(x) = {x G C : Nk{x) -+ x as k - • oo}, 

is its basin of attraction, then 

(5) dA(x) = JN. 

Since (5) is true for any attractive fixed point of N (or even cycles), JN 
is typically a fractal set which in addition has the interesting property 
that Newton's method clearly will diverge for initial values in J^. On 
the other hand, if n is not restricted to be 1 or 2 and G is simply 
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smooth, the dynamics of (2) is much more delicate and far from being 
understood. For example: 

(a) N may allow strange attractors (see [5]) which is not possible in 
the complex case. 

(b) What is the appropriate analogue to a Julia set? Is there a result 
similar to (5)? 

Associated with the dynamical system (1) there is the system of 
ordinary differential equations 

(6) x{t) = -DGixit^Gixit)). 

Knowledge of the flow defined by this system contributes much to the 
understanding of the orbit structure of (1). We observe that (1) is 
simply a particular case (h = 1) of an Euler method 

(7) Nh(x) = x- hDG(x)-lG{x) 

for (6). 

The boundary of the domain of definition of (6) is the singular set 

(8) S = {xeRn : det DG(x) = 0} 

(typically (i.e., if 0 is a regular value of det DG : R n —• R) a collection 
of smooth n — 1 manifolds); this set plays an important role in relating 
the systems (6) and (7) (see [5] for details). 

Our objective here is to give some evidence for an interesting conjec
ture (which is true for Newton's method for rational mappings of C) 
for the mapping N. 

Define the Julia-like set of N by 

(9) JN = closure {x € R n : Nk(x) € 5, some k € N U {0}}, 

generated by the preimages of S. Define the exploding set of N by 

(10) EN = closure {x G R n : ||JV*(z)|| - • oo as k - • oo}, 

(where || • || is some norm for R n ) . While it is apparent that JN ^ 0, 
it is by no means clear or obvious that £"# ^ 0. We then have the 
following conjecture. 
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M= 2.1 M s 3 . 2 

Figure l. Bifurcation diagrams for (11) and (12). 

CONJECTURE. JN = EN. 

(Observe that in the complex case oo typically has a dense inverse 
orbit in JN (see (3)).) 

2. A special case. In this section we shall discuss the above con
jecture for a particular model problem in R2. 
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Figure 2(a). Phase Portrait of (6) with G as in (11), fi = 2.1, two sinks. 

( i i ) G(x) = Ax- ßF(x), 
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where 

* > - ( & ! ) 

and 

/ ( s ) = 3 - s2. 

Figure 2(b). Phase Portrait of (6) with G as in (11), /z = 3.2, four sinks. 
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We note that (11) is a standard two point difference approximation 
for the boundary value problem 

ri2i fti" + A/(ti) = 0 
[lZ) \ t i ( 0 ) = 0 = tl(7T), 

where fi = X62 and 6 = 7r/3. The bifurcation diagrams for (11) and 
(12) are given by Figure 1, and Figure 2 shows the continuous time 
flow of (6) for two choices of \x and G as in (11). 

In this example the singular set S is given by a pair of hyperbolas S4" 
and S~. One can easily show that S + behaves like a global repeller 
in both cases and S~ like a global attractor for ß < 3. For /i > 3, 
however, S~ has passed through a bifurcation state (at /i = 3) and as 
a result decomposes into repelling and attracting components. 

Figure 3 and 4 show plots of delicate computer experiments displaying 
JN for various choices of h and /i = 2.1 and /i = 3.2. 

Apparent from these experiments is the crucial role of the singular 
set S which generates Cantor sets of curves. In addition, Figure 3 
demonstrates the importance of the straight line 

(13) GM = {x = {xlix2) : x1 + x2 + (3 - ß)/ß = 0}. 

One of the results from [5] is the following theorem. 

THEOREM. Let 0 < /i < 3 and 0<h<2. 

(a) GM C JN and 

JN = closure {x eR2 : Nk(x) = PM, some k G N} 

where 

{pM} = 5 - n G M . 

(b) ÌV|GM is equivalent to a Newton method on the real line 

r{s) = s-hk(s)/k'(s), 

where k(s) = /AS2 — (// + l)(/z — 3)/4/x. 
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h = 1.85 h = 1.95 

Figure 3. The Julia like set JN for (7), G as in (11) and /x = 2.1. 

(c) ÌV|G^ is chaotic, i.e., N restricted to GM is equivalent to z —» z2 

on the unit circle. 

With these observations we are now in a position to discuss the main 
point of this paper. 

3. Theorem and conjecture. Let G be as in (11) and 0 < JJL < 
3, 0 < h < 2. 

(a) There is a dense set HM C GM such that each Q G HM is a periodic 
repeller of N (see (7)). 

(b) Each Q € H^ distinguishes a smooth 1—manifold MQ which is 

• diffeomorphic to [0, oo) 

• invariant under Np, where Q has period p. 

(c) For each x G MQ - {Q}, ||iV**p(x)|| - • oo as k - • oo. 

REMARK. 

(i) Note that (c) means that EN is not empty. Computer experi
ments based on (c) have provided strong evidence that, in the above 
case, indeed 

JN = EN> 
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= 0.3 h = 1.0 
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Figure 4. The Julia like set JN for (7), G as in (11), /x = 3.2. 

(ii) The 1-manifolds above are similar to the "hairs" as discussed in 
[2] on Julia sets for the exponential family 

E\ (x) = À exp x 

i n C . 

(iii) It is not difficult to show that the continuous time flow (6) re
mains bounded for all time. In that regard Euler's method is surpris
ingly different for all h > 0 (see [5])! 

We shall now give a sketch of a proof of our main result: 

Step 1. On shows that the dynamics of N restricted to GM is 
equivalent to the dynamics 

a —• 2a(mod 1) 

a G [0,1]. 
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Figure 5. 

In this equivalence the point {Pß} = S~ nGß corresponds to 1/2. As 
a consequence one obtains the dense subset EL c G» as asserted in 
(a). 

Step 2. Let Q G HM be a point of period p. Using binary operations 
from step 1, one can find sequences {Qn}£Li and {Q71}^ in GM such 
that 

• HmQn = Q = limQn 

•N*>(Qn) = Qn-uN*>(Qn) = Q " - 1 

•{Qn}, {Qn} C {x ; Nk(x) = PM, some ib € iV}. 

Step 3. Each of the points Qn and Qn is a touch point of a component 
of the iterated inverse images of S~. The latter is the set 

twv-*(s-), 

where N~k(X) = {a: : Nk{x) G X} . Using these components one 
may construct sets Mn as given in Figure 5, and show that Np(Mn) C 
M n _ i . Now one defines 

MQ = n n > i M n , 

so that NP(MQ) C M Q will follow by construction. 
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Step 4. On finally must show that 

| | iV*p(x)| |-+ooasÄ;-+oo, 

whenever x G MQ. This part of the proof is supported by experimental 
evidence, except for special choices of h and /i, e.g., this step is not too 
difficult to establish in case \i = 2, h = 1 and p = 2. 
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