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NECESSARY A N D SUFFICIENT CONDITIONS 
FOR MULTIPARAMETER BIFURCATION 

JORGE IZE 

A B S T R A C T . Obstruction theory is used in order to give 
a complete characterization of linearized local and global 
bifurcation. In both cases there is a set of two topological 
invariants, depending only on the linear part, such that, if 
both are trivial, there is a nonlinear part with no local or 
global bifurcation. The nonvanishing of any of these invariants 
is sufficient for bifurcation for any nonlinearity. 

0. Introduction. A bifurcation problem is the study of the zeros 
of the nonlinear map /(A,z), where A belongs to the parameter space 
A, a; to a space E and /(A,x) has values in another space F near a 
known family of solutions (A,x(A)) called the trivial solutions. After 
linearization, one may assume that x(X) = 0 and that /(A,x) has the 
form 

(1) (A0-A(X))x-g(X,x) 

where A(0) = 0, g(X, x) = o( || x || ). It is well known that a necessary 
condition for bifurcation is that A is non-invertible and if A is a 
Fredholm operator one may write (1), near (0,0), as 

(A) - QA{\))(x2 -(I- KQA(X))-1KQ(A(X)x1 + g(X, x)) 

9 ( / - Q ) ( ^ ( A ) ( ( / - J R : Q A ( A ) ) - 1 X 1 

+ x2 - (J - KQA{X))-1KQ{A(X)x1 + g(X, x)) 

+ (I-A(X)KQ)-1g(X,x)), 

where x = xi®x<2,xi in ker Ao, Q is a projection on Range AQ and K 
is the pseudo-inverse of AQ from Range AQ into X2, the complement 
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306 MULTIPARAMETER BIFURCATION 

of ker^o- Thus, the zeros of /(A,x) are the zeros of the bifurcation 
equation 

(2) B(\)x1+G(\,x1)=0, 

where 
B(X) = -(I - Q)A(X)(I - KQA(X))-1 

G(X,Xl) = -(I - Q)(I - A(A)A:Q)-1
ff(A,x), 

after one has solved the first piece for x<i as a function of A and x\ 
if g is smooth enough. (See [5] or [7].) It is easily checked that 
G(A,z) = o{\\ x | | ) ,£(0) = 0, and 5(A) is invertible if and only if 
AQ — A(X) is invertible. 

The present paper will give necessary and sufficient conditions for 
bifurcation (in a sense to be made more precise below). In order to 
make this point clearer and to avoid technicalities, several simplifying 
hypotheses will be made: 

(a) B(X) is C1 in A, 

(b) E = F = KN,A = Rfc (the extension to infinite dimensional 
spaces, with some compactness, is standard. For the case of an infinite 
dimensional parameter space see [9]). 

(c) The index of A0 is 0. For a non-zero index one may use the ideas 
of [5], [7] or [9; Remark 4.8]; dimker A0 = d. 

(d) B(X) is invertible for A small, A ^ 0. (If this is not the case 
one may choose a hypersurface transversal to the set of A's where 
det-B(A) = 0 and use the normal space to get more dimension in the 
bifurcating set as in [9].) Note that if k > 1, this hypothesis may not 
be "generic" for certain classes of perturbations. However it is natural 
for problems like the Hopf bifurcation or if all the spaces are complex 
[5, 8]. See [3] for the generic approach. 

From these hypotheses it follows that if || A | |= p, there is a positive 
number £o(p, G) such that if one has a solution of the bifurcation equa
tion with || A | |= p || xi \\< £o5 then x\ = 0. 

DEFINITION A. (0,0) is a point of linearized local bifurcation if and 
only if, for any G(A,Xi) = o(|| x\ | |), the bifurcation equation (2) has 
a solution with \\ A ||< p || x\ | |= e, for any £,0 < e < eo(p,G). 
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Note that, to say that (0,0) is not a point of linearized local bi
furcation means that there is a small nonlinearity such that the bi
furcation equation has no other solution than the trivial one, for 
| | A | | < p , | | x i | | < e 0 ( p , G ) . 

In a similar fashion, if C(g) is the continuum of non trivial solutions 
bifurcating from (0,0), one has 

DEFINITION B. (0,0) is a point of linearized global bifurcation if and 
only if, for any g{\,x) = o(|| x | |), the continuum C(g) is either un
bounded or returns to a different bifurcation point. 

Note again that (0,0) is not a point of linearized global bifurcation if 
one has a small nonlinearity g(A, x), with C(g) bounded and containing 
only (0,0) as a bifurcation point. 

There are several ways, apparently equivalent from the point of view 
of analysis, to set the bifurcation problem: 

1) Look for solutions of B(X)xo + G(A,£0) = 0, with x0 fixed and 
|| x0 | |= e in the set Bx = {A/ || A ||< p}. 

2) Look for solutions of (J3(A)z + G(A, x) = 0, x — XQ — 0), XQ as above 
in the set B2 = {(A,re)/ || A ||< p, || x \\< 2e}. 

3) Look for solutions of (B(X)x + G(A,x) = 0, || x \\ — e = 0) in the 
8e tB 3 = {(A,aO/ | |A | |<p , | | x \\< 2e}. 

4) Look for solutions of B(X)x + G(A, x) = 0 in the set B4 = {(A, x)j 
|| A | | < p , | | « | | = e } . 

The topological ideas behind the sufficient conditions (i.e., valid for 
all nonlinearities) for bifurcation are the following simple facts. 

FACT 1. Let F(x) : d ( £ m + 1 ) - • R n \ {0} . Then any extension of F 
to B m + 1 has a zero if and only if F is not deformable to a constant map. 

FACT 2. Let A C X be two closed subsets of R m + 1 , and let 
F, G : A —• R n \{0} be two homotopic maps. Then F extends to X 
without zeros if and only if G does. 
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The proofs of these facts can be found in any text on homotopy theory 
or in [7]. 

Here, in the four settings, the maps involved are non-zero on dBi 
and one wishes to prove that they don't have a non-zero extension to 
Bi, i = 1 , . . . , 4. From Fact 2, one may deform the bifurcation equation 
on dBi to B{X)x and to || A || D{Xp/ || A ||) if D{\) and B(X) are 
homotopic families of matrices from {A/ || A | |= p) into GL(Rd). In 
each case, one obtains a homomorphism from fJfc-i(GL (Rd)) into the 
set of homotopy classes of non-zero maps defined on dBi. In the first 
approach one has that, if P*B{\) = [B{X)x0] ^ 0 in Ht-iOS"*"1), then 
one has bifurcation in the direction XQ and in all directions (see [5; 
Chapter 2] and [7]); in the second case one obtains the d-fold suspen
sion of P*B(X) (see Proposition 4.1 for an interpretation of this fact); 
the third approach gives the class of (B(X)x, \\ x \\ —e) in E U + d - i ^ ) ' 
which is called the Whitehead J-homomorphism [13]. For the case 
k < d, the Bott periodicity theorem and the characterization of Im J 
by Adams were used in [2] and [6] to give sufficient conditions for bi
furcation: If JB(X) ^ 0, then one has bifurcation. (If k = 1, then 
detB(X) changes sign) In [7, p. 182] it was shown that, for a sphere, 
there are no other ways of complementing the bifurcation equation. 
This fact is made clear in the present paper where the fourth approach 
is used in order to also get necessary conditions. The main results are 
the following two theorems. 

THEOREM A. One has linearized local bifurcation if and only if either 

[B(X)x0] ^ 0 or JC(X) ^ 0 for all C(X) in Uk-i(GL fa*'1)) such 

that ( c[jA) ° ) is deformable to B(X). 

THEOREM B. One has linearized global bifurcation if and only if ei
ther £[£(A)x0] T^Oor JB(X) ^ 0. 

In §1, the local bifurcation problem is shown to be equivalent to an 
extension problem to A*. In §2, this construction is made explicit for 
one real or complex parameter. In §3, Obstruction theory is used to 
compute the topological invariants. Note that in [1] there is a hint 
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that obstruction may be relevant for bifurcation problems. Another 
approach, cohomotopy theory, is sketched in the appendix. Global bi
furcation is studied in §4. The basic references for the topology are [4], 
[12] and [15], however a short review of obstruction theory is included 
for the reader's convenience. The results of the paper were announced 
in [8] and the study for an equivariant problem will be published in a 
subsequent paper. 

1. Nonlinearities without bifurcation. It has been seen that 
the nontriviality of JB{\) is a sufficient condition for bifurcation and 
that it implied that B(X)x had no non-zero extension from the set 
{(A,x)/ || A ||=/?, || x | |= 1} to the set {(A, a;)/ || A | | < p , | | x | |= 1}. In 
this first section it will be shown that this condition is also "necessary" 
in the following sense. 

THEOREM 1.1. Let B(X) be a C1-family of d x d matrices which 
are invertible for 0 <| | A ||< p and B(0) = 0. Then B(X)x has 
a continuous non-zero extension B(X,x) from the set {(A,x)/ || A || 
1 = Pi\\ x || 1 =} to the set {(A,x)/ \\ X | |< p , | | x | |= 1} if and 
only if there is a continuous nonlinearity G(A, x) such that the map 
F(X,x) = B{X)x -f G(A,x) has the properties: 

(a) G(A,x) is defined for \\ X \\< p and any x\ 

(b) G{\,x) = 0(|| x | |2) , for fixed || A ||, and G(\,x) = o{\\ x ||) 
uniformly in X, for || A ||< p\ 

(c) there is a p\ such that if F(X,x) = 0, for \\ X \\< p\, then x = 0. 
There is an s > 0 such that if F{X,x) = 0, for \\ X | |< p, || x \\< e, then 
x = 0. 

PROOF, (only if). From the hypotheses one derives the following 
facts: 

1) If D(X) is defined by B{X) = | | A H1/2 JD(À), with D(0) = 0, then 
there is a constant A such that || D(X) \\< A(\\ X H)1/2 for || A ||< p. 

2) There are constants B and C such that B <\\ B(Xirj) \\< C, for 
|| r, | |= 1 and || A ||< p. 

3) There is a continuous nondecreasing function g(\\ X | | ) , with 
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4>{u, v) = 

0(0) = 0, such that || B(X)'1 \\< g{\\ A H)"1. For 0 <| | A ||< p it 
is clear that || B(A)"1 | |< D | detS(A) I"1. Define Dg{\\ A ||) = min | 
det||A||<||M||<p B(p) | (If {An} goes to A, take {//n} where the minimum 
is achieved, take a subsequence converging to /Ì; then || /i | |>| | A || 
and Dg(\\ A ||) < | detB(p) |. If one has a strict inequality, then 
there is a v such that || A | |< | | v || and | detB(v) | lies between 
the above two quantities. If || A | |<| | v ||, then || An | |<| | v ||, for 
large n, Dg(\\ An ||) < Dg(\\ v ||) < | det£(/i) |= lîm/>flr(|| An | |). If 
|| A | |=| | v ||, then looking at v{\ + e) will give the same contradiction 
for e small enough). Note that if one wants to have a strictly increasing 

function, one may 
take || A||/,J |A|1 $(»•)*•• 

The next step in the proof is to construct the Urysohn's function 
tj>: { 0 < u < / 9 , 0 < i 4 \ { 0 , 0 } - > [0,1]: 

0 if g{u){u/p)ll2C 
<v< {A/B)p1l2u1/2 

1 Hv<g(u){u/p)^2/(2C) 
OTUV> 2(A/B)p1/2u1/2 

ì - 2Cv(u/p)1/2g{u)-1 if g(u)(u/p)1/2/(2C) 
<v< g{u)(u/p)^2/C 

1 - [BIA)p-1'2u-1l2v if {A/B)(pu)1/2 

<v< 2(A/B){pUy/2. 

The function cj> is continuous, except at (0,0) where it remains between 
0 and 1, and, if g is C1 , then 0 is locally Lipschitz continuous. 

Define, for 11 A11 < p and any x, 

F(X, x) =||A II1/2 D(AM||A||, INI) + (1 - *(||A||, |W|)W UAH))* 
+ ||a:||2JB(Ap/(||A|| + |N | 4 ) , a ; / |N | ) . 

The only point to check for the continuity of F(A, x) is when A goes 
to zero (then the argument in D(-) has norm less than p and the first 
part of F goes to 0) and when x goes to 0 (then the argument in B(-, •) 
remains bounded and the second part of F goes to 0). 

The proof of (b) is clear when A = 0; for A ̂  0 and || x \\< g{\\ A ||) 
(II A || /p)1 /2 /(2C), then <t>{\\ A | | , | | x ||) = 1, the first part of F is 
B(X)x and the second part is bounded by C \\ x ||2. Furthermore, 

||F(A,x) - B(A)x|| < A HAH1/2 p1'2 \\x\\ +C \\x2\\ +A ||A|| ||x|| 

< ( 2 V / 2 M I N I ) 1 / 2 + C 7 | | x | | ) | W | 
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if || A ||< h(\\ x ||), where ft(|| x ||) is the inverse function of 
0(11 A 11X11 A || /P)1/2(2C). Thus, for any (A,s),|| F{\,x) - B(\)x \\< 
(2V / 2MII x | | )1 / 2 + C || x ||) || x || and, as such, G(\,x) = o(|| x ||) 
uniformly in A. 

For the proof of (c) one observes that 

(a) || F(X, x) ||> B || x ||2 -A || A ||i/»|| || A || <fi + (1 - <t>)p \\V* 
|| x ||> S || x ||2 ->4(|| A || p)1/2 || x || so that F(X,x) ? 0 in the region 
|j x ||> {A/B))p || A IJ)1/2, in particular for A = 0. 

F(X, x) =£(A(0 + (1 - <j>)p/ || A ||)(|| A H1/2 (|| A || <A + (1 - ^ - ^ x 

+ J B - 1 ( A ( 0 + ( l - 0 W | | A | | ) | | x | | 2 S ( . , . ) ) , 

for A ^ 0. Hence if F(A, x) = 0, one has 

Il A H1'2!! x || (|| A H* + (1 - d>)p)-^ =|l * ll2|l B-\ )B(-, •) || 
<\\x\\>Cg-l(\\*\\<t> + (l-<i>)p) 

<\\x\\Cg-l(\\*\\), 

since g is nondecreasing. Hence, if x ^ 0, then 

llAll^^CdlAIU + a-^VV^IIAIDHxll 
^Cp^V'dl A ||)||x||, 

which is not possible if || x ||< (|| A || /p)1/2g(\\ X \\)/C. 

(7) Thus the only possible zeros are in the region where 0(|| A ||, 
|| x ||) = 0. There, 

F^XMIIAII^V^IIZIIWP/I IAIDX 
+ | |x| |2(B(Ap/(| |A| | + | | x | | 4 ) , x / | | x | | ) 
-pl"D(\p/\\\\\)x/\\x\\). 

Now, from the continuity of B(y, r?), there is a 6 such that || B(y, 77) — 
B(|*,i?) ||< g(p)/2 if II v-l* ||< 6 < p/2,11 » ||= />,|| v ||< p, 
uniformly in 77. Thus if F(\,x) = 0, one gets (|| A \\x/2 +pxt2 

II x I I ) II x ll^ll x II2 P1/r2/2 (which is impossible unless z = A = 0) 
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provided p \\ x ||4 (|| A || + || x H4)"1 < 6, that is, for || x | |< (6 || A || 
/{p-6)yi\ But (A/B)(p || A ||)V2 < (6 || A || /(p-S))V\ for || A ||< 
8/{p - 6){B/A)*p-2 = Pl. Thus, for || A ||< puF{X,x) # 0 for x ^ 0. 
For || A ||< p, one gets the same result if || x \\< {ô/(p — ô)pi)1/4 = e. 

(If). If F(A,x) has the properties (a), (b), (c), then on the set 
{(A,z)/ || A | |= p, || x | |= l},F(A,£x) is deformable to B(X)ex (and to 
B(X)x) and has the non-zero extension F(X,ex). Thus, from the Bor-
suk extension theorem, B(X)x also has a non-zero extension B(X, x) to 
the set {(A,x)/ || A | | < p , | | x | |= 1} (Fact 2). 

REMARK l. l . || A W1'2 D(X{t + (1 - t)p/ \\ X ||)) gives a deformation 
from B(X) to || A H1/2 D(Xp/ \\ X \\) via matrices which are invertible 
for 0 <| | A ||< p. 

REMARK 1.2. If B{X) has the form || A ||V2 D{Xp/ \\ X | |), then 
one does not need the construction of ^( | | A | | , | | x \\) and thus 
G(A,x) = | | x ||2 B(A/(|| A || + || x | |4),x/ \\ x \\) is uniformly 
0 ( | | * | | 2 ) . 

REMARK 1.3. If, on the set {A, || A | |= p}, the family of matrices B(X) 
is deformable io / via B(X,t) such that £(A, 1) = B{X),B{X,0) = 
I,B(X,t) invertible, then B(A,r/) = B(Xp/ || A | |, | | A || /p)rj is a 
good extension to {(A,77)/ || A ||< p, || rj | |= 1} (if A goes to 0 then 
£(A,0) = / and one has continuity). In this case 

F(Xix)=(\\X\\1/2D(X(<j>+(l-<t>)p/\\X\\) 

+ | | x | | B ( A p / | | A | | , | | A | | / ( | | A | | + | |x | | 4 ) ) )x 

and with <t> replaced by 0 if B(X) = | | A H1/2 D{Xp/ || A ||). 

REMARK 1.4. If r is a compact Lie group, which acts linearly and 
via isometries on x, and B{X)^x = ^B(X)xìB(Xì^/x) = ^B(X^x) for 
all 7 in r , then F(X^x) = ^F(X,x) since the regions defined by <j) are 
invariant and the whole construction is equivariant. (See [8] and [10] 
for applications). 
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REMARK 1.5. For the general, maybe infinite dimensional, bifurca
tion problem, 

AQX — A(X)x — 0(A, x) = 0 

written as, for || A || small enough, 

(Ao - AQ(X))(x2 - (J - KQA(X))~1KQ(A(X)x1 + g(\, x))) 

0 (J - Q)(A(X)((I - KQA(X))~1x1 + x2 

- (J - KQA(X))-1KQ(A(X)X1 + g{\, X))) 

+ (I-A(\)KQ)~1g(\,x)) = 0, 

one may choose 
Qg{Xix)=0 

(I-Q)g(\,x) = -G(\,x1). 
Then the above equation reduces to 

(A0 - QA{X)){x2 - (I - KQA(X))~1KQA{X)x1) 

® - ( / - Q)A(X)(x2 - {I - XQA(A))-1
Jß:QA(A)xi) 

+ ( B ( A ) « I + G ( A , X I ) ) = 0 . 

This equation has the properties (a), (b), (c) of Theorem 1.1. 

2. Analyticity in one parameter. If B(X) is analytic in A (as a 
real matrix if A is real and as a complex matrix if A is complex)), then 
JB(X) is zero if and only if det B(X) = aoXm -\ has m even, where 
m corresponds to the lowest non-zero term in the power series (in the 
complex case one is assuming that the complex dimension d is larger 
than 1). (See [5, p. 47].) In this section an explicit construction of the 
nonlinearity G(A, x) will be given. 

THEOREM 2.1. If m is even, then one may construct a nonlinearity 

G(A,x) with the properties of Theorem 1.1 such that 

(a) G(A,x) is real analytic in both variables if X is in R, x in Rd ; 

(b) G(A, x) is real analytic in x and X ifX^O and Holder continuous 
at X = 0 if X is in C, x in Cd. J / m ^ 0 , d = l or G(A, x) is complex 
analytic in x or G(A,e^x) = e^G(A,x), then there is always bifurca
tion. 
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PROOF. For the last sentence see [5, pp. 47, 82], [8, p. 767]. 

The first step in the construction is to reduce the problem to the case 
where B(X) is diagonal. Since det B(X) is analytic in À, one has a p > 0 
such that B(X) is invertible for 0 <| | À ||< p. 

LEMMA 2.1. There is a matrix deformation B(X,t), with B(Xit) in
vertible for 0 <| | A ||< p such that £(A,0) = B(X) and B(A, 1) = 
A{X)(Ai + B1(X)), where A(A) = diag (AP l , . . . , APd) Ep* is even, Ax is 
invertible, Bi(X) is invertible for 0 <|| A ||< p,#i(0) = 0,det£i(A) = 
ûiAmi H , and mi is even. 

PROOF. By factoring out, from each row in B(X), the largest possible 
power of A (except possibly the last row so that Ept is even), one may 
write B(X) = A(A)(A0 — A(X)), where A0 has a non-zero element in 
each row (except maybe the last one) and A(0) = 0. Thus the rank of 
AQ is positive. Write x = X\ 0 X2, where x\ = Px is the projection of 
x onto kerAo,£2 m a complement X2. Let Q be the projection onto 
Range (AQ) and K be the inverse of AQ |X2- Then, as in [5, p. 43], one 
may write 

B(X)x = A(A)((A0 - QA(X))(x2 -(I- KQA{X))-1KQA(X)x1) 

0 (/ - Q)A{X)((I - KQA(X))-1x1 + X2 - (I - KQA{X))-1KQA{X)x1)) 

(here (J — KQA(X))~X has to be interpreted as an infinite power series 
and p is then accordingly small). Let A\ be AQ(I — P),Bi(X) = 
-(I-Q)A{X){I-KQA(X))-1P. From the fact that 5(A) is invertible, 
for A ^ 0, it is clear that Bt(X) is invertible, for 0 <| | A ||< p, 5i(0) = 0 
and Bi(X) is analytic in A. Then if 

B(Xit) = A(X)((A0-(l-t)QA(X)) 

(I - P - (1 - t)(I - KQA{X))~1KQA(X)P) 

®B1(X)-(l-t)(I-Q)A(X) 

(I - P - (1 - t)(I - KQA{X))~1KQA{X)P)) 

= A{X)D{X,t) 

it is easy to verify that B(X, t) is invertible for 0 <| | A ||< p. (One may 
also use the deformation A(X(1 — t)) in the above formula). Finally, 
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since the class of B(X) must be the class of B(X, 1) in Ilo (GL (^d)) o r 

in ri i(GL (Cd)), which is characterized by the degree of det£(A) as a 
mapping from S° into R\{0} or from 51into C\{0},rai + Ep* and m 
must have the same parity, in the real case, or must be equal, in the 
complex case. 

Note that #i(A) has a similar deformation Bi(X,t) and that one 
may replace #i(A) by Bi(X,t) in the expression for B(X,t) without 
losing the invertibility. The process stops in at most d steps, when 
JBi(A) = 6A2p(l + •••) which is linearly deformable to bX2p. In the 
complex case, if p ^ 0, one will consider the two-dimensional space 
generated by an eigenfunction of A\ (with eigenvalue a) and by -Bi(A). 
Deforming linearly to 0 the row corresponding to this eigenfunction, 
one will have a two dimensional diagonal matrix (aAPl,òAP2+2p), with 
Pi +P2 even and pi > 1 (the complex numbers a and b can be deformed 
to 1). The proof of Theorem 2.1 will be completed with the second step. 

LEMMA 2.2. A(A) = diag (XPl, XP2,..., APd), with Epi even (considered 
as the equivalent 2dx2d real matrix in the complex case), is deformable 
to A(A, 1) via A(A,£), such that A(A,0) = A(A,)A(A,£) is invertible for 
all A, || A \\<p ift>0. 

End of the proof of Theorem 2.1. Define J3(A, || x ||) = A(A, 
|| x ||2)D(A, || x ||2) where, in D(X,t)iB1(X) has been replaced by 
Ai (A, || x ||2)D1(A, || x ||2) and so on. Since Ai(A || x ||2) is invert
ible for || x | | ^ 0, J5(A, || x ||) also has that property. Since D(X,t) is 
polynomial in £, as well as A(A,£),G(A,z) = J5(A, || x \\)x - B(X)x = 
|| a; ||2 i/(A, || x \\2)x is real analytic in x and order of at least || x ||3 

near 0. The continuity in A will follow from the proof of Lemma 2.2. 

PROOF OF LEMMA 2.2. Order p i , . . . ,p^ such that p i , . . . ,p2i are 
odd, P2£+i,... ,Pd are even. In the real case, couple the odd powers by 
matrices of the type 

(XP1 * ) 

and the even powers by A2n + 1 , which have the property stated in the 
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1 
nH 
0 

0 
A " | A | - " + £ 

nH An 

nH 
0 

| A | - "+ £ 

lemma. In the complex case, if Pi = P2 + 2n, n > 0, then 

( Xn nt \ ( AP2+n zx+tz2 \ 
\-nt X n | A | - n + e y \^AP2+n | X\-n-£ z2-tzi) ' 

with Ê: = 0 if n = 0 and £ = P2/2 if n > 0, gives the right kind of matrix 
when considered as a 4 x 4 real matrix (see [5, p.23]). Thus if d is even, 
this construction will give A(A,£). Note that one has analyticity in A, 
if n = 0, and C£ if n > 0. However if d is odd (d > 3 since d > 1) this 
procedure will leave out one Ap, with p even. Consider then d = 3 and 
A(A) = diag (Ap, A9, Ar), with p < q < r and p + q + r = 2m. Write 
r = P + Q + 2n, with 2n = 2(ra - p — q) > —p. Define A(A, t)x by 

Apxi + ^ 3 
xq+n 1 A | - n - C a . 2 + t e l 

I A |"-£ Ap+^+na;3 + ix2 

where e = 0 if n = 0 and e = q/2 if n ^ 0. By taking the conjugate of 
its third component, the vector of the right hand side can be written 
as 

'Ap 0 t \ f*i 
t \*+n I A \~n-£ 0 \\X2 

0 t |Ar*Ap+ç+ny W 
showing thus that A(A,^) is invertible if t > 0. Note that one has real 
analyticity in A, if n = 0, and C£ if n ^ 0. 

3. The obstruction approach. As has been seen in Theorem 
1.1, there is a nonlinearity without bifurcation if B(X)x has a non-zero 
extension from the set {(A,x)/ || A | |= 1,|| x | |= 1} = S^1 x S**"1 

to the set {(A,x)/ || A ||< 1,|| x | |= 1} = Bk x S^1 (after scaling A 
one may take p = 1). This is a natural setting for obstruction theory. 
For the reader's convenience the main ideas and results needed in this 
paper will be recalled. 

3.1 Facts about obstruction theory. Consider a finite cell 
complex K and a subcomplex L (here L = Sk~x x Sd~x,K = Bk x 
Sd~1). Recall that a cell complex K is Ug<pa^, q = 0, . . . , iV = 
dimK,i = 1 , . . . , ojg, such that 
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(i) <T? is a g-cell; 

(ii) if KP = Ug<pcr? is the p t h skeleton of K, then <r? n K*~x = da? 
is the exact union of cells (called the faces of of); 

(iii) if i ± j , then °, H £ = 0. 
* J 

Cells are denned as the images of the unit ball under an "attaching 
map" which is a homeomorphism on the interior. Here the cell decom
position of Sd~l and Sk~1 will be the equatorial decomposition with 
two cells in each dimension. 

If / is a map from L into R n \ {0} , then one tries to extend f to K 
by extending it to K = Kq U L and increasing the dimension q. If / 
has been extended to AT3', one has to extend it over all (q + l)-cells of 
K\L. If <79+1 is such a cell, / : da —• R n \{0} is extendible to a map 
from a into R n \{0} if and only if / is deformable to a constant map in 
Tiq(^n~1)' Since several (q + l)-cells may be attached to the boundary 
cells, one gets in fact a cochain Cq+1(f) in C« + 1 (Ä" , i ;n«(S n " 1 ) ) , 
which is a cocycle with the following properties: 

1) If /o and / i are homotopic over TT*, then C«+ 1( / 0) = C«+ 1(*i) 
[4; Lemma 3.3., p. 177]. 

2) If /o is as above, then / 0 extends to KQ if and only if Cq+1 (/o) = 
0 [4; Lemma 3.2, p. 177]. 

3) If / : i f " 1 -> R n \{0} is extendible over i f , then the set of all 
(q+ l)-dimensional obstruction cocycles form a single cohomology class 

7(/g) in ff«+1(JT,L;ng(S
n~1)) and / extends over ^ + 1 if and only 

if 7(/g) = 0 (i.e., one may have to modify the previous extension, but 
only on g-cells) [4, 5.1, p. 180; 12, 34.2, p.174]. 

4) If 6 9 + 1 ( / ) C H^^K.miqiS"1'1)) is defined as empty if / is 
not extendible to Tt* and as the set of all 7 g + 1 ( / g ) for all extensions 
fq of / over Ä^, then this obstruction set has the following properties: 

(i) homotopic maps (over L) have the same obstruction sets; 

(ii) / is extendible to i T if and only if 6 9 + 1 ( / ) / 0; and 

(iii) / is extendible to W*1 if and only if 0 belongs to 0 9 + 1 ( / ) [4, 
6.1, p. 181, 6.4 and 6.5, p. 182; 12, 34.9, p. 176]. 

5) If q = n — 1, then the obstruction set 6 n ( / ) reduces to a single 
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element, the primary obstruction, 7 n ( / ) = SKn *(/) , where 

6 : Hn~\L; n ^ " " 1 ) ) - Hn{K,L; J ] {Sn~1)) 
n—1 n—1 

is the usual coboundary operator in the cohomology sequence for the 
pair {K,L) and Kn~1(f) is the characteristic element of / (given by 
/ * ( / f n - 1 ( S n - 1 ) ) with 

J* : Hn-1(Sn"1; n^"1)) ^^n(^; n^"1)) 
n—1 n—1 

and Kn-1(Sn-1) is the generator of the first group [4, 13.1, pp. 189, 
193; 12, 35.4, p. 178]. 

6) Finally one has obstructions for lifting homotopies (with K re
placed by K x I): If / 0 , f\ : It* —• R n \{0} and if /it is a homotopy of 
/o | K to fi\Ttq , then one has a difference cochain dq(foi htifi) 
in C«( / f ,L ,n f f (5 n - 1 ) ) such that: 

(a) ôdq(f0ihtif1) = C*+1(/o) - C«+ 1 ( / i ) ,« the above coboundary 
operator [4, Lemmas 4.1, 4.2, p. 179]. 

(b) dq(fo,ht,_fi) = 0 if and only if ht extends to a homotopy of 
/o | K* to / i | TT [12; 33.4, p. 171]. 

(c) If / and g are two extensions over K such that / = g on L, 
and if ft* is a homotopy (relative to L) of / | A"9 to # | A"9 which 
is extendible to a homotopy (relative to L) h't of / | Tt1 to g \ Tt1 , 
then the set of obstruction cocycles dq(f, hf

ti g) form a single cohomol
ogy class 6q(fihug) in H^K.mi^S^1)) and /zt is extendible to a 
homotopy of / | TT* to g | ~Kq if and only if 6q{f,hug) = 0 [4, 8.3, 
p. 184; 12, 34.6, p. 175] (i.e., one may have to modify h't on the 
(q — 1) cells). As before, one may define obstruction sets and a pri
mary obstruction for q = n — 1 : / and g are always homotopic on 
K , and the obstruction set consists of a single element ön~1(f,g) 
inHn-1(K,L;Un-1^

n-1))^^rSn-1(f,9) = Kn-1(f)-Kn-1(g), 
where j * is the homomorphism Hn~1(K1L) —• i f n - 1 (Ä' ) induced by 
inclusion and Kn-i(f) is the characteristic element of / (as a mapping 
defined on K). Note that this lifting of homotopies implies that the 
obstruction in the first non-vanishing group HqJrl{K,L^W^S71"1)) is 
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unique [12, 35.10 and 36.11]. 

3.2. The cohomology groups and the obstructions. Eventual 
obstructions will be elements of the groups 

Hq+1(Bk x S*-1 ,^-1 x 5d"1;fJ(5d-1)), 

where, in 5 d _ 1 , the cell Bp = { ( x i , . . . , x p ) / || x | |2= Sx? < 1} is 
sent into ( z i , . . . , zp , ± ( 1 - || x H 2 ) 1 / 2 ,0 , . . . , 0). Relative cells, in K\L, 
are of the form Bk x BP,BP as above, attached to L by S * - 1 x £ p . 
Now Hq+1(Bk x S d - \ S*"1 x Sd-X) ~ ff«+1(5fc+d-1, S*"1 x Bd), by 
excision of the open set (in Sk+d~l = d(Bk x ^ S * " 1 x {B^S*'1). 
Since l?d is contractible, Sk~1 x £?d has the cohomology of Sk~1 and, 
from the exact sequence 

-> H^S1«-1) -+ Hq+1(Sk+d'1,Sk'1 x £ d ) 

one derives easily that 

HQ+l(Bk x Sd~\Sk-1 X S^1) = ^ 

0 i f g + l ^ k , J f e + d - l 
Z if g + 1 = fc, 

orfc + d - l , d > l 
(Z®Z i f g + l = fc,d=l. 

Thus one will have at most two obstructions, one in Yik-i(^d *) 
(in two copies of it, if d — 1) and the other, in the top dimension, in 

n f c + d_2(5d-1). 
The first (unique)obstruction is given by the class of F(A, x0) : {A, 

|| A | |= 1} —• R d \{0} , where x0 is a fixed point in Sd~x (two such 
points, if d = 1). If d > l,F(A,a;o) is deformable to F(A,xi), for any 
other point X\ in Sd~x, and, for F(A,x) = J5(A)x and d = 1, the class 
of fl(A)l and of £(A)(-1) are the same (0 if k > 1). This can be 
summarized as 

THEOREM 3.1. If B(X)x0 : S f c _ 1 -+ Rd \{0} M non-trivial (thus 
k > d), one has bifurcation in all directions XQ. 
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In order to compute the obstruction in Yik+d-2(Sd *)» o n e has first 
to extend F(A,x) to Bk x Sd~2 ( S d " 2 the equator of S**"1). 

Now, in the exact sequence 

- n ^ - 1 ) ^ n(GL(Rd_i))^ n(GL(Rd))^ n ^ - 1 ) -
k k-1 fc-1 k-1 

(since GL(R n ) is homotopy equivalent to 0(n) [12, p. 57]), P 
is the evaluation map P : B(X) —• B(X)xo, i the inclusion map 

i : C(X) -> (C[)A ) i ) [12, p. 91]. Thus, if [B{X)x0] = 0, B{\) is 

deformable to ( c§' J J and £(A)z has the same obstruction sets as 

( C ^ x ^ z i n R / * - 1 . 

Consider the map 

F(A,x) = (|| A || C(A/ || A | |)z,xd , - e ( l - || A ||)), 0 < e < 1, 

F(A, x) : S*"1 x S*"1 U £fc x S d " 2 — R d \{0}. 

F | L is homotopic to £(A)x and extends to the south hemisphere, 
thus the obstruction is the class of F on the north hemisphere, xa = 
(1— || x H2)1/2. Since, on the boundary of the cell, either || x \\= 1 or 
|| A | |= 1, one may use the deformation 

< ( ( l - | | x | | 2 ) 1 / 2 £ ( i _ | | A | | ) + ( l - t ) ( l - 2 | | x | | 2 ) 

(for || A | |= 1 and C(X)x = 0, then x = 0). Thus this obstruction 
vanishes if and only if JC{X) = 0. Note that JB{X) = JEC(A) = 
—EJC(A) [13] where the second E stands for the suspension map 
from n f c+d_2(«5d"1) into IljH-d-i(s<1)- H e n c e> i f JBW 7e 0 and 
[B(A)xo] = 0, one has bifurcation. Conversely JC(X) is unique if it 
is the primary obstruction, i.e., k < d, and E is an isomorphism, as 
well as Û, if k < d — 1 (both are onto if k = d — 1); furthermore E is 
one to one if d = 2, 4 or 8 [12, p. 112; 4, p. 327]. Thus if J{B{X)) = 0 
and [£(A)zo] = 0, k < d— 1 or d = 2, 4 or 8, JC(X) = 0 and one has an 
extension. In the other cases one may have more elements in the ob
struction sets and C(X) may not be unique. In fact, if a is any element 
of r L ( S d _ 1 ) , then 6{a)C(\) is also an element of F U - i C G L ^ - 1 ) ) 
with i*(6(a)C(X)) = B(X). (The class of the product of matrices is the 
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sum of the classes : [12; Lemma 16.7, p. 88].) However one has the 
following result. 

THEOREM 3.2. / / d > 2, the top obstruction set consists of all ele
ments [JC{\)\, where n[C{\)) = [B{\)\. For d = 2, if [JB(X)] ± 0 
then B(X)x has no extension (thus k = 2). 

PROOF. If d = 2, then if k > 2, [B(X)\ = 0 and if k = 2, J and P* are 
isomorphisms ( J(/J, + iv) is the Hopf map). Suppose then that d > 2. 
In order to define the obstruction set in Hk+d~x(K, L\ Tlk+d-2(Sd~1)) 
one has to look at all possible extensions to K . I n fact each ex

tension is characterized by its behavior on K = 5 f c _ 1 x Sd~1UBk x S°. 

LEMMA 3.1. If FQ,F\ are two extensions of B(X)x to K such 

that Fo | K is homotopic, relative to L, to F\ | K , then F0 and Fi 
are homotopic, relative to L. 

PROOF. If XQ = (1 ,0 , . . . , 0), then K has two relative cells B* x {x0} 
and Bk x {-xo}. On d(Bk x {x0} x / ) , define the map F(X,t) as 
F(A,0) = (Fo(A),0), F(A,l) = (Fi(À),l), F(\,t) = (B(X)x0,t) for 
|| A | |= 1. The class of F(X,t) in Ylk(^d) ls t n e obstruction for lifting 
the homotopy of F0 | L and Fi | L (here the identity) to Ll)Bk x {x0}. 
Together with the corresponding class for Bk x {—XQ} they form the 
suspension of the generalized primary difference (since Hq (ÜT, L) = 0 
for q < k) [12, 36.11 and 36.8]. Now, if Ft(A) is the homotopy from F0 

to Fi on K , one may extend F to Bk x S° x I via (Ft(A), t). Thus the 
primary difference vanishes and the next obstruction for lifting this ho
motopy will give cohomology classes in Hq(K, L; YlqiS*1'1)) (since the 
obstructions for Fo and F\ vanish up to the level k -f d — 2). However, 
these groups are 0 for # < & + £? — 2, thus one may lift the homotopy 
to -KkJtd~2 = Sk~l x S*"1 UBkx Sd~2 , [12, 34.6]. Note that if d > 2 
and F0(A,Xo) is homotopic, relative to L, to Fi(A,a;o), then F0 and 
Fi are homotopic: since 5d~2is connected, F^(A,xo) is homotopic to 

k 

Fê(A, —XQ), i = 0,1, giving a homotopy, relative to L, on K . 
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LEMMA 3.2. Assume B(X)xo — #0 and let F(X) be an extension of 
B{X)x0 to {|| A ||< 1}. Then there is C{X) in GL (R**"1), for\\X ||= 1, 
such that E[C(A)] = [B(X)] and an extension to K ,B(A,x), of 
B(X)x such that B(X,xo) is homotopic to F(X), relative to L, and the 
obstruction for extending B(X,x) to K is J(C(X)). 

PROOF. F(X) : {Bk,Sk~1) - • (Rd\{0},x0) defines an element of 
n f c(Ä d _ 1 ;x 0) which is isomorphic to f{k(SQ{d),S0(d - 1)), via P*, 
where PD{\) = D(X)x0i [12, 17.2]. Thus there is D{X) : (Bk, S*"1) -+ 

(50(d), (S0(d- 1)) with D(X)x0 = F(X),D(X) = ( j c°x)), for || A ||= 
1. Let 

B(\,x) = 

(I || A || ^ ( A / | | A ||) \ ( X- ^ 
D(X) 0 U(A) 

\0 i! A || ^ r H A / |I A |I)C7(A/ |! A |I)7 ??- i m | 
\xd-e(l- || A ||)7 

where Bi(X) stands for the first line in B(X) for the rows 2 through d 
and C(X) corresponds to the rest of B. A(X) is the rotation on the first 
and last coordinates: 

A(X) = 

C(X) = C1"
1(A)C(A). Since, for || A | |= l ,#i(A) may be deformed to 0 

in the matrix form of B(A), £[C(A)] = [B{\)]. On the other hand 

cos( l - || A ||)TT/2 

0 
- s i n ( l - ||A IDTT/2 

0 ••• 0 s i n ( l - | | A ||)TT/2 
I 0 

0 ••• 0 cos( l - || A ||)TT/2 

E[C(A)] = 
( o Cr1 ( A ) ) ( o (7(A)) 

= [D-1(X)B(X)} = [D-HtX)B(X)} = {D-\0)B(X)\ = [B(X)}, 

since Z) -1(0) can be deformed to I . Clearly B(X,x) = B(X)x, for 
|| A | |= 1, and if J5(A,x) = 0, then either A ^ 0, x = 0 and 
Xd = e(l— || A ||), which is not possible since || x | |= 1, or A = 0 
and Xd = e. Thus B(X, x) extends over the lower hemisphere. The 
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obstruction is the class of JB(A,X) for either || À | |= 1 or || x | |= 1, 
with Xd = ( 1 - || x H2)1/2. One may deform D(X) to D(0) and then 
to J as above. Use, next, the deformation A(tX) and send #i(A) to 
O. The obstruction is then the class of ( ( 1 - || x H)1/2 - e ( l - || A ||), 
|| A || C(X/ || A | |)(x2,. . . ,Xd-i,— Xi)T. A series of rotations will 
bring the vector (#2, • • • j^d- i î — £i) to ((—l)d + 1xi,X2,. . . ,Xd-i) and 
another series of d — 1 rotations will take the function to JC(X). Fi
nally, replacing 7r/2 by {n/2)t 'mA(X) and e by et, one has that £?(A, xo) 
is deformable, relative to L, to D(X)XQ = F(X) (for A = 0, the defor
mation is (cos w/2t + ££ sin 7r/2£, 0 , . . . , 0)). 

End of the proof of Theorem 3.2. Since [-B(A)xo] = 0,B(X) is 
deformable to a matrix of the form J J A J , with the same obstruction 
sets. Take an element of the top obstruction set, realized by an 
extension F(A, x). By Lemmas 3.1 and 3.2 this extension is homotopic 

on K , relative to L, to a B(A,x) constructed as in Lemma 3.2, 
and the obstruction is JC(X) where E[C(A)] = [B(X)]. 

Computing the classes of JC(X) for all possible C(X) does not look 
very easy. Furthermore, JB(X) seems to be a more "natural" invariant 
to use. The following result provides a partial answer to the extension 
problem. 

THEOREM 3.3. IfJB(X) = 0 and B(X)x0 is deformable to a constant, 
then B(X)x extends to Bk x Sd~x if one of the following conditions is 
satisfied: 

1) k < 2d — 2 ("metastable rangé''). 

2) d = 2,4,8 (if d = 2, k > 2, then [B{X)] = 0). 

PROOF. Note first that if d = 1, the only obstruction is the class of 
B(X)1 which is not trivial only if k = 1 and B(X) changes sign. Thus 
one may suppose that d > 1. 

Consider the diagram 
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n i_ 1(G£(A , ' - i)) i î* nt-A
GL(R')) 

IW.P*-1) — IL,*-i(**) 

Uk+d(S
d,E+,E-) 

P. 

n*-,^"-1) 

U^-^.E+.E-) 

iw*"- 1 ) HM^-IC"-1) 

The two rows are the exact sequences for orthonormal groups and 
the suspension triad for the sphere [11]. E± are the hemispheres 
of Sd,j* is induced by inclusion, A is a double boundary operator, 
[a,fd_i] is the Whitehead product of a in Ylk(S

d~1) with the genera
tor of rid-iCS"*-1)- P and h are defined in [11] with the property that 
AP(a) = jS(a) = [a,td_i] (see also [14]), PP*(B(\)) = nJB(X) [11; 
Theorem 1.5]. H is the generalized Hopf invariant defined in [14]. And 
h has the property that hoP = Ed; it is an isomorphism if d is even or 
if k < 2d— 1, k ^ 2d—3 and d odd, in which case h is still onto [11; 7.2]. 
(Here h is considered from Hk+Àsd> E+,E~) i n t o n fc+d(S '2d~1)- N o t e 

that Ed : FLCS*"1) -> Ylk+di8™'1) i s m isomorphism if k < 2d - 4 
and onto if fc = 2d — 3). Q is defined only when h is an isomorphism, 
giving rise to the QT.H (EHP in classical notation) exact suspension se
quence. F is an isomorphism from I l f c ^ - 1 ) o n t o Tlk+d(Sd>E+ ^ E~) 
if k < 2d - 3. P is onto if k = 2d - 3 and if k = 2d - 2 (if U2d-i(s ) 
has no element of Hopf invariant 1, i.e., according to Adams' results, 
if d = 2,4,8 in which case E is one to one) (see [11; Theorems 7.3, 
7.4, 7.5]). Thus if JB(X) = - £ JC(A) = 0, then JC(X) (if non-zero) 



J. IZE 325 

comes from an element in Ylk+d{Sd, E+,E ), by exactness. From the 
above result, for k < 2d — 2 and E not one to one, there is an a in 
rUCS"*"1) such that APa = JC(X) = [cMd_i] = J6a. [11; Theorem 
7.7] Hence J ^ a ) " 1 ^ ) ) = 0 and n((5af)-1C(A)) = B(À), proving 
the Theorem (Part 2 comes from the fact that E is one to one and 
50(2) ^ S1 [12; 22.2]). 

Note that, for k > 2d — 2, F is not onto anymore, however, what is 
needed here is that the map [id-i] is onto Im J fi kerE (in the known 
examples Im J = 0). This can be stated in the following form (in view 
of the "naturality" of the analysis problem). 

CONJECTURE. The map a -+ [aid-i], from ri/cC^"1) into Ilfc+d-2 
(S d _ 1 ) is onto ker Efl Im J. 

For k < 2d — 3, a summary of the results for local linearized bifurca
tion is given by 

THEOREM 3.4. / / k < 2d - 3, the non-vanishing of J(B(X)) is a 
"necessary" and sufficient condition for local bifurcation. For d = 2, 
this is true for any k\ for d — 4 or 8 one may allow k < 2d — 2. 

PROOF. The only point to check is for the case where P*B(\) = 
[B{\)x0\ # 0. However, HJB(X) = hoPPmB(X) = Xd[B{\)x0] and 
Ed is an isomorphism if k < 2d — 2, a one to one map if d = 4 or 
8 and k < 2d — 2 (the first suspension is one to one, the others are 
isomorphisms). For d = 2,Flfc-iC^1) = 0 if & > 2, and for k = 2 the 
suspension is an isomorphism. 

REMARK 3.1. For k > 2d - 2, one may have [B(X)x0] ^ 0 and 
JB(X) = 0. Take d = 3, Ä; = 4. Then P* is an isomorphism (from 
the exact sequence, this is true for k > 4; for k = 3, I^C^O*)) = 0 
and r i iC5 0!3)) = Z*) [12> PP- 115-116]. Thus, if p generates 
n3(S0(3)) = Z, then P*p = r? is the Hopf map. HJ(p) = E3r/ gen
erates Ue(S*) = Zt2 T h u s J(p) generates Ue(sS) = z i2- I f BW 
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represents p1 2 , then P*p12 = 12rj / 0 but J{p12) = 0. Note that 
EP*p12 = 0. P : n 3 ( S 2 ) -* r i e C 5 3 ' ^ ' ^ - ) i s o n t o w i t h k e m e l Sen" 
erated by 3[z2,^2] = 677 [11; Theorem 7.4] since [«2,̂ 2] = 2rj generates 
kerE. Also h is onto with kernel generated by 2Prj and of order 3. 
From this it is easy to see that YIQ^^E+TE-) = ZQ, generated by 
prj, and that j* is onto with kernel generated by J(p6). Note that the 
suspension sequence is not exact since HJ(p2) = 0, but J(p2) is not a 
suspension. 

REMARK 3.2. For the general Hopf construction, that is, for a map 
F(\,x) : Sk~1 x Sd~x —• Sd~1

i not necessarily linear in z, one has 
two possible obstructions for extension to Bk x Sd~x. The primary 
obstruction is the class of F(A, XQ) in Ylk_1(S

d~1). If it does not van
ish, then one has bifurcation in all directions for the problem G(/z, t/), 
where G(/i,0) = 0, G(ß,y) ^ 0 for 0 <| | x \\< r, || \i | |= p, taking 
F(A,x) = G(\p,ex) with || A | |=| | x | |= 1,0 < e < r. If it vanishes, 

Lemma 3.1 is still valid and classifies all possible extensions toK 
in terms of the class of F(A,xo) relative to L. In particular, if fc < d, 
there is a unique generalized primary obstruction in Ylk+d^i^-1), 
the top obstruction. In fact the obstruction for lifting the homotopy 
of Fo(A,xo) to Fi(A,xo) lies in Ylk(Sd) = 0» hence the generalized pri
mary difference vanishes and the argument of Lemma 3.1 goes through. 
Of course the difficulty here is to find an extension to K in order 
to compute the top obstruction. 

4. Global bifurcation and obstruction. For the equation 

(A0-A(X))x-g(Xix) = 0i 

let C be the continuum of non-trivial solutions bifurcating from (0,0) 
(C maybe empty). Here g(X,x) = o(\\ x | |), AQ — A(X) is invertible for 
0 <| | A | |< p, A(0) = 0 and dimkerA0 = d, where x G RN,X e Rk. 
(For the corresponding problem in infinite dimensions one has to add 
the usual hypotheses of compactness). 

DEFINITION 4.1. (0,0) is a point of linearized global bifurcation if 
and only if, for any g{X,x), the continuum C is either unbounded or 
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returns to a different bifurcation point. 

A sufficient condition for linearized global bifurcation is that J{AQ — 
A(A)), [2, 5, etc]. Note that J(A0 - A(X)) = eZN-dJ(B(\)), as in 
Remark 1.5, where e = ±1 depends on the orientations (see below). 
In this section it will be shown that, if N > d, the non-vanishing of 
J(Ao — A(X)) is also necessary for linearized global bifurcation. As for 
the local bifurcation, an equivalence with extensions of maps will be 
first established. 

THEOREM 4.1. One has linearized global bifurcation if and only if the 
map 

((A0-A(X))rj,r-e): 

{(A,r,r?)/ || r, | |= l,(A,r) € d(Bk x I),Bk = {A/ || A ||< p},I = [0,2e]} 

-> RN+1\{0), 

has no non-zero extension to Bk x I x S ^ " 1 . 

PROOF. (If). (Sketch). Suppose that one has no linearized global bi
furcation. Then there is a nonlinearity ^(A, x) such that the correspond
ing continuum C is bounded and does not meet any bifurcation point 
except (0,0). By standard arguments one constructs an open bounded 
set H, containing C and such that if (Ao — A(X))x — g(\, x) — 0 on <9f2, 
then x = 0, || A ||< p. Taking a large box B = {|| A ||< Ä, || x | |< R} 
containing fì, then this equation, together with the condition || x || — £, 
is non-zero on dQ U {x = 0} and, for e large on (B\ü) U {x = 0}. Thus, 
for any e, the pair is inessential on du U {x = 0}, that is, it extends 
without zeros to (B\Q) U {x = 0} (see [7] or [9; Remark 2.8], using the 
homotopy ((Ao - A(X))x - ^(A,x), || x \\ -te - (1 - t)2R). Choose e 
so small that, for || A | |= p, the linear part dominates the non-linear 
part if || x \\< 2e and such that the box {|| A ||< p, \\ x | |< 2e} is 
contained in Q and || x \\> 2e outside the box but still in f2. Extend 
the pair without zeros to (B\Q) U {x — 0}. By scaling, first in A, then 
in r, the map ((A0 - A(X))rrf - #(A, rrç), r - e) on d(Bk x I) x SN~l is 
homotopic to the extension on <9(|| A ||< R,r G [0,R]) x SN~X. Thus 
((AQ — A(\))rj1 r — e), which is clearly homotopic to the previous map 
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on d(Bk x I) x SN~X also has an extension to Bk x I x SN~X. For a 
more complete proof see [7] or [9; Proposition 4.1]. 

(Only if). Suppose ((A) — A(X))rjìr — e) has the extension (A(A,r, r/), 
/i(A,r,??)) toBk xIxS"-1. Define, for || A ||< p, || x \\< 2e, 

g{X,x) = - || x || (A(A, || x | | ,x / || x ||) - (A0 - A(X)x/ \\ x ||)). 

(take #(A,x) = 0 outside this box). Since A(X,r,rj) — (A0 — A(X))rj 
tends to 0 uniformly in (A,77), as r goes to 0, then #(A,x) = o(|| x ||). 
(In the infinite dimensional case this difference has to be compact, see 
[9]). Furthermore, #(A,x) = 0 for || A ||= p or || x | |= 2e. Let Q 
be the set {(A,x)//i(A, || x | | ,x / || x ||) < 0}. Since /i(A,r,r/) tends 
uniformly to — £, when r goes to 0, h is continuous and 0 is open. 
And dû c {(A,x)/ || A | |= /?,|| x ||< £:} U /i_1(0). Since h = e, for 
|| x | |= 2e, dQ separates (0,0) from the level || x | |= 2e. Finally C 
does not meet dû, since if h = 0, A(\, \\ x | | ,x / || x ||) ^ 0 and if C 
meets || A \\= p this could be only for x = 0, giving a bifurcation point 
for some A, with || A ||= p, which contradicts the fact that AQ — A(X) 
is invertible for || A ||= p. 

REMARK 4.2. It has been seen in [9; Proposition 4.5] that ((Ao — 
A{\))x, || x || -e) extends from d{\\ A ||< p, || x ||< 2e} to full ball if 
and only if J(AQ — A(X)) ^ 0. Here one wishes to maintain the map as 
(0, —e) on x = 0, staying closer to the bifurcation idea. The next step 
is to use obstruction theory to know when one has an extension. 

THEOREM 4.2. (a) One has linearized global bifurcation if and only 
if either T,{A0 - A{X))r}0 ^ 0 or J{A0 - A(X)) ^ 0. 

(b) If N > d or k < 2N — 2, one has linearized global bifurcation if 
and only if J(A0 - A(X)) = eT,N-dJB{X) ^ 0. 

PROOF. The possible obstructions for extending ((A0 — A(X))rj, r — e) 
fromLi = d(BkxI)xSN~l — RN+1\{0} to Kt = BkxIxSN-x are 
in i /9 + 1(Ä'i ,Li;ng(S' i V)) . These groups are zero except for q + 1 = 
k +1 or fc + N if N > 1, in which case they are n g (£ N )> ^dtwo copies 
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o f Tlk(Sl)if N = L T h e first obstruction, for the (fc+l)-cells of Ä"i \L i , 
is the class of ((AQ - A(X))rj0, r - e) : d{Bk x I) - • R N + 1 \ { 0 } , that is 
E(Ao - A(\))r)o, where rj0 = (1 ,0 , . . . ,0 ) T . For TV = 1 the classes for 
rjo and for — TJQ are inverses of each other and non-zero only if k = 1 
and A(X) changes sign as A crosses 0 (Ao = 0 and one has degree 1 if 
XA(X) < 0, - 1 if XA{X) > 0 and 0 if 4(A) doesn't change sign). 

In order to compute the second obstruction, in Y\k+N_i(SN), one 
will rescale A so that p = 1 and replace r by /J, = (r — e)/e so that 

Proof of (a) when N - d. If N = d, then A0 - A(X) = S(A) and 
(B(A)r/,//) is deformable, via (((1 - *)£(A)-K || A || B(X/ \\ X ||))r/,/i), 
to (|| A || B(X/ || A \\)n,p) on {|| A | |= max(|| A | | , | ß |) = l}x 
{|| n | |= 1} (any zero gives /i = 0, || A | |= 1). Since EB(A)fo = 0, the 
pair (|| A || Bd{X/ \\ X ||),//) has anon-zero extension(Bd(A,/i),/i(A,/i)) 
from the set || A ||> 1/2 to the set || A ||< 1, where Bd(X) is the last 
column of the matrix B( A). Now (|| A || B(X/ \\ X ||)?7o, A*) is deformable 
to (|| A || Bd(X/ || A ||),/i) since rjo is deformable to (0 , . . . ,0 ,1)T . 
Let £?(A,/z) be the matrix obtained from || A || B(X/ \\ X ||) by 
replacing the last column by i?d(A, //). Let S = {A/ || A ||< 1, /i(A, //) = 
0,detB(A,/i) = 0}. For || A ||> 1/2, ft(A,//) = //, so that if /i = 0, 
then B(X,fi) is invertible. Let <\> : {A/ || A ||< 1} —• [0,1] be such that 
(fi(S) = 0, 0(A,/i) = 1 if || A | |> 1/2. Decompose 77 as (/7,r/d)T and 
define an extension of (|| A || B(X/ \\ X ||)r?,/i), from L = Sk x S**-1 

to F f c + d _ 1 = L U Bk x {^ = 0}, by {B{\,ii)(<K\,p)fj,rid - ( 1 -
|| A | |)/2)T,/i(A,//)). Note that if this map is zero, then either one 
hasdetß(A,/i) = 0,0 = 0,rç<* = ( 1 - || A ||)/2 (since Bd(X,/jt) ^ 0 when 
/i(A,/i) = 0)» o r detJ5(A,/i) ^ O,0r/ = 0,^d = ( 1 - || A ||)/2. Thus if 
|| À | |= 1 or rjd < 0, one has r}d = 0, || A | |= 1,0 = 1, || r\ \\- 1, leading 
to a contradition. 

The obstruction is then the class of 

(B(A,/ i )(^ , ( 1 - || f, H9)1/» - ( 1 - || À | | ) /2) r ,h{\ ,p) ) 

as a map from d{\\ X | |< 1,|| »? | |< 1) = S*+<*-i into R d + 1 \ { 0 } . 
Perform the homotopy (1 —*)((1— || f? | | ) 1 / 2 - ( l - || À | | ) /2)+t(2 || A || 
) / 2 - l ) ; if || À | |= 1 and A(A, p) = A* = 0, then || A | |= 1, B(X, y) = B(\) 
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is invertible, thus <f> = 1,7/ = 0 and (1 — t) + 1 = 1 at a possible zero; 
if || r? | |= 1 and h(A,/i) = 0, then fâ = 0 and - ( 1 - t){l- | |A| | 
)/2 + £(2 || A || -1) = 0 at a zero. Thus <j> = 0 and, by construction, 
| | A | | < | | A | | < l / 2 , a contradiction with the vanishing of the last 
expression. 

Replace, next, 2 || A || - 1 by ( l - t ) ( 2 || A || -l)+*fc(A,/i), /i(A,//)by 
(l—t)h(Xiß)—t(2 || A || —1) and0(A,/i) by </>(A,)M), where 0(A,//, £) = 
0 if det£(A,/z) = 0 and (1 - i)h - t(2 || A || -1 ) = 0, 0(A,/i,O) = 
0(A,/i), 0(A,/i,l) = 1 and 0(A,/M) = 1 if || A ||> 1/2. (If * = 1 and 
2 || A || - 1 = 0, or if || A ||> 1/2, then B(A,ji) =|l A II B(x/ II A ID i s 

invertible and <£(A, /i, t) is well defined.) For a zero of the homotopy one 
would have 2 || A || —1 = 0, /i(A,/i) = \i = 0, 0r) = 77 = 0, which is not 
possible on the boundary of{| | A ||< 1,|| fj \\< 1}. The last homotopy is 
then(l-*)£d(A,//)+* || A || Bd{\/ \\ A ||), (l-t)Ä(A,/ii)+«/i : for 2 || A || 
- 1 = 0, this homotopy is just || A || Bd{\/ \\ A ||),/z. The obstruction is 
thus the class of the map (|| A | | \ B ( A / || A ||)(r7,/i,)T, 1-2 || A | |). Since 
one may use the linear homotopy (1—t)(l—2 || A ||)+^(2 || x \\ —1), with 
x = (ri,/ji), (at a zero one has either A ̂  0 and thus x = 0, || A || = 1 
and the linear homotopy is negative, or A = 0, thus || x | |= 1 and the 
linear homotopy is positive). One gets then the Whitehead homomor-
phism with the last component, 2 || x \\ —1, with a different sign; its 
class is JB(X) (Although a change of orientation in the range does not 
necessarily give an inverse for the class, in this case one might have 
chosen to replace 2 || A || - 1 by —/i(A,/i) and ft(A,/i) by 2 || A || —1 
in the second homotopy; the obstruction would have been the class of 
(|| A || B(X/ || A ||)(r),—/i),l—2 || x ||) : the change of orientation in the 
domain (/i giving — /x) gives then the inverse. The orientations are given 
by(A, r),/i) in this order; this is how one proves EJB(X) = — JEC(A) 
with these orientations.) 

Proof of (b). If N > d, then 

(A) - A(X))x = B(X)PX -{I- Q)A{X)({I - P)x 

-{I- KQA{X))-1KQA(X)Px) 

e(A 0 - QA{X))((I - P)x -{I- KQA{X))-1KQA(X)Px). 

By replacing A by (1 - t)X (except in B(A))one may deform this map 
(for || A | |= p), or this map with the side condition r — e on d(Bk x / ) , 
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to B(X)Px © AQ(I — P)x. Since AQ{I — P) can be deformed to (sign 
det Ao, / ) (once bases have been chosen), one has that [A0 — A(X)rjo) = 
0. If k < 2N—2 and H(AQ—A(X))rfo = 0, then E is an isomorphism and 
again (AQ — A(X))rjo is deformable to a constant map. One could then 
proceed as before with (£?(A)Prç,(sign det AQ,I)(I — P)r}), however it 

is simpler to note that, in both cases, B(X) is deformable to I °^ ° j . 

jy_i_k—1 

One then gets an extension to K given by (|| A || C(X/ || A || 
)w, Vd ~ ff(l~ || A ||),/i), which will give, as in §3.2, the obstruction as 
the class of (|| A || C(X/ \\ X ||)fy, 1 - 2 || rj | | , / / ) . A rotation in the last 
two components will give (|| A || C(X/ \\ X ||)?7,/i, 2 || rj || —1), and a 
linear deformation will replace 2 || r) || — 1 by 1 — 2 | | A | | . 

Note that (sign detAoiI)^ — P)x acts as a suspension, so that e = 
sign det AQ. Thus one has a proof of the remaining cases for Part (a). 
If N = d, k < 2JV-2, then, since HJ{B(X)) = ENB(X)ri0 and E ^ " 1 is 
an isomorphism, the vanishing of J(B(X)) then implies the vanishing 
of E£?(A)f7o> as in Theorem 3.3. 

REMARK 4.2. The shorter argument for part (b) does not extend to 

the case where N = d and k > 2N — 2. One could have expected that 

the vanishing of EJ3(A)rço would have implied that ( B^ J j could be 

deformed, on || A | |= 1, to 

few o o\ 
0 1 0 , 

V o o i] 
using Stiefel Manifolds. 

However, if k = 4,d = 3, and B{X) — p2, as in Remark 3.1, 

then E P V = 0 in ELO^3). And up2 = 2 in u s (50(4)) = 

FUC^3) © FUC^O*)) ^ d i*P2 cannot come from an element (7(A) in 

n3(S0(2)) = UsiS1) = 0. Conversely, if A = ß + zV, then (A
Q

2 ° ) is 

deformable to / in IliCSO^)) = ^2, while EP*(A2) has degree 2 in 

n2(s2). 
REMARK 4.3. If N = 3 or 7, then E ^ " 1 is one to one for k < 2N - 1 , 

thus in this case, J(B(X)) is the only invariant. If N = 1, J(B(X)) = 
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2T>B(X)rj0(= 0 if k > 1); if n = 2, B(X) is deformable to a constant 
when k > 2, P*, J, E are isomorphisms for A: = 2 and J is one to one 
for k — 1, within the range of Bott's and Adams' results. 

REMARK 4.4. If E(Ao — A(X))rjo ^ 0, then one has global bifurcation 
in the direction r?o, that is, the equation 

(Ao-A{\))trìo-g{\,trìo)=0 

has a continuum of non-trivial (t ^ 0) solutions branching from 
(0,0) and going to another singular point of AQ — A(X) or to infin
ity; the suspension is the class of ((Ao — A(X))trjo,t — e) on the set 
d{\\ A ||< p, | t \< 2e). Since the direction TJQ can be deformed to any 
direction, one has global bifurcation in all directions of R ^ . One may 
give more precise information on this continuum, by 

PROPOSITION 4.1. / / E*(A0 - A(A))r?0 ^ 0, for some 1,1 < I < N, 
then the continuum has a connected subset E, bifurcating globally from 
(0,0), such that the local covering dimension at each point of E is at 
least £. 

PROOF. Consider the map 

(A0 - A(X)){rrio, r / i 2 , . . . , r/i^, 0 . . . , 0)T 

- 0(A, rr/o, r/i2, • • -, r\iu 0 , . . . , 0) 

= 0i(A,r,/i2,...,M/), 

where r, / i 2 , . . . , pt are arbitrary parameters. Then gì (À, 0, /i2, • • •, Ut) = 
0 and gi satisfies the hypotheses of Theorem 4.2 in [9]. Furthermore, on 
d{\\ X | | < p , | r \<2e \m |< p), the map (^i (A, r , / i 2 , . . . , / / p ) , / i 2 , . . . , / i£ , r -
e) is deformable to (Ao - A(A))(r/0,0,..., 0)T , /i2, . . . ,//*, r - e) which 
is just E£(Ao — A(A))r7o. Thus the above map is 0-epi on the ball 
and one may apply Theorem 4.2 in [9] : there one has | r | —e in
stead of r — £, but it is easy to check that the argument goes through. 
Note that one could have chosen the type of solutions differently, and 
that one may have used the continuation result in [9] for the map 
(/(A, x i , . . . , xi, 0 , . . . ,0 ) , xi - £ i , . . . , xt - et). 
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REMARK 4.5. It is clear that the same argument works for B(X) 
instead of AQ — A(X) : If Y,eB(\)rjo i=- 0 one will get locally (i.e., as long 
as the Liapunov-Schmidt reduction is valid) an ^-dimensional "surface". 
The following example illustrates this situation. Let AQ — A{\) = 

( o "A1 ) ' w n e r e A is in C, TV = 4, d = 2. As in [5] it is easy to see that 
B(X) = A2, so that B(X)r}o = X2rjo has degree 2, as well as E2£?(A)T7O 

(so that I = 2). JB(X) is twice the Hopf map, whose supension (and 
thus J{AQ — A{X))) is 0. Thus the invariants for the local bifurcation 
are non-zero, while both invariants for global bifurcation are trivial. 
Consider then the equations 

Xz\ — <t>{r2)z2 + r2~%2 = 0 

Xz2 — r2~z\ = 0, 

where r2 = | Z\ |2 -f | z?, |2, (j)(t) is a non-increasing smooth func
tion with </>(t) = 1 for t < 1/2,0(0 = 0 for t > l,<fi(t)is con
cave for t < to, to = (ß(to)' Multiplying the first equation by Z2 
and the second by z\, one obtains r4 = 0(r2)^2? thus 22 is real; 
z2{(t>{r2) - r 2 ) = Xzu | A | 2 = r2((/>(r2) - r 2 ) , (if zx = 0, then z2 = 0). 
Thus any solution has r2 < to, p < 1/2 (the function t((j)(t) — t) has 
a unique maximum at t = 1/2). Thus, | A |, | z\ |, Z2 are given 
in terms of r and if A = | A | e%<^ is a solution, then z\ = (sign 
^2) I ^1 I e~ ï0. Thus the continuum bifurcating from (0,0) is two 
dimensional and there is no global bifurcation. Note that, on the solu
tions, d{z2((f>{r2) - r2) - ~Xzi)/dz2 = <\) - r2 + 2 r 4 ( 0 ; - l)/</> is zero at 
r2 = 1/2 : there the Liapunov-Schmidt reduction fails. 

REMARK 4.6. If T,eJB(X) ^ 0 for some £,0 < £ < N - d, then one 
has a local continuum branching from (0,0). Also, since JT,£B(X) = 
(B(X)x, / i i , . . . , \xt, || x || —e) is non-trivial, one sees that any small per
turbation of (B(X)x1 / i i , . . . , / ^ ) , in the variables A,z , / i i , . . . , / i i , will 
have a global bifurcation. This could be used in cases where the re
duction to B(X) could be done in two steps with a larger range of 
applicability on the variables different from x , / i i , . . . ,/i^. Note that 
the invariants B(X)rjo and JB(X) are linked by HJB(X) = T>dB(X)rio 
and other properties for the suspensions: for example if d is odd and 
k < 3d - 1, then, if EJB(X) — 0, then JB(X) is a suspension [11; 
Theorem 10.6] and thus HJB(X) = 0. However the usefulness of such 
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relations for the bifurcation problem is not clear. 

The last result in this section will relate the local invariants on a 
bounded continuum. Let C be the continuum of non-trivial zeros of 
/(A,x) = (A0 - A(X))x - <7(A,x), branching from (0,0), and C(r/0) 
be the continuum for / ( A , ^ 0 ) , t > 0. Assume all bifurcation points, 
(At,0), on C or C(r7o) have the property that A — A(X) is invertible 
for A close to At, A ^ A .̂ Thus, if C is bounded, there is only a finite 
number of such bifurcation points. 

PROPOSITION 4.2. Assume C or C(rjo) is bounded, with the above 
hypothesis. Then 

E/J(A 0 - A(\))i = 0, for (Ai,0) on C, 

and 
E/E(A0 - A(\))i = 0, for (A<,0) on C(iy0). 

PROOF. Since the arguments have already been used in other con
texts, the proof will be sketchy. Use first the fact that C, (or C(r/o)) 
is a continuum to construct a bounded open set Q such that C is con
tained in H and /(A, x) (or /(A, trjo)) is non-zero on <9fi, if x ^ 0 (t ^ 0). 
Complementing /(A,x) by || x \\ — e (or t — e), one gets a map which 
is inessential on dU with respect to B\H, where B = {(A,x)/ || A ||< 
Äo,|| x | |< R} contains U (or_ß = {(A,t),|| X \\< R^0 < t < R}) 
and a non-zero extension to B\ U/ B{ of this map (take the map to 
be (0 , -e) ondB) where B{ = {(X,x)/ || A - A< ||< pu\\ x \\< 2e (or 
0 < t < 2£t)}. The result follows from the fact that one is dealing 
with primary obstructions for extensions from d(B\ Uj B{) to B\ U/ Bi 
and some operations on cohomology groups which are given in [7, p. 
159] and in [8, p. 789] : one has that the sum in rifc+ivr-i^^) (or in 
Iljfc('5iV)) ° f t n e local obstructions has to be zero. Note that since this 
result belongs to the "sufficient" category one does not need to work 
with the set {(A,r,r/)/ || A ||< fio,0 < r < fi, || rj | |= 1} for which the 
obstructions (probably both of the above invariants) are more difficult 
to compute. 

REMARK 4.7. One has to be careful with orientations when using 
Proposition 4.2 and relating J(AQ — A(X)) to JB(X). Here is an easy 
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way to do it: observe first that, once the orientations have been cho
sen, the invariants for B(X) are independent of the choices for P and 
Q (as in the proof of [5; Theorem 4.5, p. 33]). Next, (Ao - A(X))x 
is deformable to AQ(I — P)x ® B(X)x, for any A close to 0; thus the 
orientations have to be chosen such that det Ao(I-P) det B(X) has the 
sign of det(Ao — -4(A)) at each A close to Ao (in fact, if k > 1, this sign 
is invariant around 0; if k = 1 one may have a change corresponding to 
the generalized algebraic multiplicity). In order to relate the signs of 
det(Ao — A(X)) near two distinct bifurcation points, one takes a path 
joining the two points and studies the set of points where Ao — A(X) 
is singular along the path. Note that the sign of det(.4o — A(X)) 
is the index of the zero solution at A. Then J(AQ — A(X)) =sign 
det Ao(I — P)JB(X), after choosing the orientation of the domain with 
((/ — P)x, Px) and of the range with ((/ — Q)y, Qy) (there is then no 
change of sign when suspending). 

APPENDIX: THE COHOMOTOPY APPROACH 

One might have studied the extension problem in the more general 
(although related) framework of cohomotopy theory (see [4]). That 
is, since B(X)x - g(X,x) is non-zero on Sk~x x Sd~1 = {A/ || A | |= 
p} x {x/ || x | |= 2e} one has an element in I T * " 1 ^ " 1 x 5 d _ 1 ) (the 
set of all homotopy classes of maps from Sk~1 x S^"1 into Rd\{0}). 
The extension problem to Bk x Sd~1 is then equivalent to the fact that 
[J5(A)x] is in the image of i*, 

d - l d - l 

]J(Bk x S^"1)^ Y[{Skl x S**"1), 

where i* is induced by restriction of the maps to Sk~1 x Sd~1. One 
has the sequence 

d-l d-l d 

£ H{BkxSd'1)^ Y[{Sk-1xSd-1)±Y[{BkxSd-1,Sk-1xSd-1)£ 

with Imj* = keri*,Im<5* C ker,7*,Imi* C ker<5*, [4]. The following 
facts are easily verified: 

(a) Imz* = ker<5, if k < d, in which case these sets are groups. 
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(b) Ud~1(Bk x S*-1) Ä Z, since Bk is contractible. 

(c) If F{X,x) : Sk-1xSd-1 ^ R d \ { 0 } , then 6F(X,x) = (|| A || 
F(X/ || A | | ,x) , l - 2 || A ||2) maps {Bk x S ^ S * " 1 x S-*"1) into 
(R d + 1 \{0} ,R + 1 \ R + ) , that is, the last component is negative for 
| | A | | = p = l . 

(d) By excision of Sk~1 x Bd, one has an isomorphism Y\ (Bk x 
gd-igk-i x 5 d - i ) ~ Y\d{Sk+d-1,Sk-1, xBd) 

(e) the map U^S^-^S"-1 x ß ^ n ^ S ^ " 1 ) * n f e + d - i ( S d ) 
is an isomorphism for k < d. 

(f) j*6(B(X)x) = JB(X) is the Whitehead homomorphism; thus if 
JB(X) ^ 0, then S{B{X)x) ^ 0 and B{X)x <£ Imi*. 

(g) the following diagram commutes 

j-jd-l(Sfc-l x gd-lj _ i _ + T^tf* x gd-l^gk-1 x S d - l j 

P* 

rd-ifQk-i\ , nd(nk ok-i 

p* 

n (s*-1) — > n (B^S*-1) ~ n (5*), 

where P*F(A,z) = F(A,x0), i.e., P*££(A)x = XB(X)x0 [4, p. 227]. 
One gets thus a relation between the two invariants, similar to the 
/f-homomorphism. 

(Note that in the example of Remark 3.1, J(p12) = 0, thus 
j*6(p12x) = 0 and p12x does not belong to Imi* since P*p12 ^ 0. 
However it is not clear if S(p12x) is 0 or not: this would give an exam
ple where the sequence would not be exact.) 

However the non-exactness of the sequence, and the fact that j * is 
not one to one, limit the application of this approach to the case where 
k < d, in which case P*B(X) = 0iB(X) is a suspension, one is in the 
stable range and the only invariant is JB(X). Thus, although the co-
homotopy approach may seem to be more "natural", for the problem 
at hand the treatment with obstruction is simpler. Probably for more 
complicated sets or functions (for example the general Hopf construc
tion) one could get some information from cohomotopy. 
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