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ON SUPERLINEAR ELLIPTIC PROBLEMS 
WITH NONLINEARITIES INTERACTING 

ONLY WITH HIGHER EIGENVALUES 

DJAIRO G. DE FIGUEIREDO 

1. Introduction. Consider the Dirichlet problem 

(1) — Au = g(x,u) in Q, // = 0 on dQ, 

where Q is a bounded smooth domain in RN, N > 2. For the purposes 
of this section we shall assume that g : lì x R —• R is continuous, where 
fi denotes the closure of fi. Grosso modo problem (1) is said to be 
superlinear at +oo if 

(2) lim ^ U + o o . 

In [1] Ambrosetti and Rabinowitz proved the existence of a solution 
for problem (1) under a set of conditions which we discuss next. First, 
growth assumptions at ±oo on g were made so as to guarantee that the 
Euler-Lagrange functional 

(3) ${u) = ^j\Vu\2- jG{x,u), G{X,S) = j * g{x,Ç)dti 

is well defined in HQ(Ù). (Integrals / are supposed to be taken over 
the whole of fi, unless indicated otherwise.) The critical points of $ 
are then the HQ solutions of (1). Also, in [1], the following condition is 
assumed in order to ensure that $ satisfies the Palais-Smale condition: 

There are numbers 6 G (0,1/2) and SQ > 0 such that 

0 < G(x, s) < 0sg(x, s) for |s| > s o , x G O. 

We remark that condition (4) implies that the function g(x, s) is 
superlinear in both directions, that is, at ±oo. Namely, (4) implies 

g(x< s) 
lim yy ' J = +00. 

8—»-±00 S 
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An adequate condition at s = 0 guarantees that 0 is a local minimum of 
$, and a nontrivial critical point of $ is then obtained in [1] using the 
Mountain Pass Theorem. In this way the authors of [1] have introduced 
in the literature a simple but extremely useful tool to treating problems 
in Nonlinear Partial Differential Equations. 

Another instance of a superlinear problem appears in the so called 
Ambrosetti-Prodi problem 

(5) — Au = g(x, u) + tip + h in H, u = 0 on <9H, 

where (p > 0 is an eigenfunction associated with the first eigenvalue Ài 
of (—A,ü/o(n)), t is a real parameter and / h<p = 0. In this problem, 
the nonlinearity g satisfies condition (2), but at —oo one has 

g(x,s) 
hm yK ' ; < Ai. 

s—• — oo S 

This problem was studied in [2, 4, and 5] by variational methods. 
Indeed, for t < 0 and large in absolute value, problem (5) possesses a 
solution which is a local minimum of the corresponding Euler-Lagrange 
functional. And again the Mountain Pass Theorem is invoked to get a 
second solution for problem (5). 

The natural question now is: Suppose again that problem (1) is 
superlinear at +oo, namely (2) is satisfied, but at —oo one has 

(6) lim 9^X,S' = X with A/fc < A < Afc+i, 
s—• — oo S 

where A* and \k+i are two consecutive eigenvalues of (—A, HQ (H)). As 
we shall see, the existence of one solution for this type of problem is not 
hard to establish. Nevertheless it may not be true that the associated 
Euler-Lagrange functional has a local minimum. This precludes the use 
of the Mountain Pass Theorem, as before, in order to obtain a second 
solution. However, the setting invites the application of the Generalized 
Mountain Pass Theorem, due to Rabinowitz [8]. Our present work on 
this problem was motivated by Ruf-Srikanth [10] which treated the 
nonlinearity ^(x, u) = Xu + {u+)p + t(p + h, where A is as in (6), £, <p, 
and A are as in problem (5), and p > 1 is restricted in a usual way, 
see below. In this paper we show that a result similar to the one in 
[10] can be established for a larger class of nonlinearities. Namely, we 
consider the following parametrized form of (1) 

(7)t. - Au = Xu + / (x , u) + tip + h in n, u = 0 on 9Q, 
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where Â  < A < A*;+i,£ is a real parameter, <p > 0 is an eigenfunction 
associated with the first eigenvalue of (—A,#o(fi)),/i G C"(fi),0 < 
v < 1, f h(p = 0. In order to prove existence of two solutions for (7)t 
we assume that the nonlinearity / satisfies the following set of condi
tions: 

(Fl) f .ÏÏxR-^Ris&C1 function. 
(F2) There exists 0 < a < 1 such that l im^-oo /(x, s ) | s | - a ! = 0. 
( F 3 ) l i m 5 ^ _ o o / ^ ( x , 5 ) = 0 . 
(F4) There are 0 < 0 < 1/2 and s0 > 0 such that 0 < F(x, s) < 

0sf(x, s), for s > so and all x e fi. 
(F5) l inv_ + 0 0 / ( z , 8)8'° = 0, where a < {N + 2)/{N - 2) if N > 3 

or 1 < a < oo if N = 2. 
(F6) f3(x, s) > -fi where // < A - A .̂ 

THEOREM. Under assumptions (Fl) through (F7), */iere existe a t > 0 
swcto £/ia£, for all t >t, problem (7)* has (at least) two solutions. 

REMARKS ON THE ABOVE ASSUMPTIONS ON THE NONLINEAIUTY. 

(1) All the above limits are supposed to be uniform with respect to 
a: G fi. 

(2) Conditions (Fl), (F2) and (F5) imply that there is a constant 
c > 0 such that | /(x, s)\ < C\s\a+C. Consequently, the Euler-Lagrange 
functional associated with problem (7)t is well defined in HQ(Q). 

(3) Condition (F4) implies that F{x, s) > Cs1^ - C for s > 0, which 
in its turn implies that / is superlinear at +oo : / (x , s) > C ^ 1 / 0 ) - 1 —C, 
for s > 0. This last inequality, together with (F5), implies that 
a > (1/0) - 1. It then follows that 

(*) 1/0 < 2N/(N - 2) => (N - 2)/2N < 0 < 1/2 for N > 3. 

(4) Either condition (F2) or (F3) implies 

lim f(xìs)s~1 = 0, 
3—•> — O O 

which implies that problem (7) is not resonant at —oo. And condition 
(F4) implies 

lim fix, s)s~x = +00 
s—•4-00 
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(5) Condition (F3) does not imply (F2). Indeed, if f(x, s) is equal to 
s| In s|—1 for s < —1, then / satisfies (F3) but not (F2). It is also easy 
to see that (F2) puts no restriction on the growth of f's(x, s) at —oo; 
so (F2) and (F3) are independent. 

(6) Condition (F2) is verified, for instance, if f(x, s) is bounded for 
s < 0. We recall that the case treated in [10] is f(x, s) = 0 for s < 0, 
which gives also (F3) trivially. 

(7) Condition (F7) is not as restrictive as it may appear at first 
sight. For instance, if f{x,s) is a pure power at +oo, say sa with 
1 < o < (N + 2)/{N - 2) if N > 3, then one could take 0 = l/(a + 1). 
Thus aO = 1-0, and from (*) above we see that a0 < (N + 2)/27V. 
So (F7) would be satisfied for all a < {N - 2)/(N + 2). If N = 2 and 
again the case of a pure power we observe that a9 = <j/(cr +1) < 1, and 
in this case one could take a < 1/a. Summarizing we see that, in the 
case when / is a pure power at oo, condition (F7) establishes a balance 
between the growth a at +oo and the growth a at — oo. So (F7) seems 
a reasonable condition to be assumed. 

(8) We do not know if conditions (F2) and (F6) are indeed necessary. 
(F2) enters in an apparently essential way to get the PS condition in 
§2. And(F6) permits one to do required "linking" in the Generalized 
Mountain Pass Theorem, done in §4. 

REMARK. It is natural to ask if this problem has more than two so
lutions. In the ODE case a result of Ruf-Srikanth [11] shows that (for 
f{x,u) = (w+)p, h = 0) the problem has 2k + 2 solutions. This result 
has been extended to the PDE case when H is a ball and for a large 
class of nonlinearities by Padua [7]. Both the ODE case and the case 
when Q is a ball use bifurcation arguments that are not applicable to 
the case of a general domain. It is also interesting to remark that if / 
is asymptotically linear at +oo, then the work of Lazer and McKenna 
[6] shows that there are more solutions. 

The Palais-S male condition. In this section we show that the 
Euler-Lagrange functional associated with an equation from a certain 
class of superlinear elliptic problems satisfies the Palais-Smale condition 
(in short, the PS condition). We recall that a C1 functional $ : HQ —• R 
satisfies the PS condition if every sequence (un) in HQ with |<I>(un)| < 
const and $'(un) —* 0 contains a convergent subsequence. If $ ' is of 
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the form identity -f compact, then, in order to check PS, it suffices to 
prove that ||wn||ifl < const. Let us consider problem (1) and let us 
assume the following conditions on the nonlinearity g: 

(Gl) g : fi X R —• R is continuous. 
(G2) There are A ^ Xj for j = 1,2,... and 0 < a < 2 such that 

lim ' ( * ' , ' ) - * ' = < ) 
s—>--oo ^S]0* 

(G3) lim5_>+00 g(x, s)s-a = 0, where a < {N + 2)/(N - 2) if n > 3 
or 1 < <J < oo if N = 2. 

(G4) There are 0 < 0 < 1/2 and s0 > 0 such that 0 < G(x, s) < 
0sg(x1 s), for 5 > so and all x E fi. 

( G 5 ) a 0 < m i n { ^ , ^ } . 

REMARKS ON THE ABOVE CONDITIONS, (l) All limits in the above 
conditions are supposed to hold uniformly with respect to z € fi. 

(2) Conditions (Gl), (G2) and (G3) imply that there is a constant 
c > 0 such that \g(x, s)\ < C\s\a+C. Consequently the Euler-Lagrange 
functional 3> in (3) is well defined in HQ{VÌ). 

(3) Conditions (Gl) and (G2) imply that there is a constant C such 
that 

(8) \g{x,s)s-2G{x,s)\ < C + C | s | 1 + a , s < 0, 

(9) \g{x,s)s-\82\<C + C\s\1Jt0i, s<0. 

(4) Condition (G2) implies that 

lim g(x,s)s~1 = X 
8-+ — 00 

and condition (G4) implies that 

lim g(x, s)s~x = +00. 
s—»+00 

LEMMA 1. If g(xis) satisfies conditions (Gl) through (G5), then the 
functional $ , as defined in (3), satisfies the Palais-Smale condition. 
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PROOF. Let (un) be a sequence in #o(0 ) for which 

(10) |*(tin) | = \\ j \Vun\
2 - j G{x,un)\ < C, 

(11) K*'(ti„),t;)| = | I VunVv- jg(x,un)v\ <en\\v\\m, 

where ( , ) denotes the inner product in HQ , sn —• 0 as n —• oo and v 
is any element in HQ . As we remarked above to prove that $ satisfies 
the PS condition it suffices to prove that ||un||jyi is bounded uniformly 
with respect to n. Taking v = un in (11) and using (10) we obtain 

(12) / [g(x,un)un -2G{x,un)] < C + £n\\un\\Hi. 

The integral in (12) is broken into three parts. The first is estimated 
using (8) as follows: 

/ [g(x, un)un - 2<3(x, tin)] < C + C f \u~ | 1 + a , 
Jun<0 I J 

where u~ = max{0, —u}. The second integral taken over 0 < un < SQ 
is obviously bounded uniformly with respect to n. And the third one 
is estimated using (G4): 

/ g(x, un)un - 2G{x, un)) > ( - - 2 J / G(x, un). 
Jun>s0

 KU ' Jun>s0 

Altogether, one obtains the estimate 

(13) f G (x , t i n )<C + e n | | t i n | | Ä i + C | K | | J + + « -
Jun>80 

Next let us take v = u~ in (11) to obtain 

/ F l tn l 2 - / g{x,Un)un\ 
J Jun<0 

(14) <£n |KI | f f t . 
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Using (8) and (9), it follows from (14) that 

(15) (\Vu-\2-2f G(x,un) 
J Jun<0 

<C + en |K| |H i+C|K| |J+f«, 

(16) / | V U - | 2 - A | K I 2 <C + e»IK||fri+C||u l l + a 
n \\L1+a' 

Now we consider the following alternatives: either (i) ||w^||iji < const. 
or (ii) 11u~ 11 H1 —* oo, passing to a subsequence if necessary. In 
case (i) holds, estimate (15) implies that \fu < Q G(x,u n ) \ < const. 
Consequently it follows from (10) and (13) that 

\\<\\Hi<C + en\\u+\\Hx, 

which implies that | |M£ | |HI is bounded. So Ugnili?1 < C and the proof 
of the lemma would be complete in case (i). Next let us consider case 
(ii) and prove that it cannot hold, completing in this way the proof of 
the lemma. It follows from (10) using (13) and (15) that 

(17) | |V«+ | a <C + Ce„|KIUi +CIKIIÌ+?«,. 

Now we obtain from (11) that 

(18) / Vun Vv - X / un v < J l + J 2 + J 3 + £ n | M m, 

where the integrals I\, l<i and 1% are explicitly written below and then 
estimated. 

h = 

h = 

jVu+Vv 

/ g(x,un)v 

Jun>0 

< l|unlUri|MUn 

< ( c + c||ti+||ip.)|H|w, 

where we have used (G3) and p = 2N/{N + 2),q = 2N/(N - 2) if 
N > 3. If N = 2 we take 1 < p < l/<70; this can be done because (G5) 
in this case implies oQ < 1. 

h = / g(x,un)v + \unv < / |5(x,ii„)|H, 
Jun<0 Jun<0 
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where 6(x, s) = g(x, s) - As. Using (G2) we obtain the estimate 

/ 3 < ( C + C |K | |£0 IMIHI . 

Altogether, the left side of (18) is estimated by 

(C + IIU+IIH.+CIIU+IIÌP.+CIKIISOIHI*'-

Our purpose now is to show that the expression in parenthesis goes to 
zero when divided by | |u~| |#i . Firstly, we see that (17) implies 

(19) ll̂ n IIWIKIItfi "* ° ** n ~* °°-

Secondly we claim that 

(20) I t ó l l W I I " » II»* ^ 0 as n - oo. 

We remark that this is the only point in the present proof where 
condition (G5) is used. It follows from the fact that G(x, s) > 
Csl/° — C, for s > 0, and from estimate (13) that 

(21) J(ut)^<C + sn\\un\\Hl+0^-1^. 

Recalling the statement at (19) and that the L 1 + a norm is bounded by 
the if1 norm, weobtainfrom (21) tha t theL 1 / 0 norm of u+/||u~|| iyi" ,"a 

goes to zero, where a' is any number with a < af < 1. Our claim (20) is 
that the Lpa norm of ^n/ll^n l l 1 ^ S o e s to zero. So this will be achieved 
if pa < 1/9 and 1/a > 0(1 + a1). But this is guaranteed by(G5). So 
(20) is established. Next let us define wn = u~/\\u~\\Hi and recall 
that we are treating case (ii), that is ||w^||#i —* oo. Let us assume 
that wn —• wo weakly in HQ and strongly in L2. It follows from (16) 
that fwl - • A"1. So ||wo|li2 = A"1 and w0 ^ 0. Now, dividing (18) 
through by \\u~\\H' and passing to the limit using (19) and (20), we 
get 

/ Vw0Vv - A / w0v = 0 for all v G HQ. 

This means that WQ is an eigenfunction (^ 0) corresponding to A, which 
is impossible. 
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3. Existence of a first solution of (7)*. In this section we con
sider problem (7)t as stated in the introduction. In order to prove the 
existence of one solution of (7)* we do not have to assume all conditions 
(Fl) through (F7) stated in the Introduction. In fact the following re
sult is true. 

LEMMA 2. Suppose that f(x,s) is continuous and 
(F8) lima—«, f{x2 s)s~1 = 0 
Then there exists t > 0 such that (7)t has a negative solution ut for 

all t >t. Moreover, 

, , Ct 
(22) ut < y-z~x<P, 

where C is a positive constant independent oft. 

PROOF. We use an argument similar to the one in [3; Theorem 1]. 
Let us define 

f(r ^ _ / / ( * > * ) i f * < ° 
nXiS)~-\f(x,0) if « >0. 

We claim that the Dirichlet problem 

(23)t —Au = Xu H- / (# , u) + t<p + h in fi, u — 0 on dû 

has a negative solution for t > 0 large. Such a solution is obviously a 
solution of the original problem (7)*. Let ZQ € C2+"(Q) be the solution 
of 

—Azo = XZQ + h in Q, ZQ = 0 on dQ. 

Now let us consider the Dirichlet problem 

(24)* -Aw = Xw H- /(a:, w -I- ZQ - tß(p) in fi, w = 0 on dfi, 

where ß = 1/(A - À i ) . It follows from (F8) that 

lim f(x,s)s~1 = 0 
|S | — OD 

which implies that, given e > 0, there is a constant C£ such that 
| /(£, s)| < e\s\ + Ce, for all s € Ä and all x G fi. In view of this, it is 
then well known that problem (24) t has a solution wt for each t and 

I M I c i <C| |7(a: ,^ + ^ o - ^ | | C o , 
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where the constant C does not depend on t and the norms considered 
here are maximum norms. Using the above estimate on / we then 
obtain 

IKHcri ^ £C\\W* + z° - */fy>llc° + c-
Consequently we find, by taking e > 0 small enough, that H^tHc1 5: 
C + Ce\t\. So Hiut/illc1 —• 0. Then, using the fact that the eigenfunc
tion (p is positive in Q and its outer normal derivative at the boundary 
is strictly negative, we conclude that wt + ZQ — tß<p < 0 in Q for t > 0 
and sufficiently large. Finally it is easy to check that ut = wt+ZQ — tß<p 
is a solution of (23)t which is negative in Q, and the estimate (22) is 
also clear. 

Next we show that if one assumes (F3) instead of (F8), then ut can 
be taken in such a way that ut is a nondegenerate critical point of the 
Euler Lagrange functional associated with (7)t and its Morse index is 
k. That is a great deal of information about this critical point. Yet 
we use it here merely in a rather mild way. We prefer to work with a 
translation of (7)t as follows. Let u = v + ut in problem (7t) for t > t. 
Then v satisfies the equation 

(25) -Av = Xv + / (z ,v + ut)- f{x,ut) in Q, v = 0 on dQ. 

Clearly, v = 0 is a solution of this equation, and we shall look for other 
solutions of (25)t as critical points of the functional 
(26) 

*t(v) = ì j \Vv\2-\jv2~j F ^ v+ut)+j F{x, ut)+f f{x, ut)v. 

LEMMA 3. Let us assume (Fl), (F3) and (F5). Then there exists 
t>t such that v = 0 is a nondegenerate critical point of ^t with Morse 
index fc, for all t >i. 

REMARKS. (1) We are assuming that Ai < A2 < • • • < Afc < 
A < Afc+i. So there are k eigenvalues of (—A,iJo(^))> counting 
multiplicities, which are less than A. To each X3 corresponds an 
eigenfunction <pj € HQ(£1). Let V be the finite dimensional subspace of 
i ^ (O) generated by pu..., <pk, and let W = V±. So H^{Q) = V®W. 

(2) In view of the hypotheses, the functional ^t is well defined in HQ 
and it is of class C2 . Their first and second derivatives are represented 
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as follows: 

(\I>'t(î/),v) = / VuVv-X uv- f(x,u + Ut)v+ / f{x,ut)v, 

(9"(u)vuv2) = / VviVv2 - A / vtv2 - / f'8{x,u + ut)v1v2, 

for all u,v,vi,v2 in HQ(Q). 

PROOF OF LEMMA 3. It suffices to prove that there exists t > t such 
that, for each t > £, there is a positive constant c(t) depending only on 
t such that 

(27) <*;'(0)V,t,> < -c(*)||«||?ri, « e V, 

and 

(28) <*i'(0)ti;,ti;) >c(t)\\w\\2
Hi, weW. 

Instead of proving (27) and (28) it suffices to show that 

(29) (*"(0)t;,t;) < 0, for all v e V with ||t;||Hi = 1, 

and 

(30) (9%(0)w,w) > 0, for all w € W with \\w\\Hi = 1. 

Indeed (29) clearly implies (27) in view of the compactness of the unit 
ball in V. To see that (30) implies (28), let us assume by contradiction 
that there exists a sequence wn G W with H^nll/J1 = l5wn —> WQ 
weakly in HQ and strongly in L2, such that (\£"(0)wn, wn) 1 0, that is 

(31) Iw^ { J |V«,n|
2 -xjw2

n-jfs(x, ut)wl} = 0. 

On one hand (31) gives 

\-\jwl-jf'a{x,ut)wl = 0 
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which implies w0 ^ 0. On the other hand, (31) also yields the inequality 

j \Vw0\
2 -\Jwl - j f's{x,ut)wl < 0 

which is a contradiction to (30) with w = WO/\\WO\\HI • Now let us prove 
(30). The relation (29) is proved likewise. Suppose, by contradiction, 
that there is a sequence tn —» -hex) and wn € W with H^nll/f1 = 1 and 
W n ( 0 K , % > < 0 . Then 

(32) j \Vwn\
2 -\jwl< j ?8{x,utn)wl 

The left side of (32) can be estimated using Afc+i / w„ < f | Vwn |2 , and 
we are led to 

(33) 1 - \ ^ ^ f fs(^utn)wl 
'U+l J 

The sequence wn can be chosen in such a way that wn —• wo weakly in 
ifo, strongly in L2, a.e. in Q and | ^ n ( ^ ) | < k(x) where k(x) is some 
L2 (fi) function. It follows from the estimate (22) in Lemma 2 that the 
integrand in (33) converges a.e. to 0. Since utn is a negative function, 
this same integrand is bounded uniformly by an L2 function. So app
lying the Lebesgue Dominated Theorem to the expression (33) we are 
led to a contradiction. 

4. Existence of a second solution. In this section we show that 
the functional Vt defined in (26) possesses a nontrivial critical point 
for t > t. In this way one obtains a second solution of (7)t in addition 
to the solution ut found in §3. And this will complete the proof of 
the Theorem. So in this section we assume all the hypotheses of the 
Theorem. The proof below uses the Generalized Mountain Pass Theo
rem, see [8] or [9; Theorem 4.1], and the lemmas in the sequel are the 
verification of the hypotheses of the theorem applied to our functional 

LEMMA 4. The functional ipt satisfies the PS condition. 
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PROOF. The function g(x, s) = As 4- / ( z , s + ut(x)) — /(a;,ut(x)) sat
isfies all conditions of Lemma 1, as consequences of (Fl), (F2), (F4), 
(F5) and (F7). The 0 in (G4) should be slightly larger than the one in 
(F4). 

From now on let us fix t > t. 

LEMMA 5. There are positive constants p and 6 such that 

(34) 9t{w) >6 for we Wwith \\w\\Hi = p. 

PROOF. Since tyt is of class C2 it follows that, given e > 0, there is 
p > 0 such that |||¥"(ti) - ¥"(0)| | | < e if ||u|| < p, where ||| • ||| denotes 
the norm in the space L(HQ,HQ) of linear bounded operators in HQ. 

Now take e > 0 such that e < c(t)/2. We claim that the corresponding 
p does the job. Indeed, given any w G W with ||w||iji = 1, define the 
function 0 : R —• R by 

0(s) = *t(sw). 

So 0'(s) = m(sw)iw),0N(s) = {&t(8w)w,w). Using Taylor's formula, 
0(s) = 0(0) + 0'(O)s + \0 (£)s2, where £ is a number between 0 and s, 
we have 

*t(sw) = -(9%(Çw)ïï,w)82. 

Now take s — p and write 

9tQm) = ±{*'t'(0)pw,pw) + i((*i'(€W) - ^'t'(0))pw,pW). 

Using Lemma 3 we then estimate 

9t(fll>) > \c(t)\\pw\\h - tf\\/W\\h > \c(t)\\fiB\\>B1. 

So the lemma is proved with 6 = \c(t)p2 and the above p. 

LEMMA 6. Given e > 0 there exists an element e£W with ||e||iji = e 
such that the set 

{x e n : v(x) + e(x) > 1} 
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has positive measure for each v G V with \\V\\HI < 1. 

PROOF. Suppose by contradiction that, for each e G W with \\e\\Hi = 
e, there is a ve G V with ||ve | |#i < 1 and such that 

ve{x) + e{x) — 1 < 0 a.e. in O. 

This implies that 

e{x) < 1 — ve{x) < k a.e. in Q. 

Similarly, we get -e{x) < const a.e. in Q. So e G L°°{Q), for all eGW. 
This would give that H£{Q) C Loc{Q), which is false for all N > 2. 

Now we claim that there is a constant rj > 0 such that 

(35) inf /"[(t; + e - l ) + ] 2 > f j > 0 
l l « N H i = i J 

Indeed, otherwise there would exist a sequence vn EV with | | fn | |#i = 1 
such that [vn + e -1]+ —> 0 in L2. Since V is finite dimensional we may 
assume that vn —• vo strongly in both HQ and L2 and H^olln1 = 1-
Hence [vo + e — 1]+ = 0 which contradicts the statement of Lemma 6. 

LEMMA 7. There exist R > 0 and e > 0 swc/i £/ia£ 

*t(w) < 0 / o r alluedQ 

where Q = ( £ r fl V) © {re : 0 < r < R}, where BR is a closed ball 
in HQ centered at 0 and e, with ||e||iji = e, is the function found in 
Lemma 6. 

PROOF. The set dQ is composed of three sets: Ti = 'BR n V,T2 = 
{u G Hl : u = v + se, with v G V,||v||jfi = R,0 < s < R}, and 
r 3 = {u G H& : u = v + #e, with v eV, \\v\\Hi < R}. The proof of the 
lemma is divided in three parts, each one showing that $ft < 0 in each 
of the three sets above. 
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(i) Here we show even more. Namely tyt < 0 on V. Indeed, for 
v G V, one uses the estimate / | V v | 2 < À& / v2 and Taylor's formula 
F{x,v + ut)-F(x,ut)-{-f(x,UT)v = \f's{x,£{x))v2 where £(z) is some 
number between ut(x) and ut{x) + v(x) to obtain the estimate 

**(«) <\{^k-X)jv'2-\j f's(x, Ç(x))v2. 

Next, using (F6), we obtain 

*t(«) < |(Aib - A + /i) y v2 < 0. 

(ii) Here we take u € ÏV and show that **(u) < 0 for any choice of 
R. The number e > 0 will be chosen at this step. We could estimate 
the functional as in (i): 

*<<»>sKO/ |v" |2+T(/'Ve'I-A/e2)+f/ l*'+ 

or 

*^^T((1-AÂr)+/iVei2-(A-^/4 

sel2 

(36) 

So ^t(^) < 0 if one chooses e > 0 such that 

(37) £* + ±Z£e2 < ^fü - 1. 

Indeed, since ||e||jji = e, we obtain 

which, applied in (36), gives that \I>t(w) < 0. 
(iii) Now we show how to select R > 0 in such a way that \&t(tx) < 0 

for w € r 3 . Using the fact that / |V i ; | 2 < Xk f v2 < Xfv2 we obtain 
the estimate 

- f(F(x, v + Re + ut) - F(x, ut) - f(x, ut)(v + Re)) 
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which could be estimated further by 

*t{u)<C + CR + CR2 

F(x,v + Re + ut), -I. v+Re+ut>0 

where the constants C do not depend on R; observe that \F(s)\ < 
C|s|1_,"a + C if s < 0. Now, by the superlinearity of / at H-oo, given 
any K > 0 there exist SK > 0 such that f(x, s) > 2Ks for s > SK- SO 
there is a constant CK such that F(x, s) > CK + Ks2 for s > 0. Then 

Now we pick i? > 0 such that ut(x)/R > —1 for all x G H; this can be 
done because of the continuity of ut. So 

<i+-i»^<5 —"+-
and then 

^ ( 2 / ) < C + C Ä + C Ä 2 - C K ^ Ä 2 / ( ( ^ + e - l ) + ) 2 . 

Applying (35) we get finally that 

*t(ti) < C + CR + Ciî2 - C K - tfrçiZ2. 

So the result is achieved if K is chosen in such a way that /fry > C. 
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