ORLICZ SPACES WHICH ARE RIESZ ISOMORPHIC TO ℓ^{∞}

WITOLD WNUK

ABSTRACT. The main purpose of this paper is to describe, in terms of the function φ and the measure μ , Orlicz spaces $L^{\varphi}(S, \sum, \mu)$ which are Riesz isomorphic to ℓ^{∞} . The "thickness", in the sense of Baire category, of the subset of measures for which $L^{\varphi}(S, \sum, \mu)$ is Riesz isomorphic to ℓ^{∞} is also investigated.

I. Basic notation and auxiliary results. Throughout the note, in what concerns Riesz spaces (= vector lattices) we use the terminology of [2]. When two Riesz spaces L and K are Riesz isomorphic, then this fact will be noted by $L \simeq K$. The symbols \mathbf{R}^S and N are reserved for the space of functions from a set S into \mathbf{R} with the standard pointwise order and for the set of positive integers, respectively. Moreover, e_S denotes the characteristic function of the set $\{s\}, L_+$ is the cone of positive elements of a Riesz space L and $\ell_0^\infty(S)$ is the ideal in $\ell^\infty(S)$ consisting of functions with at most countable support. When S is countable then, of course, $\ell_0^\infty(S) = \ell^\infty(S)$.

We start with two simple lemmas.

LEMMA 1. Let $L_i(i=1,2)$ be Riesz subspaces of \mathbf{R}^S containing all $e_s's$. If $T: L_1 \to L_2$ is a Riesz isomorphism onto, then there exists a function $g \in \mathbf{R}_+^S$ and a bijection $\alpha: S \to S$ such that

$$T(x)(s) = g(s)x(\alpha(s))$$

for all $x \in L_1$.

The above statement follows immediately from two facts: $T(e_s)$ is an atom in L_2 (so it has the form $a_s e_{s'}$) and T is a normal Riesz homomorphism.

The next Lemma will be frequently used.

LEMMA 2. Let L be a Riesz subspace of \mathbb{R}^S containing all $e_s's$, and let A be a subset of S. If L is Riesz isomorphic to $\ell_0^{\infty}(S)$, then

Received by the editors on March 18, 1986.

(a) there exists a function $h \in \mathbf{R}_+^S$ such that the operator $T : \ell_0^{\infty}(S) \to L$ given by the formula

$$T(x)(s) = h(s)x(s)$$

is a Riesz isomorphism onto.

(b) P_AL is Riesz isomorphic to $\ell_0^{\infty}(A)$, where P_A denotes the projection onto the band generated by the set $\{e_s : s \in A\}$.

PROOF. Let $H: \ell_0^{\infty}(S) \to L$ be a Riesz isomorphism onto. Then there exists a bijection $\beta: S \to S$ such that $H(e_s) = a_s e_{\beta(s)}$, where $a_s > 0$. Put $h(s) = a_{\alpha(s)}$, where $\alpha = \beta^{-1}$. The Dedekind completeness of L implies that T defined in (a) is a Riesz isomorphism onto.

Part (b) follows by the equality $T(P_A(\ell_0^{\infty}(S))) = P_A L$, where T is the operator given in (a).

Let (S, \sum, μ) be a measure space. A function $G : [0, \infty) \times S \to [0, \infty)$ is called a Musielak-Orlicz function, if

1° $G(\cdot, s): [0, \infty) \to [0, \infty)$ is left continuous, continuous at zero, non-decreasing and G(r, s) = 0 if and only if r = 0,

 $2^{\circ} G(r,\cdot): S \to [0,\infty)$ is Σ -measurable.

Every Musielak-Orlicz function G together with (S, \sum, μ) generates a space of measurable functions called Musielak-Orlicz space:

$$\begin{split} L^G(S,\sum,\mu) &= \{x \in L^0(S,\sum,\mu) : m_G(tx) \\ &= \int_S G(t|x(S)|,s) d\mu < \infty \text{ for some } t > 0\}. \end{split}$$

Here $L^0(S, \sum, \mu)$ is the space of all μ -equivalence classes of \sum -measurable real-valued functions on S.

Any Musielak-Orlicz space $L^G(S,\sum,\mu)$, with respect to the standard $\mu-a.e.$ order and with the monotone F-norm $||x||_G=\inf\{r>0:m_G(x/r)\leq r\}$ is a super Dedekind complete F-lattice whose topology has the Fatou and σ -Levi properties. It is easy to observe that the sets of the form $a\cdot B(r)$ constitute a base of neighbourhoods of zero for the topology given by $||\cdot||_G$ where a,r>0 and $B(r)=\{x\in L^G(S,\sum,\mu):m_G(x)< r\}$.

The largest ideal in $L^G(S, \sum, \mu)$ on which $||\cdot||_G$ has the Lebesgue property is usually denoted by $L_a^G(S, \sum, \mu)$. It is known that

$$\begin{split} L_a^G(S, \sum, \mu) &= \{x \in L^G(S, \sum, \mu) : m_G(tx) \\ &< \infty \text{ for all } t > 0\}. \end{split}$$

Moreover, L_a^G is super order dense in $L^G(S, \sum, \mu)$ (for details see [6]).

The class of Musielak-Orlicz functions contains Orlicz functions, i.e., functions $\varphi:[0,\infty)\to[0,\infty)$ with properties listed in 1^0 . A Musielak-Orlicz space generated by Orlicz functions is called an Orlicz space. Orlicz functions will be denoted by small greek letters φ, ψ . Two Orlicz functions φ, ψ are equivalent (see [5]) if

$$a\varphi(br) \le \psi(r) \le c\varphi(dr)$$

for some positive constants a,b,c,d and all $r \in \mathbf{R}_+$. Equivalent Orlicz functions generate the same Orlicz spaces and therefore the identity is a Riesz and topological isomorphism between them. Thus if we are interested in isomorphic invariants of an Orlicz space, we may replace a given Orlicz function φ by an equivalent one $\overline{\varphi}$ possessing "better" properties than φ . For example, for every Orlicz function φ there exists a continuous and strictly increasing $\overline{\varphi}$ equivalent to φ . Indeed, putting

(*)
$$\overline{\varphi}(r) = \frac{1}{r} \int_0^r \varphi(t) dt,$$

we obtain

$$\frac{1}{2}\varphi(\frac{1}{2}r) \leq \overline{\varphi}(r) \leq \varphi(r).$$

In this paper Orlicz spaces which are Riesz isomorphic to $\ell_0^\infty(S)$ will be investigated and therefore only purely atomic measure spaces (S,\sum,μ) will be considered. We can assume that \sum is the σ -algebra generated by one-point sets $\{s\}$ and $\mu(\{s\})=a_s\in(0,\infty)$. It is possible to restrict our considerations to semi-finite measures because if $S_\infty=\{s:\mu(\{s\})=\infty\}$, then $S_\infty\cap\sup x=\emptyset$ for every $x\in L^\varphi(S,\sum,\mu)$, and so the spaces $L^\varphi(S,\sum,\mu)$ and $L^\varphi(S\backslash S_\infty,\wedge,\mu|\wedge)$ are Riesz isomorphic, where \wedge is the σ -algebra of subsets of $S\backslash S_\infty$ generated by sets $\sup x$ ($x\in L^\varphi(S,\sum,\mu)$).

We can also assume, in the case when μ is σ -finite, that $S = N, \sum$ is the σ -algebra of all subsets of $N, \mu(\{n\}) = a_n$.

We will write $\ell^G(a_s)$ ($\ell^G_a(a_s)$) instead of $L^G(S, \sum, \mu)$ ($L^G_a(S, \sum, \mu)$), and ℓ^G (ℓ^G_a) when S is countable and $a_s = 1$ for all s.

In the second part of this paper we will need the following simple Lemma (due to Drewnowski [4]).

LEMMA 3. Let $G: [0, \infty) \times S \to [0, \infty)$ be a Musielak-Orlicz function. The following conditions are equivalent:

- (a) $\ell^G(a_s) = \ell_0^{\infty}(S)$ (algebraically),
- (b) for every countable subset $S_0 \subset S$ there exist 0 < v < u such that $\inf_{s \in S_0} G(u, s) a_s > 0$ and $\sum_{s \in S_0} G(v, s) a_s < \infty$.

The next Lemma exhibits a class of Orlicz spaces over a σ -finite purely atomic measure space which are not Riesz isomorphic to ℓ^{∞} .

LEMMA 4. If $\sum_{1}^{\infty} a_n = \infty$ and $\sup a_n < \infty$, then the Orlicz space $\ell^{\varphi}(a_n)$ has no strong unit.

PROOF. Suppose $x=(x_n)$ is a strong unit in $\ell^{\varphi}(a_n)$. Then $x_n>0$ for all n and zero must be an accumulation point of (x_n) . Thus, by the continuity of φ at zero, we can choose a subsequence (x_{n_k}) such that $\varphi(2^kx_{n_k})<2^{-k}$. Put

$$y_m = \begin{cases} kx_{n_k} & \text{for } m = n_k \\ 0 & \text{for the others } m's. \end{cases}$$

We obtain $y = (y_m) \in \ell_a^{\varphi}(a_n)$, and so $y \leq Mx$ for some number M. In other words, $kx_{n_k} \leq Mx_{n_k}$ for all k which is impossible.

Lemma 2(b) and Lemma 4 imply the following fact:

If S is uncountable, then $\ell^{\varphi}(a_s)$ is never Riesz isomorphic to $\ell_0^{\infty}(S)$.

Indeed, suppose that $\ell^{\varphi}(a_s)$ is Riesz isomorphic to $\ell_0^{\infty}(S)$ and let $S(a,b)=\{s:a_s\in(a,b)\}$. Since S is uncountable, $S(m^{-1},m)$ contains imfinitely many elements for some $m\in N$. Taking an arbitrary countable subset A of $S(m^{-1},m)$ and using Lemma 2(b) we have $P_A(\ell^{\varphi}(a_s))$ is Riesz isomorphic to ℓ^{∞} . Hence the spaces ℓ^{∞} and ℓ^{φ} would be Riesz isomorphic which is impossible because, by lemma 4, ℓ^{φ} has no strong unit.

Therefore, in further considerations we will assume that μ is a σ -finite purely atomic measure.

The analogous arguments as above give

LEMMA 5. If $\ell^{\varphi}(a_n)$ is Riesz isomorphic to ℓ^{∞} , then the set of accumulation points of the sequence (a_n) is included in $\{0,\infty\}$.

II. Main results. We recall that an Orlicz function φ is said to satisfy the Δ_2^{∞} -condition (Δ_2^0 -condition), shortly $\varphi \in \Delta_2^{\infty}(\varphi \in \Delta_2^0)$, if $\varphi(2r) \leq k\varphi(r)$ for some k > 1 and all r's from some neighbourhood of infinity (of zero).

THEOREM 1. The following conditions are equivalent:

- (a) $\ell^{\varphi}(a_n) \simeq \ell^{\infty}$ for some sequence (a_n) ;
- (b) $\ell_a^{\varphi}(a_n) \sim c_0$ (i.e., these spaces are isomorphic as topological vector spaces) for some sequence (a_n) ;
 - (c) $\ell^{\varphi}(a_n) \sim \ell^{\infty}$ for some sequence (a_n) ; and
 - (d) $\varphi \notin \Delta_2^{\infty}$ or $\varphi \notin \Delta_2^0$.

PROOF. (a) \Rightarrow (b) is obvious. (b) \Rightarrow (c). Since $\ell_a^{\varphi}(a_n)$ and c_0 are isomorphic, they are Riesz isomorphic (see [1; Theorem 6]. Let $T: c_0 \to \ell_a^{\varphi}(a_n)$ be Riesz isomorphism onto. The σ -Levi property of $\ell^{\varphi}(a_n)$ implies the existence of the element $e = \sup_n T(e_n)$. Take an arbitrary element $x \in \ell^{\varphi}(a_n)$. Thus $|x| = \sup_n T(z_n)$ for some increasing sequence $(z_n) \subset c_{0+}$ according to supper order density of $\ell_a^{\varphi}(a_n)$ in $\ell^{\varphi}(a_n)$. We have $z_n(k)e_k \leq ||z_n||_{\ell^{\infty}}e_k$ for all k; so $T(z_n) = T(\sup_k z_n(k)e_k) = \sup_k z_n(k)T(e_k) \le ||z_n||_{\ell^{\infty}}e$. The inequality $T(z_n) \leq |x|$ gives that (z_n) is topologically bounded, thus $x = \sup_{n} T(z_n) \leq \sup_{n} ||z_n||_{\ell^{\infty}} \cdot e$. In other words, the element e is a strong unit in $\ell^{\varphi}(a_n)$, and so $\ell^{\varphi}(a_n)$ must be Riesz isomorphic (not only isomorphic) to ℓ^{∞} (see [7; Theorem 12]). (c) \Rightarrow (d). Suppose $\ell^{\varphi}(a_n) \sim \ell^{\infty}$ but $\varphi \in \Delta_2^{\infty}$ and $\varphi \in \Delta_2^{0}$, Therefore $\varphi(2r) \leq K \cdot \varphi(r)$ for some K > 1 and all $r \ge 0$. The last inequality implies $\ell^{\varphi}(a_n) = \ell^{\varphi}_a(a_n)$ and we have obtained a contradiction because $\ell_a^{\varphi}(a_n)$ is separable. (d) \Rightarrow (a). Suppose first $\varphi \notin \Delta_2^{\infty}$. Then there exists a sequence (b_n) increasing to infinity such that $\varphi(2b_n) > 2^n \varphi(b_n)$ for all n. Putting $a_n = (\varphi(2b_n))^{-1}$ and $G(r,n) = \varphi(rb_n)a_n$ we obtain $\sum_{1}^{\infty} G(1,n) < \infty$ and $\inf_n G(2,n) > 0$. According to Lemma 3, $\ell^G = \ell^{\infty}$, and so $(x_n) \in \ell^{\infty}$ if and only if $(b_n x_n) \in \ell^{\varphi}(a_n)$. Hence the operator $T: \ell^{\infty} \to \ell^{\varphi}(a_n)$ defined by the formula $T((x_n)) = (b_n x_n)$ is a Riesz isomorphism onto.

In the case $\varphi \notin \Delta_2^0$ the proof is analogous.

REMARKS. 1. The theorem implies in particular that $\ell^{\varphi}(a_n)$ may be

locally convex even if φ is not equivalent to a convex function.

- 2. Applying Lemma 2(b) and Lemma 5, we obtain: if $\ell^{\varphi}(a_n) \simeq \ell^{\infty}$, then
 - (a) $a_n \to 0$ when $\varphi \notin \Delta_2^{\infty}$ and $\varphi \in \Delta_2^0$,
 - (b) $a_n \to \infty$ when $\varphi \in \Delta_2^{\infty}$ and $\varphi \notin \Delta_2^0$,
- (c) $a_n \to 0$ or $a_n \to \infty$ or zero and infinity are the accumulation points of (a_n) when $\varphi \notin \Delta_2^{\infty}$ and $\varphi \notin \Delta_2^0$.

THEOREM 2. Let $(a_n) \subset R, a_n > 0$. Assume additionally that the Orlicz function φ is strictly increasing. Then the following conditions are equivalent:

- (a) $\ell^{\varphi}(a_n) \simeq \ell^{\infty}$;
- (b) $\sum_{1}^{\infty} \varphi(a\varphi^{-1}(a/a_n))a_n < \infty$ for some $a \in (0,1)$; and
- (c) $(\varphi^{-1}(a/a_n))$ is a strong unit in $\ell^{\varphi}(a_n)$ for some a > 0.

PROOF. (a) \Rightarrow (b). According to Lemma 2(a) there exists a sequence $(c_n) \in \mathbb{R}_+^N$ such that the operator $T: \ell^\infty \to \ell^\varphi(a_n)$ defined by $T((x_n)) = (c_n x_n)$ is a Riesz isomorphism onto. Thus $\ell^G = \ell^\infty$, where $G(r,n) = \varphi(rc_n)a_n$. Using Lemma 3 we obtain $\inf_n G(u,n) = d > 0$ and $\sum_1^\infty G(v,n) < \infty$ for some 0 < v < u. In other words $d = \inf_n \varphi(uc_n)a_n > 0$ and $\sum_1^\infty \varphi(vc_n)a_n < \infty$. The inequality $c_n \geq u^{-1}\varphi^{-1}(d/a_n)$ implies $\sum_1^\infty \varphi((v/u)\varphi^{-1}(d/a_n))a_n < \infty$. The proof will be finished if we put $a = \min(v/u, d)$. (b) \Rightarrow (c) is obvious. (c) \Rightarrow (a). Since $\ell^\varphi(a_n)$ possesses a strong unit, it is Riesz isomorphic to ℓ^∞ (see [7; Theorem 12]).

If E is a subset of \mathbb{R}^n , then E_{++} denotes the subset of E consisting of sequences with strictly positive terms.

EXAMPLE. Applying Theorem 2 to the function $\varphi(r) = e^r - 1$ we obtain $\ell^{\varphi}(a_n) \simeq \ell^{\infty}$ if and only if $(a_n) \in \bigcup_{0 .$

Theorem 2 implies also the following properties of the set $W_{\varphi} = \{(a_n) \in R_{++}^N : \ell^{\varphi}(a_n) \simeq \ell^{\infty}\}$ (φ strictly increasing): $W_{\varphi} + W_{\varphi} \subset W_{\varphi}$; $tW_{\varphi} \subset W_{\varphi}$ for all t > 0; and $(x_n), (y_n) \in W_{\varphi}$ implies $(x_n \vee y_n) \in W_{\varphi}$.

It was already noticed that if $\ell^{\varphi}(a_n) \simeq \ell^{\infty}, \varphi \notin \Delta_2^{\infty}$ and $\varphi \in \Delta_2^{0}$ (respectively $\varphi \in \Delta_2^{\infty}$ and $\varphi \notin \Delta_2^{0}$), then $(a_n) \in c_0$ (respectively $(a_n^{-1}) \in c_0$). Let $c^{\infty} = \{(a_n) : a_n \to \infty\}$ be equipped with the topology

of uniform convergence. Then we may ask about the "thickness" of the set of sequences $(a_n) \in c_{0++}((a_n) \in c_{++}^{\infty})$ for which $\ell^{\varphi}(a_n) \simeq \ell^{\infty}$ in the sense of Baire category.

The part (b) of Theorem 2 implies that if $\ell^{\varphi}(a_n) \simeq \ell^{\infty}$ and $a_n \to 0$, then $(a_n) \in \ell^1_{++}$. Denoting $W^1_{\varphi} = \{(a_n) \in \ell^1_{++} : \ell^{\varphi}(a_n) \simeq \ell^{\infty}\}$ we have

THEOREM 3. For every Orlicz function φ the set W^1_{φ} is of the first category in ℓ^1_+ .

We need the following Lemma

LEMMA 6. Let X be a metric space and let (f_n) be a sequence of real continuous functions on X. If $\{x : \sup_n f_n(x) < \infty\}$ is of the second category, then there is a non-empty open set U such that $\sup_n \sup_{x \in U} f_n(x) < \infty$.

The proof of the above Lemma can be found in [3, p.111].

PROOF OF THEOREM 3. As $W_{\varphi}^1 = W_{\overline{\varphi}}^1$ (for the definition of $\overline{\varphi}$ see (*)), we can assume that φ is strictly increasing and continuous. If φ is bounded, then $W_{\varphi}^1 = \emptyset$ ($\varphi \in \Delta_2^{\infty}$, thus $\ell^{\varphi}(a_n) = \ell_a^{\varphi}(a_n)$ for every $(a_n) \in \ell_{++}^1$). Let φ be unbounded. According to Theorem 2, $W_{\varphi}^1 = \bigcup_{a \in Q} W_a^1$, where $W_a^1 = \{(a_n) \in \ell_{++}^1 : \sum_1^{\infty} \varphi(a\varphi^{-1}(a/a_n))a_n < \infty\}$ and Q rationals in (0,1). Fix $a \in Q$. The functions $s_n : \ell_{++}^1 \to [0,\infty)$ defined by

$$s_n((a_k)) = \sum_{j=1}^n \varphi(a\varphi^{-1}(a/a_j))a_j$$

are continuous. Moreover, $W_a^1 = \{(a_n) \in \ell_{++}^1 : \sup_n s_n((a_k)) < \infty\}$. We claim W_a^1 is of the first category in ℓ_{++}^1 for all a. If not, then W_a^1 is of the second category for some a, and so, by Lemma 6, there exists a ball B with the radius ε such that

$$\sup_{n} \sup \{s_n((a_k)) : (a_k) \in B\} < \infty.$$

Let $c = (c_j)$ be the center of B. Fix k such that $\sum_{k=1}^{\infty} c_j < \varepsilon/2$. Put

$$b_n(j) = \begin{cases} c_j & \text{for } j \in \{1, \dots, k\} \cup \{k+1+n, \dots\} \\ \varepsilon/2n & \text{for } j \in \{k+1, \dots, k+n\}. \end{cases}$$

We have $||c - b_n||_{\ell^1} < \varepsilon$ for all n, thus $b_n \in B$. Moreover

$$s_{n+k}(b_n) \ge \sum_{j=k+1}^{k+n} \varphi(a\varphi^{-1}(2an/\varepsilon))(\varepsilon/2n)$$
$$= (\varepsilon/2)\varphi(a\varphi^{-1}(2an/\varepsilon)).$$

Since $\sup_n \sup\{s_n((a_k)) : (a_k) \in B\} \ge \sup_n s_{n+k}(b_n) \ge \sup_n (\varepsilon/2)\varphi$ $(a\varphi^{-1}(2an/\varepsilon)) = \infty$, we have obtained a contradiction. Therefore W_a^1 is of the first category in ℓ_{++}^1 for all a and thus W_{φ}^1 is likewise. It is clear that ℓ_{++}^1 is a dense G_{δ} subset of ℓ_{+}^1 . Hence W_{φ}^1 is of the first category in ℓ_{+}^1 .

Now we will consider the case of sequences (a_n) tending to infinity and $\ell^{\varphi}(a_n) \simeq \ell^{\infty}$. Comparing with $(a_n) \in \ell^1_{++}$, the situation changes essentially.

THEOREM 4. The set of sequences $(a_n) \in c_{++}^{\infty}$ such that $\ell^{\varphi}(a_n) \simeq \ell^{\infty}$ is open in c_{+}^{∞} .

PROOF. The uniform convergence in c_+^∞ is determined by the metric $d((x_n),(y_n))=\sup_n\min(|x_n-y_n|,1)$. We can assume, as before, that φ is strictly increasing. Let W_φ^∞ and W_a^∞ be defined similarly as the sets W_φ^1 and W_a^1 in the previous proof replacing ℓ_{++}^1 by c_{++}^∞ . Take an arbitrary sequence $(a_n)\in W_\varphi^\infty$. Then, by Theorem 2, $(a_n)\in W_a^\infty$ for some $a\in(0,1)$. Let $p\in(0,1)$ be so that $a_n-p>0$ for all n. Let $(b_n)\in B((a_n),p)=\{(c_n):d((c_n),(a_n))< p\}$. Then there exists $n_0\in N$ such that, for all $n\geq n_0$,

$$(1-p)a_n < a_n - p < b_n < a_n + p < (1+p)a_n.$$

Using the above inequalities and putting b = a(1 - p) < a, we have

$$\sum_{n_0}^{\infty} \varphi(b\varphi^{-1}(b/b_n))b_n \le \sum_{n_0}^{\infty} \varphi(b\varphi^{-1}(b/(1-p)a_n))(1+p)a_n$$
$$\le (1+p)\sum_{n_0}^{\infty} \varphi(a\varphi^{-1}(a/a_n))a_n < \infty.$$

Thus, $B((a_n), p) \subset W_b^{\infty} \subset W_{\omega}^{\infty}$ and W_{ω}^{∞} is open.

REFERENCES

- 1. Ju. A. Abramowič and P. Wojtaszczyk, The uniqueness of the order in the spaces $L_p[0,1]$ and l_p (Russian), Mat. Zamietki 18 (1975), 313-325.
- 2. C. Aliprantis and O. Burkinshaw, *Locally solid Riesz spaces*, Academic Press, 1978.
 - 3. N. Bourbaki, Topologie générale, Chapter IX (second ed.), Paris 1958.
- **4.** L. Drewnowski, On the generalized Orlicz sequence spaces $\ell_{(f_n)}$ (private communication).
- **5.** W. Matuszewska, *Spaces of* φ -integrable functions I, (Polish), Prace Matem. VI (1961), 121-139.
- 6. W. Wnuk, Representations of Orlicz lattices, Dissertationes Math. 235 (1984), 1-62.
- 7. ——, On the order-topological properties of the quotient space L/L_A , Studia Math. 79 (1984), 139-149.

MATHEMATICAL INSTITUTE, POLISH ACADEMY OF SCIENCES, MIELZYNSKIEGO 27/29 61-725 POZNAŃ, POLAND