A NOTE ON TWO-GENERATOR GROUPS

MARTIN J. EVANS

Following J.L. Brenner and James Wiegold [1], let $\Gamma_{1}^{(2)}$ stand for the collection of all finite non-abelian groups G with the property that every non-trivial element is in a two-element generating set of G in which one element is of order two.
In [1] it is shown that $\operatorname{PSL}(2, q) \in \Gamma_{1}^{(2)}$ except when $q=2,3$ or 9 . This led the above mentioned authors to ask whether almost all finite simple groups in $\Gamma_{1}^{(2)}$ are projective special linear groups.
In this note we answer this question negatively by showing that $\Gamma_{1}^{(2)}$ contains the Suzuki groups $S z\left(2^{2 n+1}\right),(n \geq 1)$. However, in the opposite direction we prove that the groups PSL $\left(2, p^{m}\right)$, with p an odd prime, $p^{m} \neq 3$ or 9 , are the only simple Chevalley groups over a field of odd characteristic that are contained in $\Gamma_{1}^{(2)}$.

Throughout the proof of the following theorem we use standard facts concerning Suzuki groups. These can be found in [3].

THEOREM 1. Let $G=S z(q)$ be a Suzuki group, where $q=2^{2 n+1}$ and $n \geq 1$. Then $G \in \Gamma_{1}^{(2)}$.

Proof. Given $x \in G$, we shall say that y is a mate for x in G if $\langle x, y\rangle=G$. Let Q be a Sylow 2-subgroup of G and let $z \in G$ be an involution not contained in Q. It follows from [3; Proposition 13] that each non-trivial element of odd order in G is conjugate to an element of the form πz where π is an involution in Q. In particular there exist involutions $\pi_{1}, \pi_{2} \in Q$ such that $\pi_{1} z$ is of order $q-1$ and $\pi_{2} z$ is of order $q+r+1$, where $r^{2}=2 q$.
Let $x \in G$ be a non-trivial element of odd order. We aim to show that there exists an involution π_{x} such that $\left\langle x, \pi_{x}\right\rangle=G$. Clearly it suffices to prove that some conjugate of x has a mate of order two in G. Therefore we may assume that $x=\pi z$ for some involution $\pi \in Q$. We distinguish two cases: (i) the order of x divides $q^{2}+1$; (ii) the order of

[^0]x divides $q-1$.
Case (i). Consider $H=<\pi_{1} \pi, \pi z>$. Now H contains $\left(\pi_{1} \pi\right)(\pi z)=$ $\pi_{1} z$ which is of order $q-1$. However, the maximal subgroups of G that contain elements of order $q-1$ are Frobenius groups of order $q^{2}(q-1)$ and dihedral groups of order $2(\mathrm{q}-1)$. Since $\pi z \neq 1$ is of order dividing $q^{2}+1$ we deduce that $H=G$. Moreover, $\pi_{1} \pi$ is an involution, since each involution in Q is central in Q. Thus $x=\pi z$ has a mate of order two.

Case (ii). Consider $K=<\pi_{2} \pi, \pi z>$. Now K contains $\left(\pi_{2} \pi\right)(\pi z)=$ $\pi_{2} z$ which is of order $q+r+1$. A subgroup of order $q+r+1$ lies in a unique maximal subgroup of G, namely its normalizer which is of order $4(q+r+1)$. Since K contains $\pi z \neq 1$ which is of order dividing $q-1$, we deduce that $K=G$. Thus $\pi_{2} \pi$ is a mate of order two for x in G.
The above argument shows that each non-trivial element of G of odd order has a mate of order two. Furthermore, since all involutions in G are conjugate, it shows that every involution has a mate in G.
It only remains to show that each element of order four has a mate of order two in G. Now G has exactly two conjugacy classes of elements of order four, C_{1} and C_{2} say, and these are such that $x \in C_{1}$ if and only if $x^{-1} \in C_{2}$ [3; Proposition 18]. Therefore it suffices to show that some element of order four has a mate of order two. Such a pair of generators of G has been found by M. Suzuki [3, p. 140].
Throughout the remainder of this note our notation is that of [2] and is more or less standard. We shall also use some basic facts about Chevalley groups which can again be found in [2].

THEOREM 2. Let $G=\mathfrak{L}(K)$ be a simple Chevalley group over a finite field K of odd characteristic p. If $G \in \Gamma_{1}^{(2)}$, then $G \simeq \operatorname{PSL}(2, K)$.

Proof. Let ϕ denote a system of roots of \mathfrak{L}, so that G is generated by $\left\{x_{r}(k) \mid r \in \phi, k, \in K\right\}$ and let X_{r} denote the root subgroup generated by $\left\{x_{r}(k) \mid k \in K\right\}$. Furthermore, let U be the subgroup generated by $\left\{x_{r}(k) \mid r \in \phi^{+}, k \in K\right\}$ where ϕ^{+}is a positive system of roots with respect to some fundamental system of ϕ. Now U is nilpotent and, letting s denote a root of greatest height, X_{s} is a central subgroup of U [2; Theorem 5.3.3].
From now on suppose that $G \in \Gamma_{1}^{(2)}$. Since $x_{s}(1)$ is of order p and $G \in \Gamma_{1}^{(2)}$, there exists an involution $y \in G$ such that $G=$
$\left\langle x_{s}(1), y\right\rangle$. Notice that $G=\left\langle x_{s}(1), y^{-1} x_{s}(1) y\right\rangle$, since $x_{s}(1)$ and y normalize $\left\langle x_{s}(1), y^{-1} x_{s}(1) y\right\rangle$ and $G=\left\langle x_{s}(1), y\right\rangle$ is simple. We shall only require the fact that $G=\left\langle X_{s}, X_{s}^{y}\right\rangle$.
Using the Bruhat decomposition of G we can write $y=u_{1} h_{1} n_{t} u_{2} h_{2}$ where $u_{1}, u_{2} \in U, h_{1}, h_{2} \in H$ and $n_{t} \in N$. Here H and N denote the diagonal and monomial subgroups of G respectively. For the definitions and basic properties of H and N see [2; Chapter 7]. Now X_{s} is central in U and $H \leq N_{G}\left(X_{s}\right)$, so

$$
G=\left\langle X_{s}, X_{s}^{n_{t} u_{2} h_{2}}\right\rangle=\left\langle X_{s}^{h_{2}^{-1} u_{2}^{-1}}, X_{s}^{n_{t}}\right\rangle=\left\langle X_{s}, X_{s}^{n_{t}}\right\rangle
$$

Let w_{t} denote the image of n_{t} in the Weyl group W under the natural homomrphism from N to $N / H \simeq W$. Now $n_{t}^{-1} X_{s} n_{t}=X_{w_{t}(s)}[2$ Lemma 7.2.1] so $G=\left\langle X_{s}, X_{w_{t}(s)}\right\rangle$.
If $r_{1}, r_{2} \in \phi$ are linearly independent then there exists $w \in W$ such that $w\left(r_{1}\right), w\left(r_{2}\right) \in \phi^{+}$[2; Proposition 2.1.8, Lemma 2.1.5]. It follows that $\left\langle X_{r_{1}}, X_{r_{2}}\right\rangle$ is conjugate to a subgroup of U and is therefore nilpotent. Since $G=\left\langle X_{s}, X_{w_{t}(s)}\right\rangle$ is simple, we deduce that $w_{t}(s)=-s$, so $G=\left\langle X_{s}, X_{-s}\right\rangle$. Now there exists a homomorphism from $\operatorname{SL}(2, K)$ onto $\left\langle X_{s}, X_{-s}\right\rangle$ [2; Theorem 6.3.1] and as $\left\langle X_{s}, X_{-s}\right\rangle=G$ is simple, it follows that $G \simeq \operatorname{PSL}(2, k)$ as required.

References

1. J.L. Brenner and James Wiegold, Two-generator groups, I Michigan Math. J. 22 (1975), 53-64.
2. Roger W. Carter, Simple Groups of Lie Type Interscience Publishers, New York, 1972.
3. Michio Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75, (1962) 105-145.

Department of Mathematics, University of Alabama, Univerity, al 35486

[^0]: Received by the editors on April 24, 1986.

