A NOTE ON TWO-GENERATOR GROUPS

MARTIN J. EVANS

Following J.L. Brenner and James Wiegold [1], let $\Gamma_1^{(2)}$ stand for the collection of all finite non-abelian groups G with the property that every non-trivial element is in a two-element generating set of G in which one element is of order two.

In [1] it is shown that $PSL(2,q) \in \Gamma_1^{(2)}$ except when q = 2, 3 or 9. This led the above mentioned authors to ask whether almost all finite simple groups in $\Gamma_1^{(2)}$ are projective special linear groups.

In this note we answer this question negatively by showing that $\Gamma_1^{(2)}$ contains the Suzuki groups $Sz(2^{2n+1}), (n \ge 1)$. However, in the opposite direction we prove that the groups $PSL(2, p^m)$, with p an odd prime, $p^m \neq 3$ or 9, are the only simple Chevalley groups over a field of odd characteristic that are contained in $\Gamma_1^{(2)}$.

Throughout the proof of the following theorem we use standard facts concerning Suzuki groups. These can be found in [3].

THEOREM 1. Let G = Sz(q) be a Suzuki group, where $q = 2^{2n+1}$ and $n \geq 1$. Then $G \in \Gamma_1^{(2)}$.

PROOF. Given $x \in G$, we shall say that y is a mate for x in G if $\langle x, y \rangle = G$. Let Q be a Sylow 2-subgroup of G and let $z \in G$ be an involution not contained in Q. It follows from [3; Proposition 13] that each non-trivial element of odd order in G is conjugate to an element of the form πz where π is an involution in Q. In particular there exist involutions $\pi_1, \pi_2 \in Q$ such that $\pi_1 z$ is of order q-1 and $\pi_2 z$ is of order q + r + 1, where $r^2 = 2q$.

Let $x \in G$ be a non-trivial element of odd order. We aim to show that there exists an involution π_x such that $\langle x, \pi_x \rangle = G$. Clearly it suffices to prove that some conjugate of x has a mate of order two in G. Therefore we may assume that $x = \pi z$ for some involution $\pi \in Q$. We distinguish two cases: (i) the order of x divides $q^2 + 1$; (ii) the order of

Received by the editors on April 24, 1986.

Copyright ©1987 Rocky Mountain Mathematics Consortium 887

x divides q - 1.

Case (i). Consider $H = \langle \pi_1 \pi, \pi z \rangle$. Now H contains $(\pi_1 \pi)(\pi z) = \pi_1 z$ which is of order q-1. However, the maximal subgroups of G that contain elements of order q-1 are Frobenius groups of order $q^2(q-1)$ and dihedral groups of order 2(q-1). Since $\pi z \neq 1$ is of order dividing $q^2 + 1$ we deduce that H = G. Moreover, $\pi_1 \pi$ is an involution, since each involution in Q is central in Q. Thus $x = \pi z$ has a mate of order two.

Case (ii). Consider $K = \langle \pi_2 \pi, \pi z \rangle$. Now K contains $(\pi_2 \pi)(\pi z) = \pi_2 z$ which is of order q + r + 1. A subgroup of order q + r + 1 lies in a unique maximal subgroup of G, namely its normalizer which is of order 4(q + r + 1). Since K contains $\pi z \neq 1$ which is of order dividing q - 1, we deduce that K = G. Thus $\pi_2 \pi$ is a mate of order two for x in G.

The above argument shows that each non-trivial element of G of odd order has a mate of order two. Furthermore, since all involutions in Gare conjugate, it shows that every involution has a mate in G.

It only remains to show that each element of order four has a mate of order two in G. Now G has exactly two conjugacy classes of elements of order four, C_1 and C_2 say, and these are such that $x \in C_1$ if and only if $x^{-1} \in C_2$ [3; Proposition 18]. Therefore it suffices to show that some element of order four has a mate of order two. Such a pair of generators of G has been found by M. Suzuki [3, p. 140].

Throughout the remainder of this note our notation is that of [2] and is more or less standard. We shall also use some basic facts about Chevalley groups which can again be found in [2].

THEOREM 2. Let $G = \mathfrak{L}(K)$ be a simple Chevalley group over a finite field K of odd characteristic p. If $G \in \Gamma_1^{(2)}$, then $G \simeq PSL(2, K)$.

PROOF. Let ϕ denote a system of roots of \mathcal{L} , so that G is generated by $\{x_r(k)|r \in \phi, k, \in K\}$ and let X_r denote the root subgroup generated by $\{x_r(k)|k \in K\}$. Furthermore, let U be the subgroup generated by $\{x_r(k)|r \in \phi^+, k \in K\}$ where ϕ^+ is a positive system of roots with respect to some fundamental system of ϕ . Now U is nilpotent and, letting s denote a root of greatest height, X_s is a central subgroup of U [2; Theorem 5.3.3].

From now on suppose that $G \in \Gamma_1^{(2)}$. Since $x_s(1)$ is of order p and $G \in \Gamma_1^{(2)}$, there exists an involution $y \in G$ such that G =

 $\langle x_s(1), y \rangle$. Notice that $G = \langle x_s(1), y^{-1}x_s(1)y \rangle$, since $x_s(1)$ and y normalize $\langle x_s(1), y^{-1}x_s(1)y \rangle$ and $G = \langle x_s(1), y \rangle$ is simple. We shall only require the fact that $G = \langle X_s, X_s^y \rangle$.

Using the Bruhat decomposition of G we can write $y = u_1h_1n_tu_2h_2$ where $u_1, u_2 \in U, h_1, h_2 \in H$ and $n_t \in N$. Here H and N denote the diagonal and monomial subgroups of G respectively. For the definitions and basic properties of H and N see [2; Chapter 7]. Now X_s is central in U and $H \leq N_G(X_s)$, so

$$G = \langle X_s, X_s^{n_t u_2 h_2} \rangle = \langle X_s^{h_2^{-1} u_2^{-1}}, X_s^{n_t} \rangle = \langle X_s, X_s^{n_t} \rangle.$$

Let w_t denote the image of n_t in the Weyl group W under the natural homomorphism from N to $N/H \simeq W$. Now $n_t^{-1}X_s n_t = X_{w_t(s)}$ [2 Lemma 7.2.1] so $G = \langle X_s, X_{w_t(s)} \rangle$.

If $r_1, r_2 \in \phi$ are linearly independent then there exists $w \in W$ such that $w(r_1), w(r_2) \in \phi^+$ [2; Proposition 2.1.8, Lemma 2.1.5]. It follows that $\langle X_{r_1}, X_{r_2} \rangle$ is conjugate to a subgroup of U and is therefore nilpotent. Since $G = \langle X_s, X_{w_t(s)} \rangle$ is simple, we deduce that $w_t(s) = -s$, so $G = \langle X_s, X_{-s} \rangle$. Now there exists a homomorphism from SL (2, K) onto $\langle X_s, X_{-s} \rangle$ [2; Theorem 6.3.1] and as $\langle X_s, X_{-s} \rangle = G$ is simple, it follows that $G \simeq \text{PSL}(2, k)$ as required.

References

1. J.L. Brenner and James Wiegold, Two-generator groups, I Michigan Math. J. 22 (1975), 53-64.

2. Roger W. Carter, Simple Groups of Lie Type Interscience Publishers, New York, 1972.

3. Michio Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75, (1962) 105-145.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERITY, AL 35486