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GREAT SPHERE FIBRATIONS OF MANIFOLDS 

JOHN PETRO 

1. Introduction. Let E be a smooth, closed n-manifold which is 
a) smoothly fibred by fc-spheres, and 
b) smoothly embedded in SN (the unit TV-sphere in i? N + 1 ) so that 

these fc-sphere fibres appear as great fc-spheres in SN. We say simply 
that E is fibred by great k-spheres. In this paper we study great sphere 
fibrations of certain manifolds E and examine what restrictions the ge­
ometric constraint (b) above places on the class of topological /z-sphere 
fibrations of E. 

A good example to keep in mind is that of 3-sphere fibrations of the 
7 sphere. There are infinitely many topologically inequivalent smooth 
3-sphere fibrations of the 7-sphere [5]. By Proposition 2.1 below, each 
such fibration may be pictured as a fibration by great 3-spheres, pro­
vided we choose a suitable embedding of the 7-sphere into a large 
dimensional sphere SN. If we insist that the 7-sphere appear as the 
unit sphere in R8 , then Gluck, Warner, and Yang have recently shown 
that every smooth fibration of it by great 3-spheres is topologically 
equivalent to the Hopf fibration [2]. 

This illustrates the general expectation, namely, when we lower the 
dimension of the sphere in which we permit the total space to be embed­
ded or place geometric constraints on the total space we correspond­
ingly restrict the bundles whose fibres can thus be made into great 
/c-spheres. It is in this way that geometric theory departs from the 
topological theory. 

If E Ç SN is fibred by great fc-spheres there is a hierarchy of three 
questions, in increasing order of difficulty, which guides our study: 

1) Given two such fibrations, are they topologically equivalent? 
2) If they are topologically equivalent, is it possible to deform one to 

the other through a one-parameter family of such fibrations? 
3) What is the homotopy type of the space of all such fibrations? 

In general, even question 1 remains unanswered for all but the simplest 
cases; however, all three questions were completely answered for great 
circle fibrations of the round of 3-sphere [1]. 
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The above referenced paper Gluck, Warner, and Yang shows how one 
is led to questions about great sphere fibrations of manifolds E, in par­
ticular where E is itself a round sphere, in working on the topological 
problem of the Blaschke conjecture. 

Summary of Major Results. In §2 we prove a realization theorem 
which says that all reasonable fc-sphere bundles can be pictured with 
great fc-sphere fibres by embedding the total space into a large dimen­
sional sphere. 

PROPOSITION 2.1. Let £ : Sk —• E —• B be a smooth k-sphere bundle 
with group 0(k + 1) over a compact base space B. Then the total space 
E can be smoothly embedded into SN for N sufficiently large so that 
each k-sphere fibre becomes a great k-sphere in SN. 

The results in [1] and [2] deal with fibrations of the round sphere 
Sn by great fc-spheres. The next simplest case to study seems to be 
Sp x Sq embedded in gP+^+i^ and the remainder of this paper is de­
voted to studying great fc-sphere fibrations of such manifolds. 

In §3 we prove some general statements about such fibrations and 
then we begin sampling the theory for small values of p, q, and k. Great 
circle fibrations of S1 x S3 prove to be interesting and some elementary 
questions about them remain unanswered. Another sample: S6 x S 1 3 

admits no fibrations by great fc-spheres for any k > 1 (while it obvi­
ously admits fibrations by 1-spheres, 6-spheres and 13-spheres if we 
drop the restriction that the fibration be by great spheres in S20). 

By far the richest and most satisfying theory we develop is in §4 where 
we treat great 3-sphere fibrations of S3 x S3. We completely answer 
the three questions posed above when we prove 

THEOREM A. The space of all oriented great 3-sphere fibrations of 
S3 x S3 deformation retracts to the subspace of "Hopf fibrations" and 
has the homotopy type of a disjoint union of four copies of real projec­
tive S-space, RP3. 

In the course of proving this we also get: 
1) There is a 2 to 1 correspondence between distance decreasing maps 

from S3 to S3 and great 3-sphere fibrations of S3 x S3. 
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2) These fibrations are smooth if and only if the distance decreasing 
map is smooth and the norm of its differential is strictly less than 1. 

3) Every such fibration has an orthogonal pair of fibres. 
These are analogous to results obtained in [1] for great circle fibra­

tions of S3. 
Using Theorem A we prove 

THEOREM B. Every smooth great S-sphere fibration of S3 x S3 can 
be extended to a smooth great 3-sphere fibration of S7. 

Acknowledgement. This paper is part of a dissertation submitted in 
partial fulfillment of the requirements for the degree of Doctor of Phi­
losophy at the University of Pennsylvania, 1983. I thank my advisor, 
Herman Gluck, for suggesting the problems considered here and for his 
guidance. I also thank the United States Air Force which made my 
years of graduate study possible. 

2. Realization theorem. 

PROPOSITION 2.1. Let £ : Sk -+ E^B be a smooth k-sphere bundle 
with group O(fc-fl) over the compact base space B. Then the total space 
E can be smoothly embedded into SN for N sufficiently large so that 
each k-sphere fibre becomes a great k-sphere in SN. 

PROOF. 1. Since the group of the bundle is 0(k + 1) there is an 
associated Euclidean (k + l)-plane bundle, £' : R fc+1 -» E' —• B, over 
B such that £ is the unit sphere bundle of £'. By [4; Lemma 5.3] 
there exists an integer p and a bundle map / : £' —• V r fc+1RP+1, where 
yfc+ijjp+i | s J-J^ c a n o n i c a i (fc + l)-plane bundle over the Grassmann 
manifold G f c + iÄp + 1 . 

/ : E! • £(V' fc+1Rp+1) 

i i 
/ : B • G f c + 1Rp + 1 
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Now E C E' and we may assume that f\E : E -> Sp C R p + 1 , so let 
/ = f\E. Since / ( T T 1 ^ ) ) = / ( ^ ( f t ) ) n S " , it's clear that / (^-sphere 
fibre) is a great Ä;-sphere in Sp. But while / is an embedding on each 
fibre, / is by no means an embedding of E in Sp. 

2. If n = 2 • dimB by the Whitney Embedding Theorem there exists 
an embedding ip : B —• Sn. Consider the map 

(tl>oirJ):E->SnxSp. 

For a\ ^ 02 in i£, if n(ai) ^ 7r(a2)5 then ip o 7r(ai) ^ ip o 7r(a2). If 
7r(ai) = 7r(a2), then f{a\) 7̂  /(«2) since / is injective on each fibre. 
Therefore (ipOn, f) is an injective map from a compact space E into 
a Hausdorff space Sn x Sp, so it must be a homeomorphism onto its 
image. 

3. At a € 7T~1(x) Ç £*, the tangent space TaE decomposes into a 
direct sum, TaE = T,

a7r_1(a:) © TaB where TaB is transverse to the 
fibre 7T-1(x), and consequently maps bijectively via dn on TXB. Since 
dfa\Tair~l{x) is injective and d(ip o 7r)aTaB is injective, it follows that 
(^o/, 7r) is an immersion. 

4. Together, the results of 2 and 3 imply (tp o TT, / ) : E -+ Sn x Sp 

is a smooth embedding. The following lemma completes the proof of 
Theorem 2.1. 

LEMMA 2.2. For any pair of positive integers n and p, there exists 
an N and a smooth embedding of Sn x Sp into SN, taking {a} x Sp 

linearly onto a great p-sphere in SN for each a G Sn. 

PROOF. Let N = (p+l)(n + l)+p and SN C R N + 1 . We show there 
is a smooth embedding 4> : Sn —• V^+iR^"1-1, the Stiefel manifold of 
orthonormal (p + l)-frames in R^* 1 , such that, for a ^ b in 5 n , the 
(p + l)-plane { span 0(a)}, intersects the (p + l)-plane { span 0(6)} 
only at the origin. 

Define 0 : 5 n - R N + 1 x R N + 1 x • • • x RN+1 (p + 1 copies) 

01(Xl, . . . , Xn+l) = -T=(1,0, . . . ,0, Si, . . . , Xn+i, 0, . . . ,0) 

where X\ is in the p + 2 entry 
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0 2 (z i , . - . ,Zn+i) = ^ ( 0 , l , 0 , . . . , 0 , . . . , 0 , x i , . . . , z n + i , 0 , . . . , 0 ) 

where x\ is in the p + n + 3 entry 

</>p+l («1 , • - • , » n + l ) = —?E (0, . . . , 0, 1, 0, . . . , 0, Xi, . . . , Z n + l ) 

where 1 is in the p + 1 entry and £i is in 

the p -f pn + p + 2 entry. 

Let 0 = (0i,025 ••• j0p+i)« It is simple to verify that the map 
r : Sn x S? -+ SN given by 

p+i 

r(a,(ai , . . . ,ap+i)) = J ^ a ^ a ) 
2 = 1 

satisfies the requirements of the lemma. 

Finally, TO^OTT, f):E—> SN is an embedding that satisfies the re­
quirements of Proposition 2.1. 

DEFINITION 2.3. The bad cone of a point Q e GkR
n is the set of 

points P G GfcRn that correspond to fc-planes in R n which intersect 
the fc-plane Q in more than the origin; bad cone of Q = {P E GfcRw : 
BvePCiQ with v ^ 0 } . 

COROLLARY 2.4. Gwen the hypothesis of Proposition 2.1, the base 
space B of a smooth k-sphere bundle has a smooth embedding in 
Gfc+iRr+/c+1

? for r sufficiently large, such that B is transverse to the 
bad cone through each of its points, 

PROOF. From Proposition 2.1 we have produced a smooth great 
fc-sphere fibration of a submanifold, ro{ìp(mìf)(E) of SN. Although 
we don't have a fibration of all of SN by great fc-spheres, the identical 
proof of [2; Theorem 4.1] carries through to produce the result. 
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If F is a fc-plane in Rn,A; < n, and P-1 denotes the orthogonal 
(n — fc)-plane and <j> : U —> Horn (P, P1-) is an embedding of an open 
subset U of a manifold X, then since 0 is injective, forx^y in 
U,<t>(x) 7̂  </>(l/). So, for 1 / 1 / , there exists a non-zero v G P with 
^ ( t O j f c 0(y)(t;). 

DEFINITION 2.5. Given the situation just described, we say 0 is a 
strongly injective embedding if, for x ^ y in U,<l>(x)(v) ^ <t>(y){v) f° r 

a// non-zero v G P . And 0 is a smooth strongly injective embedding if, 
in addition, for all non-zero v G P, the map <j>v : U —> P - 1 given by 
0v(x) = 0(x)(v) is an immersion. 

If B is an embedded submanifold of Gk-\-i^tN+1 such that B repre­
sents the base space of a great fc-sphere fibration of some submanifold 
E =

 ( U Q É B Q) H SN ?= 5 ^ , then for all Q G P and coordinate maps 
4>Q'UQQ G f c + iR i V + 1 - • Horn (Q, Q-1), </>Q|£/Q n B is a strongly injec­
tive embedding. In addition, if B is the base space of a smooth great 
fc-sphere fibration of E, then B is transverse to the bad cone through 
each of its points and (J)Q\UQC\B is a smooth strongly injective embed­
ding. 

3. Great /c-sphere fibrations of Sm x Sn. Throughout this 
part, by abuse of notation, we let Sm x Sn denote the submanifold of 
gm+n+i g i v e n b y 

m+l 1 m+n+2 ^ 
5 J x S 5 j = {(x1,...,xm+n+2):^a;,

2 = -, £ *? = g}-
1 = 1 1=771 + 2 

It should be clear from the context and thus cause no confusion when 
we write Sm x Sn whether we mean a product of unit spheres or a 
product of spheres of radius -4=. 

Let pi : R m + n + 2 _• R m + 1 be the projection on the first m + l coor­
dinates and p2 • R m + n + 2 —• R n + 1 be the projection on the last n + 1 
coordinates. 

LEMMA 3.1. A great k-sphere o / S m + n + 1 lying inside Sm x Sn gives 
an isometry from a great k-sphere in Sm onto a great k-sphere in Sn. 
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PROOF. First observe that Sk C Sm x Sn implies k < min(m,n). 
For suppose m = min(ra,n) and k > m. Let P denote the 
(k + l)-plane spanned by Sk. Since fc + l + n + 1 > ra + n + 2, P 
and p2 (R m + n + 2 ) = R n + 1 must intersect at least along a line. Hence 
there exists v G Sk n p 2 ( R m + n + 2 ) , but this v cannot be in Sm x 5 n 

since ||p2(^)|| = IMI = 1. Hence we must have k < min(m,n). 
This also shows p\\P and P2\P both have rank = k + 1 and kernel 

= {0}. Therefore P represents the graph of an isomorphism from pi (P) 
to p2 (P) which is clearly an isometry. 

LEMMA 3.2. If m or n is even then Sm x Sn cannot be fibred by great 
circles of 5 m + n + 1 . 

PROOF. Say n is even. Fix x G pi(Sm x Sn). If there were a fi­
bration of Sm x Sn by great circles, then, for each y G P2{Sm x S n ) , 
the great circle fibre through (x,y) G Sm x 5 n would project to a 
great circle S'{y) on P2{Sm x 5 n ) through y. Each such circle S'(y) 
has a well defined tangent line, at y varying continuously with y on 
P2(Sm x Sn) = S j ^ . But n is even, so this is impossible. 

COROLLARY 3.3. S1 x S2n has no great k-sphere fibrations for any 
n or k > 1. 

If n is even and m < n then we can apply Corollary 3.3 to conclude 
that there is no great m sphere fibration of Sm x Sn. For suppose P 
is the (n + 3)-plane in # m + n + 2 , 

P = { ( X i , . . . , £ m + n + i ) :Xi=X2 = "'- = Xm-x = 0 } . 

Note that P n 5 r m + n + 1 = Sn+2 and Pn(Sm x Sn) = S1 x 5 n . If there 
were a great m-sphere fibration of Sm x iSn, then each fibre projects 
bijectively on pi(Sm x 5 n ) , intersecting the fibration with P would 
cut each fibre down to a great circle in 5 n + 2 and give a great circle 
fibration of S1 x Sn. By Corollary 3.3 this is impossible. 

In particular we conclude S2n x S2n cannot be fibred by great 
2n-spheres. 

What about great (2n - l)-sphere fibrations of S2™-1 x S2n~lri 
Clearly, any such fibration is trivial (let S2n~l = PiiS2*1-1 x S2"-1), 
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then fix q0 e 5 2
2 n _ 1 and define %j) : 5 1

2 n _ 1 x S2
2n_1 -+ S271-1 x S271-1 

by tp(r,q) = (r, LriQoq), where LrAo is the isometry from S 2 n _ 1 to 
S\n~x determined by the fibre through (r,g0)). If 5 2 n _ 1 denotes the 
base space of a great (2n — l)-sphere fibration of S2n~x x S 2 n - 1 Ç 
5 4 n _ 1 Ç R 4 n then from §2 we conclude that we have a strongly in-
jective embedding 0 : S2*"1 -> Hom(pi(R4 n) ,p2(R4 n)) . Since ev­
ery fibre in fact gives an isometry, if we identify the r"- coordinate 
in pi{R4n) with the 2n + t™ coordinate of P2(R4n) we can assume 
we have a strongly infective embedding (j> : S 2 n _ 1 —• 0(2n), the or­
thogonal group on R2n. Such a strongly injective embedding (j> induces 
a map 0 : S 2*" 1 x S 2 "" 1 - • S , 2n"1 ,^(a,6) = 0(a)(0). Clearly 0 has 
bidegree(l, 1), so by a theorem of Adams and Atiyah, [3; Chapter 14] 
we conclude n = 1,3,7. Such strongly injective embeddings certainly 
exists in these dimensions, namely the unit spheres in R 2 , R 4 or R8 

considered as the complex numbers, quaternions, or Cayley numbers 
respectively. Hence we have proven. 

COROLLARY 3.4. Sn x Sn can be fibred by great n-spheres if and only 
ifn = 1,3 or 7. 

Since 5 4 n + 1 , n > 1, does not admit a continuous field of tangent 
fc-planes 2 < k < An — 1, [6; Section 27.18], the idea in the proof 
of Lemma 3.2 generalizes to 

LEMMA 3.5. 5 m x 5 4 n + 1 , n > I, admits no great k-sphere fibration 
for2<k<4n-l. 

PROOF. TO be specific, suppose we had a great 2-sphere fibra­
tion of Sm x 5 4 n + 1 . Fix a; € pi{Sm x 5 4 n + 1 ) . Then, for each 
y € P2(Sm x S 4 n + 1 ) , let TXiyS2 be the tangent space to the great 
2-sphere fibre at (x, y) G Sm x 5 4 n + 1 . Since the 2-sphere projects 
onto an embedded great 2-sphere in p 2 (S m x 5 4 n + 1 ) , dp2(TXiyS

2) is 
a 2-plane in Typ2{Sm x 5 4 n + 1 ) . In this way we get a continuous field 
of tangent 2-planes on 5 ' 4 n + 1 , but this is impossible. 

Using these general facts we now turn our attention to some specific 



GREAT SPHERE FIBRATIONS 873 

low dimensional cases. 
1. Great circle fibrations of S1 x S1 Ç S3. From the discussion 

after Corollary 3.3, any such fibration is trivial with base space S1 

and it gives a strongly injective embedding of S1 in 0(2). Now 
0(2) ~ Ä1 LJdisi *^1' s o ' m 0 ( m l e reparametrization, there are only 
two possible embeddings of S1 in 0(2) with image either S0(2) or 
0(2) - 50(2). Its easy to see that either such embedding is a strongly 
injective embedding. So the space of great circle fibrations of S1 x S1 

is just 2 points, one point corresponding to a fibration by (1,1) curves 
(homotopy type of typical fibre in 7Ti(S1 X S1)) with typical fibre of 
the form 

{-L(e*V ( * + a ) ) : o < 0 < 2TT},0 < a < 2TT, 
v2 

and the other point corresponding to a fibration by (1,-1) curves, with 
typical fibre {^(e^ ,e i ( ~ ö + a ) ) : 0 < 0 < 2TT},0 < a < 2TT. 

2. By Corollary 3.3, S1 x S2 admits no great sphere fibrations. 
3. By Lemma 3.2 and the discussion after Corollary 3.3, S2 x S2 

admits no great sphere fibrations. 
4. Great circle fibrations of S 1 x S3 Ç S5. Given a great circle 

fibration of S3 , we get a great circle fibration of S1 x S3 by lifting each 
great circle on S 3 to a "diagonal" on S1 x S3. Assume the fibration 
of S3 is oriented, and, for y € S3 , let y1- denote that element of S3 

gotten by rotating Ç radians in the oriented direction along the fibre 
through y. For each y G S3 , 

S (y) = {4=cos0(l,O,ç) + 4 = sin 0 ( 0 , 1 , ^ ) : 0 < 0 < 2TT} 
y/2 y/2 

is a great circle of S5 lying entirely in S1 x S3. Its easy to see that the 
family of all such great circles fibres S1 x S3. 

As a consequence of our work in §4 below we will see that a great 
circle fibration can be obtained in a natural way from any distance 
decreasing map from S3 to S2. Some of these maps will give fibrations 
of S1 x S3 that do not correspond to great circle fibrations of the S3 

factor as above. It is not clear whether every great circle fibration of 
S1 x S3 arises from a distance decreasing map of S 3 to S2 so this 
remains an open question. 

5. Great sphere fibrations of S2 x S3. The only possibility is for a 
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fibration by great 2-spheres. In §4 below we completely catalogue all 
great 3-sphere fibrations of S3 xS3. Suppose we have a great 3-sphere 
fibration of S3 x S3 C S7. Let S 6 Ç S7 be given by SG = S7 n t{, 
Note that S2 x S3 = (S3 x S3) n l\;. Exactly as in the discussion 
following Corollary 3.3 we conclude that any great 3-sphere fibration 
of S 3 x S3 , desuspends, via intersection with l\ to a great 2-sphere 
fibration of S2 x S3. 

Conversely, since any isometry from S2 to S3 extends in one of two 
distinct ways to an isometry from S3 to S3 it is not hard to show that 
any great 2-sphere fibration of S2 x S3 extends in one of 2 distinct ways 
to a great 3-sphere fibration of S3 x S3. Furthermore this extension 
process is inverse to the desuspension process above; in summary we 
have the conclusion: There is a 2-to-l correspondence between great 
3-sphere fibrations of S3 x S3 and great 2-sphere fibrations of S2 xS3. 
Therefore all the results we obtain in §4 pertaining to great 3-sphere 
fibrations of S3 x S3 can, with minor modification, be applied to great 
2-sphere fibrations of S2 x S3. 

6. Great circle fibrations of S3 x S3 Ç S7 . Let F{ : S1 - • S\_^S2 

be any oriented great circle fibrations of Pi(S3 x S3),i = 1,2. Given a 
great circle fibre on the first factor and one on the second, their product 
is an S1 xS1 Ç S3 x S3. By (1), this S1 x S1 admits a unique fibration 
by (1,1) great circles (since Fi and 2*2 are oriented, the notion of (1,1) 
makes sense globally). In this way we can associate to any pair F\ and 
F2 a great circle fibration of S3 x S3. 

As in (4) above, there remain unanswered questions here also. Are 
all great circle fibrations of S3 x S3 obtained by a product of two such 
fibrations of the factors? 

7. Great 2-sphere fibrations of S3 x S3. None of the above results 
address the case of fibrations of S3 x S3 by great 2-spheres. From the 
Gysin sequence we can settle this case by proving that in fact S3 x S3 

does not even admit a topological fibration by 2-spheres. 
Suppose we had such a fibration, S2 —> S3 x S3 —• M 4 . Since 

S3 x S3 is simply connected and S2 is path connected, M 4 must 
be connected and simply connected, hence H°(M,Z) ~ Z and the 
fibration is orientable. The Gysin sequence of our hypothetical fibration 
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gives: 

—+ H5{M4) —> H5{S3xS3) —» # 3 ( M 4 ) —> H6(M4), 

so by exactness we must have H3(M4) = 0. But another segment of 
the Gysin sequence gives: 

—• H3(M4) —> # 2 ( 5 3 x 53) —* # ° ( M 4 ) —> H3(M4) —• 

so the conclusion H3(M4) = 0 destroys the exactness of this segment. 
Hence no such fibration exists. 

8. Examples of 5 m x Sn which admit no great fc-sphere fibrations, 
fc>0. 

5 1 xS2 S2 x S2 S2 x 5 5 S4x S9 

S1 xS4 S2 x S4 S2 xS9 S4x S1S 

S1 xS6 S2x Se S2 x S13 S6 x S9 

S1 xS8 S2 x S8 S2 x S17 S6 x S13 

4. Great 3-sphere fibrations of S3 x S3. From §3 we know 
that every great 3-sphere fibration of S3 x S3 is trivial and it gives 
a strongly injective embedding of S3 in 0(4). Conversely, given a 
strongly injective embedding (j) : S3 —• 0(4), the family of 3-spheres 
x h-+ {-^(6,^(x)(6)) : b G S3} for each x G S3, gives a great 3-sphere 

fibration of S3 xS3. 
So our approach to studying great 3-sphere fibrations of S3 x S3 will 

be to analyze the equivalent problem of strongly injective embeddings 
of S3 in 0(4). It is well known that 50(4) - S3 x RP3, hence 50(4) 
has S 3 x S3 as a double cover. In all that follows we identify R4 

with the quaternions in the usual manner and S3 will represent the 
quaternions of norm 1. With these identifications, we take for the 
double cover projection h : S 3 x S3 —» 50(4) the map determined by 
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h(u,v)(x) = uxv (quaternion multiplication). 
Since S3 is simply connected, any map (j> : S 3 —• 50(4) lifts to a map 

(j) : S3 —• S3 x S 3 such that the diagram 

S3xS3 

S3 —?-+ 50(4) 

commutes 0 is unique up to choice of base point lying over, say 0(1). 
Now we address the question: What criteria are there to guarantee 

that a 3-sphere embedded in S3 x S3 projects via h to the image of a 
strongly injective embedding? 

Let d : S3 x S 3 —* [0, ir] denote distance on S3;d(x,y) equals the 
minimum value of the length of a great circle arc joining x and y. 
Since multiplication by a norm 1 quaternion is an isometry of S3 , we 
get immediately, 

d(z, y) = d{xq, yq) = d{qx, qy), for all x,y,qeS3. 

LEMMA 4.1. A necessary condition for h(x,y)(w) = h(u,v)(w) for 
some w G S3 is that d(x,u) = d(y,v). 

PROOF, xwy = uwv o xwyv~x = uw so d(x,u) = d(xw,uw) = 
d(xw,xwyv~1) = d{\,yv~x) = d{v,y) = d(y1v). 

LEMMA 4.2. /i(x, y) € 50(4) has a fixed point (+1 eigenvalue) if and 
only i /d(x, l) = d(y,l) . 

PROOF. {=>).h(x,y)(w) = w = h(l, l)(w), so, by Lemma 4.1, 
d(s , l ) = d(jM). 

(<=). If x = ±1 , then d(x, 1) = d(y, 1) implies y = ±1 and both 
/ i( l , l) and ft(-l,-l) have fixed points, so the conclusion follows for 
x = ±l. 

For x ^ ±1 , suppose d(x, 1) = d{y, 1) = c with 0 < c < 7r. For any 
z € S3 , z ^ ±1 , let z denote the quaternion on the great circle through 
1 and z with d(l, z) = | and d(z, z) < \. 
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We recall that 50(3) ~ RP3 and one way to make this identification 
is to conjugate by norm 1 quanternions and view this action restricted 
to the unit 2-sphere in 5 3 of quaternions with real part 0. So there 
exists w G S3 such that w~1x~1w = y. 

Now, conjugation by w is an isometry of S3 fixing ±1 so it takes 
the great circle through 1 and x~x to the great circle through 1 and y. 
Since d{l^x~1) = d{l,y) we conclude y = w~1x~1w, but this implies 
w = xwy = h(x,y)(w) and consequently h{x,y) has a fixed point. 

THEOREM 4.3. Given x,y,u,v e S3,h(x,y)(w) = h{u,v){w) for 
some w € S3 if and only if d(x,u) = d(y,v). 

PROOF. (=»). Lemma 4.1. 
(<*=). d(x,u) = d(y,v) implies d{l,x~xu) = d(x,u) = d{y,v) = 

^ ( l , ^ " 1 ) . So, by Lemma 4.2, there exists w E S3 with w = 
h(x~1u,vy~1)(w) = x~1uwvy~1. This says that h{x,y){w) = xwy = 
uwv = h(u,v)(w). 

This is the key result we were after and it will allow us to completely 
characterize strongly injective embeddings of S3 in 50(4). 

THEOREM 4.4. A submanifold of S3 x S3 corresponds to the image 
of a strongly injective embedding of S3 in 50(4) if and only if it is the 
graph of a smooth distance decreasing map ij) from either S3 factor to 
the other. 

PROOF. Using Theorem 4.3, the proof is identical to [1; Theorem A]. 

THEOREM 4.5. (/) : S3 —• 50(4) is a smooth strongly injective em­
bedding if and only if the corresponding distance decreasing map i\) is 
differ-entiable with \d\j)\ < 1. 

PROOF. (=*•). By Theorem 4.4, <j> corresponds to a smooth distance 
decreasing map tp from one factor of 5 3 to the other. Therefore we 
have \dip\ < 1. 
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Suppose \dip\ = 1 at some point (u, v) G S3 x S3 , v = iß(u). Left and 
right multiplication in the Lie group S3 are both diffeomorphisms of 
norm 1, so replacing h by h(x,y) = h(u~1xiyv~1) we may and shall 
assume (w,v) = (1,1). 

\dij)\ = 1 implies there is a parametrized curve a : (-£, e) —• S3 , cr(0) = 
l,<r'(0) = F with |V| = 1 such that \(xpoa)'{0)\ = \V\ = 1. We assume 
a traverses a portion of a great circle, and by a conjugation action 
applied to the first factor which rotates the purely imaginary 2-sphere 
we can suppose a(t) = cos t + i sin t. 

Now^oa(i) = -01 {t)+fa{t)i+il>3{t)j+il)4{t)k, with^i(0) = 1,^(0) = 
0,2 < i < 4;^i(0) = 0 , ^ ( 0 ) 2 + ^ ( 0 ) 2 + < ( 0 ) 2 = 1. The matrix for 
h{a(t),il) o a{i)) e S0{4) is given by: 

H(t) = 

cost -sint 0 0 
sint cosi 0 0 

0 0 cost - s in t 
0 0 sint cost J 

V>i(t) -Mt) -Mt) -Mt)' 
Mt) Mt) Mt) -Mt) 
Mt) -Mt) Mt) Mt) 
Mt) Mt) Mt) Mt) • 

dt 
\t=oH(t) = 

-1 
0 
0 
0 
0 

l + t/4(0) 
MO) 

O l 
0 

-1 
0 J 

I + I-

-Ws(0) 
0 

- ^ ( 0 ) 
L Mo) MO) i-MO) 

0 - ^ ( 0 ) - ^ ( 0 ) - ^ ( 0 ) -

Mo) o MO) -MO) 
V£(o) - ^ ( o ) o Mo) 

IMO) ^ (o ) - ^ ( o ) o . 
- ^ ( 0 ) - ^ ( 0 ) • 
Mo) -Mo) 

-l + Mo) 
0 

It is a straightforward but tedius calculation to compute: 

(4.5.1) det [jt\t=oH(t)} = (-1 + </4(0)2 + ^ ( 0 ) 2 + V4(0)2)2. 

So \4>O(T'(0)\ = \a'(0)\ = 1 implies det [^|t=o#(<)] = 0. Let w € S 3 

be a vector such that [;ft|t=o#(<)](u>) = 0. Assuming, WLOG, that 
<j> : Sz -* Sz x S 3 is given by <t> = (id, ip) we get (recalling <j>w : S3 —• S3 

is given by <t>w(x) = <j>(x)(w)) 

(4.5.2) 
(dd>w)i(V) = jt\t=o<l>w°<r(t) = jt\t=oh(*(t),iPoc(t))(w) 

= [|lt=oH(*)](«>) = 0, 
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hence </>w is not a diffeomorphism at 1 G S3. Therefore cß is not a 
smooth strongly injective embedding. 

(<*=). We already know that, given a smooth distance decreasing map 
iß : S3 —• S3 , we get a strongly injective embedding <ß : S3 —• 50(4), 
(ß(x) = h{x,iß{x)). It remains to show that \diß\ < 1 implies <ß is a 
smooth strongly injective embedding. 

Suppose <j> is not a smooth injective embedding, then, for some 
w G S3,</>w *s n ° t a diffeomorphism. Hence there is a point p € S3 

and a unit tangent vector V at p such that (d0ty)(V) = 0. By an 
argument completely analogous to that at the beginning of the "if" 
part of the proof, we may assume p = iß(p) = 1 and V is the unit 
tangent vector to the curve a(t) = cosi + isint at t = 0. 

So we can apply equation 4.5.2, this time knowing (d<ßw)i(V) = 0, to 
conclude [-jfì\t=oH(t)](w) = 0. By 4.5.1 we must have 

|(V°<r)'(0)| = ^ ( 0 ) 2 + ^ ( 0 ) 2 + ^ ( 0 ) 2 = 1 and |<ty| = 1. 

THEOREM 4.6. j4ny great S-sphere fibration of S3 x S 3 must contain 
some orthogonal pair of fibres. 

PROOF. Corresponding to any great 3-sphere fibration of S3 x S3 

is a strongly injective embedding <ß : S3 —+ 0(4), and we assume 
image <ß lies in 50(4). Corresponding to (ß is a distance decreasing 
map iß : S 3 —* S3 , mapping one factor of the double cover of 50(4) to 
the other, say WLOG, the first factor to the second. 

iß distance decreasing implies -iß(x) firniß for any x € «S3, so iß is 
not surjective. By the Borsuk-Ulam Theorem, there exist ±u G S3 

such that iß(u) = iß{-u). Let P±u denote the fibres over ±u, 

P±u = {^=(v,±uviß(u)):veS3}. 

For V = (t>,m>^(ii)) G P u and W = (w,-uwiß(u)) G P-^ we compute 
V • W. Note that, for quaternions a = ai + <22Ì -h 03,7 + a±k and 
6 = 61 4- 62« + Hj + &*&, Re (06) = a\b\ + 02^2 + 0363 + ^4^4 = a • 6, 
hence 

V W = ?ft(vïï) + R(t4V^(t*)(-t*ti;^(t*))) 

= R(t>t/J — iw^(tz)V>(tt)^0 = R(ÏÏÎ/; — iwttm) 

R(vW — tivtim"1) = $t(vw) — $l(vw) = 0. 
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Therefore we have shown Pu = PJ^. 

From these three theorems we see a strong analogy with great circle 
fibrations of 5 3 and the work of Gluck and Warner [1]. To keep this 
analogy going we would like to distinguish a certain "nice" subspace 
of the space of all great 3-sphere fibrations of 5 3 x S3 and call them 
Hopf fibrations. 

If we took the Hopf fibration of 5 7 by great 3-spheres as the graphs 
of left quaternion multiplication and restrict to graphs of norm one 
quaternion multiplication, then clearly these great 3-spheres fibre 
S3 x S3. This fibration corresponds to the distance decreasing map 
ip : S3 —• 1 G S 3 (first factor to the second). Certainly this fibration 
of S3 x S3 should be called a Hopf fibration. As in [1] any orthogonal 
transformation of this fibration, which still fibres 5 3 x 5 3 , should also 
be called a Hopf fibration. Those orthogonal transformations which fix 
S3 x S3 are of the form [ ^ £ ] where A{ G 0(4). 

Restricting to the special orthogonal group, so we stay in the class 
of strongly injective embeddings of S3 in 50(4), suppose first that 
Ai G 50(4), for i = l and 2. In this case we can represent the action 
of such a transformation as 

(a, ò)| - • (xay,ubv) for (a, 6) G S 3 x S3 C S7 , 

where x,y,w and v are in S3. 
If Pr = {-j={c,rc) : cE S3} is a great 3-sphere of our Hopf fibration 

then under this transformation, 

Pr *-+{-j=:{xcy,urcv) : c G S3} 
V2 

= { - ^ ( c ' 1 ( i i r x - 1 ) c / ( y - M : c / € S 8 } . 

So the distance decreasing map corresponding to this new fibration is 
ip'(w) = y~lv = constant. 

Suppose now Ai G 0(4) — 50(4) for 2 = 1 and 2. We get 

(ai ,a2) •-• (AiauA2a2) = (A^äi, A2â2), 

where äi is the conjugate of a^ and Af
{ G 50(4) for 2 = 1 and 2. So 

nothing new happens in this case and we conclude: Any special or-
thogaonal transformation of the Hopf fibration of 5 3 x 5 3 , which still 
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fibres S3 x $ 3 , has a corresponding distance decreasing map of the form 
iß(S3) = constant. Clearly all of this could have been applied to the 
"other" Hopf fibration of S7 given by graphs of right multiplication so 
the map tp(S3) = constant can be a map from wither S3 factor to the 
other. 

DEFINITION 4.7. A Hopf fibration of S3 x S3 is any great 3-sphere 
fibration of S3 X 5 3 , which induces a strongly injective embedding 
(ß : S 3 -+ S3 x S3 such that lm<ß = (S3,pt) or (pt,S3). 

THEOREM A. The space of all oriented great 3-sphere fibrations of 
S3 x S3 Ç S7 deformation retracts to the subspace of Hopf fibrations 
and hence has the homotopy type of disjoint union of four copies of 
RP3. 

PROOF. Let DDM (Sn) be the space of distance decreasing maps of 
Sn to itself. We give DDM (Sn) the compact open or C° topology. Two 
maps / and g from Sn to itself are within e of each other provided f(x) 
and g(x) are within e of each other for all x G Sn. For / G DDM (Sn) , / 
distance decreasing implies -f(x) ^ I m / for all x & Sn so / is not 
surjective. By the Borsuk-Ulam Theorem, there are ±u G Sn with 
f(u) = f(-u) = uf. For all x G 5 n , mind(x, ±u) < 7r/2, SO distance 
decreasing implies d(f(x),uf) < K/2 hence Image / Çopen hemisphere 
o f S n . 

LEMMA 4.8. There is a continuous map c : DDM(Sn) —> Sn such 
that, for each f G DDM(Sn), the image f{Sn) lies in the open hemi­
sphere centered at c(f) 

PROOF. I m / certainly varies continuously with / by the choice of 
topology on DDM (Sn). Let B(f) be the closed ball of smallest radius 
which contains the closed set Im / . 

1) B(f) is uniquely determined by / . 
This follows from the fact that on the unit n-sphere the intersection 

of two closed balls, each of radius < 7r/2 is contained in some closed 
ball of smaller radius. 
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Let c(f) denote the center of the ball B(f) and r(f) its radius. 
2) r(f) varies continuously with / . 
If / is perturbed by less than e to g, then r(g) < r(f) + e and by 

symmetry r(f) < r(g) + e. 
3) Let B be a ball of radius r < IT on Sn with center p, then, for any 

ball C inside B of radius a, a > r — /?, with center g, d(p, <?) < ß. 
Now, for | > e > 0 given, let Ue be the open ball about / , 

U£ = {g e DDM (Sn): distance from / to g is less than {e/2}. Let B 
be the ball of radius r(f) + e/2 with center c(/) . Then Image g Ç B 
for all g e U£, hence £(#) Ç 5 for all g e U£. Now (2) implies 
r ( / ) - e/2 < r(g), so (r(/) + e/2) - e < r(g) and, by (3), we conclude 
d(e(/),c(<?)) < £• Since we can find such a t/e for all e > 0,c is contin­
uous. 

For any / € DDM(5 n) , radial contraction of I m / to c(f) ho-
motopes / , through distance decreasing maps to a constant map, 
fo ' Sn —» c(f) G S n . By Lemma 4.8 c(f) depends continuously 
on / so this process is a deformation retraction. Hence DDM (Sn) has 
the homotopy type of Sn. 

Finally set n = 3 and observe that the two constant maps ip : S3 —» p 
and tp2 ' S3 —• -p both from the first factor to the second or vice versa 
determine the same great 3-sphere fibration of S3 x S3. So the family 
of great 3-sphere fibrations of S 3 x S 3 determined by strongly infective 
embeddings <t> : S3 —• S0(4) has the homotopy type of a disjoint union 
of two copies of RP3. We get two more copies of RP3 by considering 
strongly injective embeddings (j> : S3 —• 0(4) — S0(4). 

Except for the last paragraph and part (3) of the Lemma, the proof 
of Theorem A is essentially identical to [1; Theorem D]. 

With this theorem we have answered completely, for great 3-sphere 
fibrations of S3 x S3 , the three questions posed in §1. Now we ask: 
Can every great 3-sphere fibration of S 3 x S 3 appear as a portion of a 
great 3-sphere fibration of S7? 

The result will follow easily from Theorem A and the following two 
simple observations: 

1) Every great 3-sphere fibration of S3 x S3 can be "fattened 
up." Suppose tp : S 3 —> S3 is a distance decreasing map giving a 
great 3-sphere fibration of S3 x S3. It is a simple matter to check 



GREAT SPHERE FIBRATIONS 883 

that the family of 4-planes, {Pta : a G S3,0 < t < oo}, where 
Pta = {{u, taut/)(a)) : u G H}, gives a fibration of S 7 —(P0UPoo), where 
P0 = span ( 4 , 4 , 4 , 4 ) ^ R 8 and P ^ = s p a n ( 4 , 4 , 4 , , 4 ) Ç R 8 

This "fattened up" fibration is smooth if and only if the original fibra­
tion is smooth. Including the 4-planes P0 and Poo we get a topological 
fibration of S7. 

2) If %l) : S3 —• constant € «S3, then in the above "fattening up" pro­
cess we can include P0 and PQQ and still retain differentiability. 

THEOREM B. Every (smooth) great 3-sphere fibration of S3 x S3 can 
be extended to a (smooth) great 3-sphere fibration of S7. 

PROOF. Given a great 3-sphere fibration of S 3 x S3 , let rp as usual be 
the corresponding distance decreasing map. Let ipt : S3 —» S3,t G / , 
be the homotopy of ^ , through distance decreasing maps, to a constant 
map provided by Theorem A with ipi = ift and i/)0(x) = c(iß) == c, a 
constant for all x G S3. 

Let n : [0,00] —» [0,1] be a C°° function such that n(l) = 1 and 
support n Ç ( | , 2). We suppose R 8 = H x H and consider the family 
of 4-planes: 

{Po}\J{Poo}\J{Ptv'.0<t<OO}, 

where Ptv = {{u,tvw/)n(t){v)) : u G H}. 

Note that, for t < \ and £ > 2, ̂ n($) is a constant map so the fibration 
is C°° is a neighborhood of P0 and Poo- With this it is easy to verify 
that the above family of 4-planes cut out a C°° fibration of S7 by 
great 3-spheres and the fibration is smooth if and only if the original 
fibration of S3 x S3 is smooth. 

As a final application of Theorem 4.3 we obtain a further insight into 
great circle fibrations of S1 x S3 Ç S5 . 

Let F : S 3 —• S3 be a smooth map with F(q) G q1- for all 
q G S3 , i.e., F is a smooth, unit tangent vector field on S3. Let 
HF : [0, 2TT] X S 3 - ^ S 3 be given by 

H(0,q) = coso • g + sin0 • F(ç). 

One readily verifies that a necessary and sufficient condition for the 
family of great circles in SxxS3 Ç S5 , Sx{q) = { ^ (cos 0, sino, ff(0,gr)): 
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0 < 0 < 2TT} for all g G 5 3 , to fibre 5 1 x 5 3 , is that H{0, ) : S3 -+ 5 3 

is injective for all 0 < 0 < 2n. 
Recall that there is a bijective correspondence between smooth unit 

tangent vector fields on 5 3 and smooth maps from 5 3 to 5 2 where 
S2 = S3 H 1±. Given F as above we get this correspondence by defin­
ing / : 5 3 —• S2 by f(p) = p~lF{p). In terms of / the map Hp is given 
by: 

HF{0,p) = COS0 • p + sino • (pf(p)) = p(cos0 + sin0 • /(p)). 

For each p and 0 we get an element of 50(4): 

(p, (?) H- ft(p, cos 6> -h sin Of(p)) e 50(4) 

(recall h : S3 x S3 —• 50(4) is the double cover projection). For brevity 
we denote this element of 50(4) by h(p,0). 

If / : 5 3 —• S2 Ç 5 3 is distance decreasing, then since c?(cos 6 + 
sin0f(p), cos0 + sin/(g)) < d(f(p),f(q)) for all 0 and all p and g, we 
conclude that, for all 6 and all p ^ g, 

d(p,g) > d(/(p),/(g)) > rf(cos<9-hsin<9/(p),cos(9-hsin^/(g)). 

Therefore, from Theorem 4.3, we get 

# F ( M = A(M)(1) 7̂  Äfe«)(l) = #H0 ,g ) 

for p ^ g and all 0, i.e., ^ F ( ^ ? ) is injective for all 9. 
So we conclude: For every distance decreasing map / : 5 3 —> 5 2 we 

get a great circle fibration of 5 1 x 5 3 Ç 5 5 . It remains an interesting 
open question whether the converse also holds. 

This conclusion is sufficient for us to exhibit a great circle fibration 
of 5 1 x 5 3 which does not project a great circle fibration of the 5 3 

factor. If / : 5 3 —• {i} Ç S2 is the constant map, then one can readily 
check that the flow along the related map Hp determines a great circle 
fibration of 5 3 (the Hopf fibration). Now let / be a perturbation of 
/ in a neighborhood of 1 such that it is still distance decreasing and 
f(x) = i for all x e S3 with d(x, 1) > f and / ( l ) / i. Since / is dis­
tance decreasing, H~A0, ) : 5 3 —• 5 3 is injective for all 0; however, if 

5(1) = {f f j (M) ' 0 < 0 < 2TT},5(Ì) = {H~F{0,i) : 0 < 0 < 2TT}, then 
1 e 5(1) fi5(i), but 5(1) 7* 5 (0 since % € 5 (0 but i <£ 5(1). Therefore 
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Hp does not determine a great circle fibration of S 3 although it lifts 
to a great circle fibration of S1 x S3. 
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