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DISCRETE CUBIC SPLINE INTERPOLATION 
OVER A NONUNIFORM MESH 

H.P. DIKSHIT AND S.S. RANA 

1. Introduction. Let us consider a mesh P on [a, b] which is defined 
by 

P : a = x0 < Xi < • • • < xn = b. 

For i = 1,2, ••• ,n, pi shall denote the length of the mesh interval 
[xi-i,Xi\. Let p = m.sxi<i<npi and p' = mini<i<n p{. P is said to 
be a uniform mesh if pi is a constant for all i. Throughout, h will 
represent a given positive real number. Consider a real function s(x, h) 
defined over [a,6] which is such that its restriction Si on [XÌ-I,XÌ] is a 
polynomial of degree 3 or less for i = 1,2, • • • , n. Then s(x, h) defines 
a discrete cubic spline if 

(1.1) (*i+i -8i)(xi+jh) = 0,j = - 1 , 0 , 1 ; i = 1,2,-•• , n - l . 

Discrete splines have been introduced by Mangasarian and Schumaker 
[5] in connection with certain studies of minimization problems involv­
ing differences. Discrete cubic splines which interpolate given func­
tional values at one point lying in each mesh interval of a uniform mesh 
have been studied in [1]. The case in which these points of interpola­
tion coincide with the mesh points of a nonuniform mesh was studied 
earlier by Lyche [3], [4], The object of the present paper is to study 
the existence, uniqueness and convergence properties of a discrete cubic 
spline interpolant of a nonuniform mesh which takes prescribed values 
at one point of each mesh interval. In comparison to the results proved 
in [1], the use of nonuniform mesh in our results permits a wider choice 
for the points of interpolation. This will be demonstrated by employ­
ing a certain nonuniform geometric mesh. The results obtained in this 
paper include in particular some earlier results due to Lyche [4] and 
Dikshit and Powar [1]. For the corresponding results on continuous 
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splines reference may be made to [2] and [6]. It may also be mentioned 
that certain interesting studies concerning spline interpolation over a 
geometric mesh have been made by Micchelli ([7], p. 241). 

For an equivalent definition of a discrete cubic spline, we introduce 
the difference operators [4]. 

DPHX) = f(x);D™f{x) = (f{x + h)- f(x - h))/2h, 

D{2}f(x) = (/(* + h) - 2f(x) + f{x - h))/h2. 

It may be observed that the condition (1.1) has the following equivalent 
form [4] 

(1.2) DÌJht(xlìh) = D{
h
j}si+1(xiìh),j = 0,1,2^= 1,2,... ,n-l. 

We would also use polynomials x^ given by 

x{j} = xjj = o5 i,2;a:<3> = x(x2 - h2). 

We shall denote by i}(3, P, h) the class of all discrete cubic splines 
over the mesh P . A discrete cubic spline s which is 6 — a periodic, is 
said to be a periodic discrete cubic spline. The class of all such splines 
is denoted by £>i(3,P, h). It may be observed that as h —• 0 a discrete 
cubic spline reduces to a continuous cubic spline. 

Writing ti = Xi-i + Opi with 0 < 0 < 1 and considering a given 
function f{x), we introduce the interpolatory condition: 

(1.3) *(*i,Ä) = /(*<)> i = l , 2 , . . . , n , 

and pose the following: 

PROBLEM A. Given h > 0, for what restrictions on 6 and p does there 
exist a unique s(x, h) G £>i(3, P, h) which satisfies the condition (1.3)? 

2. Existence and uniqueness. Setting Mi = Mi(h) = D{2]s{xu h) 

and observing that D^ s(x, h) is linear, we notice that for the interval 
[Xi-i,Xi] 

(2.1) piD)?}s{x, h) = {xi - x)Mi-x + (x - Xi-X)Mi. 
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Summing the above equation twice we have, 
(2.2) 
6Pis(x, h) = {xi - x){3>Mt-_i + (x - xt_i){3>Mt- + 6pt(x - ti)a + 6Pidi 

where Ci,di are appropriate constants. For any sequence < an >, we 
set 6an = (1 — 0)an + 0a n+i and observe that in view of the condition 
(1.2), 

(2.3) 2Aa = Mi{Pi + p m ) ; M t A p ? = 6[£(piCi) - Ad>] 

where A is the usual forward difference operator given by Aat- = 
a»+i — a;. For any function g of pi,pi_|_i,p»+2 and 0 we denote by 
<7* the function obtained from g by (i) interchanging 0 and 0* = (1 — 0) 
and (ii) interchanging p* and p»+2-

Thus using (1.3), (2.2) and (2.3) we have 

(2.4) RiMi+2 + TiMi+x + 2?M< + / Ç J ^ - i - 6*i, 

where 

Ri = ^PÌ+2 - Oh2)SPi;Fi = ( f o A / t e - H H f t + i A / f e ) ) ; 

T< = M * 2 ( 3 - 6)p2
i+2 + (1 - ö3)p?+1 + 36pi+m+2 

-(l-2d)h?)-6Pi+1(e
3p-?+1-6h2) 

We are now set to answer Problem A in the following. 

THEOREM 1. Suppose that f is a given b — a periodic function and 
h < p' . Then there exists a unique s(x, h) G Z>i(3, P, h) which satisfies 
(1.3) if either (i) 0 < 6 < 1/3 and (pt)f=1 is nonincreasing or if (ii) 
2/3 < 0 < 1 and (pi)^=1 is nondecreasing. 

PROOF. In order to prove Theorem 1 it is clearly sufficient to show 
that the system of equations (2.4) for i — 1, 2, • • • , n has a unique 
solution. We observe that since h < p', T{ and T/ are nonnegative for 
0 < 6 < 1. Also we notice that 

\Ri\ + \R*\ < 0(62p2
+2 + h2)SPi + 9*(0*2p2 + h2)6Pi+1. 
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Thus, in the coefficient matrix of (2.4), the excess of the positive value 
of T* over the sum of the positive values of Ti, Ri and R* is not less 
than 

Viiß, h) = {ri+1 + 20*h2)öPl + fa + 293p2
+1)6pi+1 

where 

n = 9*2(1 + 29)p2 - S92p2
+1 - 29h2. 

Considering first the case in which < pi >f=1 is nonincreasing and 
0 < 9 < 1/3 we observe that yi(9,h) > 0. In the other case in which 
< pi >i'=1 is nondecreasing and 2/3 < 9 < 1, we see that the excess of 
the positive value of Ti over the sum of the positive values of Ri,R* 
and T* in (2.4) is not less than y* (9, h) which is clearly positive. Thus, 
using the diagonal dominance Theorem we see that the coefficient ma­
trix of the system of equations (2.4) is invertible. This proves Theorem 
1. 

3. Norm of differences between splines. In this section we give 
an estimate for the difference between two spline interpolants s(x,h) 
of Theoren 1 with h = u,v. For convenience we write 

(3.1) y{h) =max[{yi(0,h)}-1,{y*(0,h)}-1]. 

Setting 

Mi{u,v) = Mi(u) -Mi(v),Ifi(u,v) = u2Mi(u) -v2Mi(v) 

we denote the single column matrices (Mi(u,v)) or (Mi(u,v)) by 
M(u,v) or M(u, v). F denotes the single column matrix (Fi). Unless 
stated otherwise ||.|| will denote the sup norm throughout the present 
paper. 

We shall first prove the following Lemma. 

LEMMA 3.1. Let s(x,h) be the unique discrete periodic cubic spline 
interpolant of f under the assumptions of Theorem 1. Then we have 

(3.2) ||M(u, v)\\ < 24p\u2 - t>2|y(ti)y(«)||F|| 

and 

(3.3) | |37( t i ,«) | |<6*i |« 2 -v 2 fy(«) | |F | | , 
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where y(h) for h = u,v is given by (3.1) and k\ = 1 + 24pv2y(v). 

PROOF. It may be observed that the system of equations (2.4) may 
be written as 

(3.4) A(h)M(h) = 6F 

where A(h) is the coefficient matrix and M{h) = (Mi(h)). From (3.4) 
it is clear that 

(3.5) A(u)M(u, v) = [A(v) - A(u))M{v). 

However, as already shown in the proof of Theorem 1, A(h) is invertible. 
Denoting the inverse of A(h) by A~x(h) we notice that the row max 
norm: | |A -1(/i)| | satisfies the following inequality, 

(3.6) \\A-l{h)\\<y{h). 

It may also be easily seen that 

(3.7) | |M(t;) | |<6i/(t;) | |F| | 

and 

(3.8) \\A{v)-A(u)\\<4p\v2-u2\. 

We thus prove (3.2) by combining (3.6)-(3.8) with (3.5). By a parallel 
reasoning we prove (3.3). 

We are now set to prove the following. 

THEOREM 2. Suppose s(x,h) is the unique periodic discrete cubic 
spline interpolant of f under the assumptions of Theorem 1. Then for 
u,v > o 

(3.9), |K« ,u) - s{x,v)\\ < Ky(u)\v2 - u2\\\F\\ 

where K is some positive function depending on 0,p,p' and v and y{u) 
is given by (3.1). 
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PROOF. We determine c;,d; from equations (1.3), (2.2) and (2.3) and 
observe that for x G [xj - i ,^] 

6s(x, h) 

= [{(Xi - x)W/Pi} - Ä?(l - ^ ) / * P i + l ] ^ - l + [{(* - Xi-^/pi} 

- Ai{02(3 - 0)p*+i + (1 - Sz)pï + 3ePiPi+1 - (1 - 20)>*2} - Bi-!]Mi 

- AiBiMi+x + 6AiAf(U) + 6f(ti), 

where A» = (x — U)/6pi and Bi = i^_i/<5p2_i. Now taking h = u,v 
and writing x = Xi-\ +Pit with 0 < t < 1, we have 
(3.10) 

6|s(x,u) - s(z, v)| 

< |0 - *|[{(i - tf + o*(2 -e-t) + e2 + t2 + et}p2 

+ (6*3 + (1 + ef))p3/p'}\\M(u,v)\\ + \e- t\(40p/p')\\M(u,v)\\ 

< (3p2 + 8p3/p')\\M(u,v)\\ + (4p/p')\\M(u,v)\\. 

Thus, applying Lemma 3.1 to (3.10) we complete the Proof of Theorem 
2. 

4. Error bounds. For a given h > 0, we introduce the set 

Rha = {a + jh : j is an integer } 

and define a discrete interval as follows 

[a,b]h = [a,b]f]Rha. 

For a function / and three distinct points xi,x2i ^3 m its domain, the 
first and second divided differences are defined by 

[xi,x2]f = {f(xi) - f(x2)}/(x1 -x2) and [xux2ix3]f 

= {[xi,x2]f - [x2,xs]f}/(xi - £3), respectively. 

For convenience, we write f^ for D^ *f and w(f,p) for the modulus 
of continuity of / . The discrete norm of a function / over the interval 
[a, 6]h is defined by 

| | / | | ' = max 1/(1)1. 
xe[a,b]h 
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Without assuming any smoothness condition on the data / , we shall 
obtain in the following the bounds for the error function over the dis­
crete interval [a, 6]^. 

THEOREM 3. Let s(x, h) be the unique periodic discrete cubic spline 
interpolant of f under the assumptions of Theorem 1. Then over the 
discrete interval [a, 6]^ 

(4.1) | | e< r >| | '<p a - r üf(r )J( f tH/< a >,p) , r = 0 , l ,2 , 

where J(h) is a positive function of h and K(0) = 1/8,if(l) = 1/2 and 
K(2) = 1. 

In order to prove Theorem 3 we shall need the following results due 
to Lyche [3; Lemma 5.3 and Corollary 5.2 respectively]. 

LEMMA 4.1. Let c,d be given real numbers such that c < d and 
d € Rhc for some h > 0 and let g : [c — /i, d + h]h —• R be a given 
function. For the operators L and U defined by 

(d-c)(Lg)(x) = {x-c)g(d) 

+ (d - x)g{c); Ug{x) = g(x) - {Lg){x), 

we have, 

(4.2) \\Ug\\'<w(g]P)t 

(4.2)' \\Ug\\'<(Py8)\\gW\\', 

(4.2)" ll^{1>ir<(p/2)||^a>||', 

where the discrete norm is taken over the interval [c,c?]^. 

LEMMA 4.2. Let a = < üj >?= i and b = < bj >^= 1 be given sequences 
of nonnegative real numbers such that ]C?=i aj — SyLi °j- Then for 
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any real valued function f defined on a discrete interval [a, ß]h we have 

n m 

(4.3) i Œ l J=1
 n 

<w{f^\\ß-a-2h\)Yaaj/2, 

where all the distinct points x^x^x^y^y^y2 € [a, /%. 

PROOF OF THEOREM 3. Since X{ e [a, b]h we may take c = Xi-^d = 
Xi in Lemma 4.1. Now taking g = e^ we see that in view of (2.1), 
£/e{

2} = UfW. It directly follows from the definition of Lg that over 
the discrete interval [xi-i — fe, X{ + h]h 

(4.4) HLe^lf <max |e j 2 } | . 
i 

Since e*2* = Ue^ + Le*2*, we see from (4.4) that for x e [xt_i -
/i, Xt + /i]/! 

(4.5) Ik^ll'^ll^/WlI' + IKc^ll'. 

We notice that the equation (3.4) may be written as 

(4.6) A{h){e\2)) = A(h)(f}2i) - W) = (Hi), 

say. Then, we observe that 

j=l j=l 

where ax = 2{R* + 0*h2Spi+1);a2 = 2T*,a3 = 2Ti,a4 = 2{R{ + 
6h26pi)M = ßSptopi+iiöpi + 6pi+1);b2 = 20*ft2<^+i,ò3 = 20h2Ôpi\ 
x) = Xi-2+3 - (1 - k)h\j = l,2,3,4;j/f = **+*;#£ = Xt-i - (1 - k)h 
and 2/3 = x^+2 — (1 — k)h, for k — 0,1,2. 

Clearly, JZay = 53 fy a n d , therefore, applying Lemma 4.2 we have 

(4.7) Iffil^tf + epX'/w.p). 
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Now using the equations (3.6), (4.4)-(4.7), we get 

(4.8) ll«{2}ir<^(A)«»(/{a>,p) 

where J(h) = [1 + y(h)Sp(h2 + 6p2)]. Taking c = U,d = ^+ i , g = e, in 
Lemma 4.1 we see that Lg = 0 and, therefore Ue = e. Thus, it follows 
from (4.2)' that 

iwr<(^/8)iiewir 
which proves (4.1) for r — 0 when we appeal to (4.8). Similarly, we 
prove (4.1) for r = 1 by using (4.2)". 

5. Interpolation on a geometric mesh. In order to highlight 
the importance of nonuniform meshes, we prove the following corollary 
which shows that the points of interpolation may be chosen anywhere 
between the successive mesh points, whereas this choice is restricted in 
the case of uniform meshes (see Dikshit and Powar [1]). 

COROLLARY 5.1. Suppose f is ab — a periodic function and h <p'. 
Let (pi/pi+i) = 1.56 (or (1.56)"1) for all i, then for 0 < 0 < 1/2 
(or 1/2 < 9 < 1), there exists a unique spline interpolant s(x,h) G 
£>i(3, P, h) which satisfies the interpolatory condition (1.3). 

PROOF. Writing (pi/pi+i) = q = 1.56, we observe that in the 
coefficient matrix of (2.4), the excess of the positive value of T* over 
the sum of the positive values of Ti, Ri and J?* is not less than Q(0), 
where 

Q(0Wq + 0)Pi+iq-2 = [{(1 - 302 + 203)q2 - 302}(1 + q) 
( ' } +2q6

3}p?+1+2{(l-2e)q2-0q}h2, 

which is, of course, positive for 0 < 6 < 1/2. Next we observe that 
in the case in which (pi+i/pi) = q, the excess of the positive value 
of Ti over the sum of the positive values of T*, R* and Ri is not less 
than Q*{6), which is clearly positive for 1/2 < 6 < 1. Thus, using the 
diagonal dominance Theorem, we complete the proof of Corollary 5.1. 

REMARK 5.1. The choice of 1.56 in the Corollary is nearly sharp 
in the sence that the diagonal dominance property fails if we take 
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(Pt/Pt+i) = 1-55 (or (1.55) *), say. 
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