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THE ROGERS-RAMANUJAN IDENTITIES
WITHOUT JACOBI'S TRIPLE PRODUCT

GEORGE E. ANDREWS

ABSTRACT. We provide polynomial identities which con-
verge to the Rogers—-Ramanujan identities. These identities
naturally involve the partial products for the related infinite
products. Hence Jacobi’s triple product identity is never re-
quired.

1. Introduction. For many years it was an open question whether
a bijective proof could be given for the Rogers-Ramanujan identities.
In 1980, A. Garsia and S. Milne [6], [7] gave the first bijective proof
using what has since become called the Garsia—Milne Involution Prin-
ciple. Subsequently D. Bressoud and D. Zeilberger [5] gave an alter-
native bijective proof; however it also relied on the Garsia— Milne In-
volution Principle. Indeed, given the known analytic proofs of the
Rogers—Ramanujan identities it seems that the Involution Principle is
inherently involved; this is because all the known proofs actually es-
tablish
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and
(14) (4;9)0 = [] (1 - 4g™)
m=0

The standard infinite product form of the righthand sides of (1.1) and
(1.2) is then deduced using Jacobi’s Triple Product Indentity [3; p. 22,
Cor. 2.9] in the following form:
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A=—00

The natural bijective method to pass from the numerator products
introduced by (1.5) to the standard forms:

1
(L6) Z (q, IO TS
and
et q" Ztn 1
(L.7) g @GDn (@597 o0(@5 )00’

appears to be the Involution Principle.

At the Colloque de Combinatoire Enumérative-U.Q.A.M 1985, D.
Zeilberger asked whether it was possible to provide a proof of the
Rogers—Ramanujan identities which makes no use of Jacobi’s Triple
Product. This might then provide the starting point for a bijective
proof of the Rogers—Ramanujan identities that would avoid the Invo-
lution Principle.

The object of this paper is to provide such a proof. In the next section
we outline how our proof goes. In §3 we provide the necessary lemmas
from basic hypergeometric series. §4 provides the actual proof.

2. The background of the proof. We shall consider well-known
families of polynomials [8; Sect. 7, Ch. 3], [1] that converge to the
Rogers—Ramanujan identities. Namely
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and

(22) do= ¥ [T,

0<2j<n—1

where the Gaussian polynomial or g—binomial coefficient is defined by

(g:9) = (1-g)
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Let us now define
(2.6) Gal)= ] (-¢)"
j=1,4(mod 5)
0<j<n
and
(2.7) Hi(g= J[I a-¢™
j=2,3(mod 5)
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Obviously there exist polynomials P,(¢q) and R, (q) such that

(2.8) Dy, = Gn(q)Pn(),

and

(2.9) dn = Hn(q)Rn(q).
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In §4 we shall derive closed forms for P,(q) and R,(¢) which will
imply

(2.10) nlin;o P,(q) =1,
and
(2.11) Jlim Ra(q) =

Equations (2.10) and (2.11) are adequate to establish the series-
product forms of the Rogers-Ramanujan identities (i.e. (1.6) and
(1.7)), namely we let n — oo in (2.8) and (2.9) respectively.

3. The ¢—Hypergeometric Series Lemmas. First we want to
represent both D,, and d,, as appropriate g—hypergeometric series. This
is easily accomplished using the polynomial identities of [1]. We shall
utilize both ordinary and bilateral g-hypergeometric series.
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We note that if one of the a; is g™ where N is a nonnegative integer
then both ,¢, and ;95 terminate above. If b; = ¢ +! then ;95 termi-
nates below. We refer the reader to the books by Bailey [4] or Slater
[14] or the survey article [2] for the theoretical development of these
series.
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for n > 0;
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PROOF. We start with the formulae
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where [z] is the largest integer < z. These formulae are established by
means of simple recurrences in [1], [9].

Each of (3.3)-(3.6) is proved similarly. We shall go through the details
for (3.3) and then briefly indicated the remainder. In (3.7) we split the
sum into two parts: one with A even, the other with A odd.
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For the remaining three identities we provide only the key step:
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Now each of the gig’s appearing in Lemma 1 is terminating above and
below. Furthermore, each is of the classical very well-poised type. We
need now a transformation of such series that will yield the factoriza-
tions (2.8) and (2.9) and the limits (2.10) and (2.11).

Since our g1)g’s are terminating, we can easily shift the index of sum-
mation to yield g¢7’s. Then the g-analog of Whipple’s theorem [12],
[11; p. 100, eq (3.4.1.5)] provides us with the appropriate transforma-
tion. All this is encoded in the following result.

LEMMA 2. Let R > 0 and —R < € be integers. Then
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where
(3.14)
Fr(qle; a;¢c,d,e) =
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REMARK. The expression Fp will contribute primarily the G,(g) or
H,(q) while Lg will provide most of the P,(q) or R,(q).

PROOF. If we examine the series on the lefthand side of (3.13) we see
that, in fact, it is a finite sum whose index j runs from —R to R + €.
The first thing to do is shift j to 5 — R so that the sum runs from 0 to
2R + €. To do this we make use of the fact that
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(by the g—analog of Whipple’s Theorem [12])
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which is our desired result using the first expression in (3.15) for
Lgr(qle;a;c,d;e). The second expression for Lg(qle; a;c,d;e) is easily
derived from the first once we observe that

A B_AB-B(B-1)/2 (498
(319 [B} 1) (6:9)B
and
(3.17) (cg™;q); = (-1)7g NI+IG=1/203 (1gN=3+1, gy

Hence Lemma 2 is established.

LEMMA 3. For |¢| < 1,

(3.18) lim Lg(qle; a;e,d;e) = 1.
R—o0

PROOF. For Lg(gle;a;c,d;e) we use the second representation in
(3.15), which we write as

2R+¢e

(3.19) > % Ti(R).

Jj=0
As R — oo, we see that T;(R) is bounded by
a; 1 —1)(,|1+€.
== Ao q ql) =11415 14
oay el Ty bkl

a a
x (15215 lal) oo (15215 lal) o,

Hence as R — oo every term of the sum in (3.19) goes to 0 except the
first, and the first converges to 1.

4. The Rogers—Ramanujan Identities. We are now prepared to
give the main results outlined in §2.

THEOREM 1. Egquations (2.8) and (2.9) hold with P,(q) and R,(q)
given by
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(41)  Pion-5(a) = La(d®[-1;¢% 47, 45 ¢*),
(42)  Pion-4(9) = La(d®-1;¢% ¢% 4% ¢°),

(43) PlOn 3(Q) = (1 - qIOn 3) n(q |_1aq ,qe,q4§(12),
(44)  Pion-2(9) = (1 — ¢""?)La(q°-1;¢% 0% ¢% ).

(45)  Pion-1(q) = (1 = ¢"*")Ln(¢®-1; 0% 4, 4% ¢*),

Ln(¢°10; 0% 4,4%; %),
L (3°|0;¢% q,0%; %),
(1—¢""**)La(q°|0;¢°
( q10n+3)

(

(

(
(4.6) Pion(g
(4.7)  Pion+1(q
(4.8)  Pion+2(q
(4.9)  Pron+3(q
(4.10) Pion+4(q

(o

)=
)=
)=
)
)=

[u—y

(4.11) Ryon-6(q) = Ln(¢®]-1; q q q ?®),

(4.12) Rion-4(9) = Ln(¢°I-1; 4% %, ¢% 4"),

(4.13) Rion-3(q) = Ln(¢®)I-1;4; 4%, 4% ¢%),

(4.14) Rion-2(g) = (1-¢"" 1) (5l ;4% 4,6 ¢°),
(4.15) Rion-1(9) = Ln(q |0 44%,¢%4%),

(416)  Rion(q) =(1-— 10")(1 g"" L

(4.17)  Rion+1(q) = Ln(d°0; q, ,92 7®),

(4.18) Rion+2(q) = Ln(¢°10;¢*; ¢, 4% ¢%),

(4.19) Rion+3(q) = (1 - ¢ ") La(¢°10;¢50 2,0 5 ¢%),
(4.20) Rion+s(q) = (1-¢'*"%)(1 - ¢'"*0)L

gt

.45 4°),
Ln(¢°10;¢% 07, 4;0%),
= @' ") L, (d*10;¢% 07 2,07

n(a°-1; 4% a,9% @),

n(q

®10; ;¢

a3q%q
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1)'

PROOF. These twenty results are merely straightforward applica-
tions of Lemma 2 to Lemma 1. We give the details for (4.1); the

remainder are done in exactly the same way.
By (3.3)

(29)10n-4(1 — ¢3)

Dion-5 =
ton (¢;9)5n-3(2;9)5n
'Tlgl(l)siﬂs
(4.21) %, —q%, ¢, ¢80,
g%, —q3, gontl, gont?

q5—5n q4—5n q3—5n
q

37 4’ 5 77-;
5n+ ) q5n+ ) q "+5’
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_ (@ 9)ion-a(1 - 7°)
(CHAEECHE
(by Lemma 2).
Comparing (4.21) with (2.8), we see that to establish (4.1) we need
only show that

Fu(-a°-1;¢% 4" .4%,¢*) Ln(d®-1;¢%; 47, ¢% ¢*)

(¢;9)10n-4(1 — ¢%) 5 3.7 6 4
F q —11 ) ) )
(@ 9)5n—3(q;9)5n (@ = La5d a0
_ (@ 9)10n-4(2% 4°)n (2% ¢°)n
(¢:9)5n-3(2;2)5n (957125 ¢%)n (4572, ¢5)n
 (%6%)n+1(e®"F 7 ¢%)na
(q5n—1; q5)n(q5n+1; q5)n(q5n; q5)n
1
X
(@°"%2;¢%)n—1(a°"+*; %) n-1(a°"+15¢%)n—1
1
(2:8°%)n (g% ¢®)n(@®" 4 ¢%)n-1(¢°"*1;¢%)n—1
1

= = G —_ 3
(@0)2n-100%5 )21 " 5(9)

as desired.
The rest follow in the same way.

THEOREM 2. Equation (1.6) and (1.7) are valid, i.e., the Rogers-
Ramanujan identities hold.

PROOF. By Theorem 1 and Lemma 3 we see immediately that

(4.22) lim Pa(q) =1,
(4.23) lim Ra(q) =1
Hence

oo n?

S 2 = lm D,

—(6q)n  nooo
(4.24) = lim Gn(g)-Pa(g)  (by (2.4) and (2.8))

= nl_i_lgo Gn(q)
1

T @GP0 @P)w (by (4.22) and (26))
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and

q) - Rn(q)  (by (2.5) and (2.9))

(by (4.23) and (2.7)).

5. Conclusion. It should be pointed out that the title of this
paper is somewhat misleading. We have technically avoided the use of
Jacobi’s triple product; however the real engine of our proof is Lemma
2 a result much stronger than Jacobi’s triple product. Indeed if we let
R — o0 in (3.13) we obtain

EF (0 ¥) - att14(*))
(1-a)

= (¢;9)00 (083 @)oo (a1 ¢; @) o

or
o)

3 (1Y 73 = (4;0)00 (a3 9)o0 (0745 @)

j=—o0

which is precisely Jacobi’s triple product identity [3; p.21, Th. 2.8].
Thus in Lemma 2 we have a finite, rational function identity that con-
verges to Jacobi’s triple product in the limit.

On the other hand, it is well-known that the standard finite form
of Jacobi’s triple product identity [3; p. 49, Ex. 1] is equivalent to
the g-binomial theorem. It would be unreasonable to expect that the
Roger’s—Ramanujan identities could be deduced without ever invoking
a result as strong as the g—binomial theorem.

The real point of this paper lies in the fact that we have use-
ful closed forms for P,(q) and R,(q) given by Theorem 1. If real
combinatorial progress is to be made on the understanding of the
Rogers-Ramunajan identities, then P,(q) and R,(q) deserve further
study.
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